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Summary

« Excellent progress over half-a-century in our knowledge of organized convection
processes (notably MCSs) utilizing field-campaign & satellite measurements, cloud-
resolving simulations, and theoretical-dynamical principles.

 But organized convection parameterization has languished, arguably due to its
perceived complexity, and is missing from contemporary GCMs.

 Multiscale coherent structure parameterization (MCSP) based on nonlinear
principles minimizes the physical and dynamical complexity issue

 Prototype MCSP approximating MCS heat and momentum transports in the NCAR
Community Atmosphere Model (CAM) is proof-of-concept.
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MCSP Strategy
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MCS in Global Context
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TRMM Precipitation Radar analyses show MCSs:

Provide >50% of tropical precipitation, >70% in certain regions
Interact with meteorological phenomena that challenge contemporary GCMs

MCSs are missing from GCMs — not parameterized, not resolved

MCS presence is imperative for reliable projection of precipitation extremes by GCMs



Fundamental Principles




Multiscale Coherent Structures
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Slantwise Layer Overturning
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Slantwise layer overturning exchanges entire layers, distinct from local mixing.

Driven by horizontal pressure gradient (Ap), controlled by vertical shear, overturning involves

- 3 energy categories: convective available potential energy (CAPE); available kinetic energy

due to shear AKE = % (Ug - ©)?; pressure work APG = Ap/p

APG

- . . CAPE )
- 2 key quantities: convective Richardson number, R = AKE Bernoulli number, E = AKE

- Novel heat & momentum transports

Moncrieff (1992)



Lagrangian Dynamical Analogs

Persistent multiscale coherent structures

(MCS) in fully nonlinear Lagrangian form,
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The field of cumulus, assumed part of the
turbulent environment, is represented by
contemporary cumulus parameterization.

Field of Cumulus

Transform the set of nonlinear equations into exactly integrable form, DF; /Dt = 0.
Integrate along trajectories (1) to provide a set of conserved quantities, F; = C; ().
These quantities provide analytic Lagrangian models of slantwise layer overturning

Models have been verified using cloud-system resolving models and observations.

Moncrieff (1992)



Prototype MCSP

Canonical formulation

- 1stand/or 2"d baroclinic (top-heavy) mesoscale heating
- 18t baroclinic acceleration by momentum transport

Add the “missing process” of mesoscale slantwise layer overturning
to the existing cumulus parameterization, i.e.,

o) o) o)
[E] total — [E]cumulus + [g]mesoscale

Large-scale effects of organized convection unambiguously measured
as differences between GCM runs with & without MCSP

Minimal computational overhead



Heat & Momentum Transport
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MCSP Effects: Annual Precipitation
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MCSP Effects: Tropical Wave Modes
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Conclusions

Prototype MCSP in CAM shows organized convection is parameterizable using 3 basic principles:

Multiscale Coherent Structures, Slantwise Layer Overturning, Lagrangian Dynamical Analogs

Prototype MCSP effects on CAM demonstrates in a minimalist way:
- 1st unambiguous measure of the global effects of organized convection
- Upscale precipitation distribution, convection-wave interaction, and MJO
Organized convective heating & momentum transport effects are distinct
Organized precipitation distribution consistent with TRMM analyses
Cumulus & organized convection parameterization unified
Computationally efficient, hence MCSP usable in full suite of GCMs

Next steps
- Add shear-selection & other regimes of convective organization to MCSP

- MCS parameterization in an idealized GCM (Yang, Majda, and Moncrieff, 2019)
- Implement MCSP in the DOE Energy Exoscale Earth System Model (E3SM)
- Quantify the scale-invariance properties of MCSP

Strategic aspects
- Theoretical-dynamical aspects of the convective parameterization ‘gray-zone’

- Virtual global field campaigns & the weather-climate intersection (cf. YOTC)
- Utilize regional-refined GCMs for research into MCSP development
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