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Outline |
> Complex terrain
> Analytical approach



Real world surface is not flat

Courtesy of David Schimel



Complex terrain is pretty much everywhere
I was born from a complex terrain
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Canopy flows over a forested hill
Analytical theory milestone

A theoretical foundation (no trees) was
established by Jackson and Hunt (1975)

Analytical solutions of canopy flows
over a forested hill was first obtained
by Finnigan and Belcher (2004)

Intensive laboratory studies of canopy
flows over a forested hill has been
Conducted by Katul and Poggi (2008a,b,c,d,e.
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Jl FB04 - analytical solution within canopy E

FBO04 kept all assumptions of JF75’s linear theory
same except adding a canopy layer near ground
and obtained analytical solutions of wind profile

within canopy.
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This layer is important but difficult to know!!! |
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| FB04 - analytical solution within canopy

Basic state within canopy: Inoue’s model

Uy(2)= Uheﬂw |
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|| To obtain analytical solution u(z)=U,(z)+Au(z) H
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| FB04 > analytical solution within canopy
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Figure 2. Comparison of canopy velocity perturbation, Au/Usc with the no-canopy solution of Hunt er al.

(1988; dotted line). Note the Hunt et al. solution is only valid to z = —d + zg. Profiles are plotted at a series of

X /L values between X/L = —2 (upwind trough) and X /L = 2 (downwind trough). The units of Z are m, and the
vertical range is from 2h; > Z > L.. See text for details.



FB04 made great progresses but some
weaknesses need to be improved

What are weaknesses of FB04? |

» Physical inconsistency -- Constant mixing-length
assumption leading to a varying mixing-length.

» A non-slip boundary condition is not able to apply
to the nonlinear algebraic equation.

» Itisunnecessary to divide a canopy layer into two
layers: a linear layer and a nonlinear layer.

» Noneedtoassume Ay << U,




Theoretically, Mixing-length is not constant within canopy!

O Mixing-length is not constant

O Mixing-length theory is not valid within canopy




Large Eddy Simulation demonstrated “that a
constant mixing-length assumption is not strictly
valid within the canopy.” — Andrew Ross (2008 in BLM)
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A new nonlinear model — forested hill |

0T

Momentum balance — PG + P aC,u ‘u‘ =0
Z

local equilibrium equation 7= C,u ‘u‘

Analytical solution

~
saguni BNy
1 2 VPN AL ~
PG =—U,Hk" sin(kx) | 2. o
2 ;: ct’i"! K Iy ~
R SR, 0 B "—':“»»,;‘Wl’ % .... S

L1is an integration constant.
S0 the non-slide boundary condition can be applied.

A X L

....
L]
L]

: Given leaf area density, thﬁ analytical solution can be integrated.
—2L —L 0 L 2L




Our model can do
what FB04 can do,
but even better!




A new nonlinear model — uniform vegetation

a = const., C, = C,=const., first consider u =0
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| A new nonlinear model — uniform vegetation |

Analytical solution




A new nonlinear model — uniform vegetation |

Analytical solution
u(x,z)=J-PG(x)L §1- exp(aoz)] + u}f (x)exp(a,z)
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A new nonlinear model — uniform vegetation |
Excellent agreement between FBO4 and present model at the crest and truughs. l

The S-shaped wind profile on windward side and C-shaped wind profile on leeward
side are predicted by the new model rather than by FBOA4.




A new nonlinear model — uniform vegetation
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Our model can do
what FB04 cannot do!

*Varying leaf area density
*Varying drag coefficient




A new nonlinear model — varying LAD

LAI =4.0 for all examples
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What will be lost if we treat non-uniform
LAD as uniform LAD?
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| Summary and Conclusion |

FoIIowing weaknesses of FB04 have been imEroved!|

» Physical inconsistency -- Constant mixing-length
assumption leading to a varying mixing-length.

» A non-slip boundary condition is not able to apply
to the nonlinear algebraic equation.

» Itisunnecessary to divide a canopy layer into two
layers: a linear layer and a nonlinear layer.

> Noneed to assume Au < U,

The new model is simEIer but more useful! |

» Separation level prediction

» Perform feedback - varying LAD - changing Uy in
outer region = affecting PG in the inner region
->modifying momentum balance in canopy layer




Thank You!



