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• Quasi-geostrophic theory (Charney, Fjørtoft & von Neumann 1950) is an
approximation to the rotating shallow-water equations; it formally applies
only to shallow flows with small Rossby numbers and it does not capture
interactions with ageostrophic motions

• To what extent is quasi-geostrophic theory able to capture the full fluid
dynamics, especially outside these limits?

• Quasi-geostrophic theory is found to perform quite well far beyond its
expected range of validity compared with a shallow-water equations
control run (Mundt, Vallis & Wang 1997)

• Also, hydrostatic-primitive-equation and quasi-geostrophic simulations of
the equilibration of baroclinic turbulence agree reasonably well over
broad parameter ranges (e.g. f0, β, N; Zurita-Gotor & Vallis 2009)

• But what about deep flows rather than shallow, hydrostatic flows? And
what about the comparison with real flows rather than simulated flows?

• Plan for this poster: use the laboratory rotating annulus to find out…

1. Motivation



2. The rotating two-layer annulus

Laboratory apparatus

• Rossby number ∆Ω/2Ω ~ 0.1 – 1
• aspect ratios D/L = 4 and f/N ~ 10
• presence of inertia-gravity waves

Quasi-geostrophic model

• assumes Rossby number << 1
• assumes aspect ratios << 1
• absence of inertia-gravity waves

� how well does the model capture equilibrated regular
baroclinic waves observed in the laboratory?



3. Quasi-geostrophic model equations
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These equations are integrated using the QUAGMIRE numerical model 
(Williams et al. 2009).

where



4. Interface height maps

laboratory

model

The basic qualitative structures of equilibrated low-wavenumber
baroclinic waves are captured well by the model.



5. Wavenumber regime diagrams

laboratory model

Many aspects of the nontrivial laboratory bifurcation structure are
convincingly captured by the model...

• e.g., the neutral curve and the relative sizes of the regimes
...but the quantitative agreement is not wholly satisfactory

• the model overestimates F by a factor of 1-2 and d by 5-10



6. Wave amplitudes

laboratory

model

Although the model correctly captures the decreasing amplitude
with increasing wavenumber, the model waves are a few times
weaker than the laboratory waves and are more monochromatic.
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7. Azimuthal wave speeds

The wave speed is proportional to the lid speed in both the
laboratory and the model, but the model overestimates the wave
speeds by a factor of around 4.

laboratory 
(slope 0.12)

model 
(slope 0.50)



• The model displays three systematic biases compared to 
the laboratory:
– overestimation of the dissipation parameter, d, suggests that 

the linear parameterisation of Ekman layers is inadequate
– underestimation of wave amplitudes is due to the neglect of 

surface tension; including its leading-order effects in the model 
fixes the error

– overestimation of wave speeds is due to the neglect of 
Stewartson layer drag at the sidewalls

• The three biases may be explained without invoking the 
dynamical effects of the moderate Rossby number, large 
aspect ratio or inertia-gravity waves

• We conclude that quasi-geostrophic theory appears to 
continue to apply well outside its formal bounds

8. Discussion


