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1. INTRODUCTION 
 
 Attempts to interpret observed tangential wind and 
pressure distributions arising in dust devils, waterspouts, 
tornadoes, and mesocyclones from available 
observational data (e.g.,  mobile Doppler radar) have 
been made using an idealized, inviscid Rankine 
(Rankine 1882) vortex model.  The simple Rankine 
vortex (henceforth RV) model coupled with the 
cyclostrophic balance assumption has been widely used 
by numerous investigators to provide an analytical model 
for the observed tangential wind and pressure structures 
in dust devils (Sinclair 1973; Cantor et al. 2006), 
waterspouts (Leverson et al. 1977), tornadoes (Hoecker 
1961; Wakimoto and Wilson 1989; Winn et al. 1999; Lee 
and Wurman 2005), and misocyclones (Inoue et al. 
2011).  The model’s inner and outer tangential wind 
profiles can be modified to fit fairly well the available 
observational data; however, the profile’s unrealistic cusp 
at the core radius remains unchanged and is usually 
ignored.  The result is that the discontinuous tangential 
velocity peak is overestimated and is not well matched 
with the observed continuous tangential wind maximum.  
This problem gives rise to a vital question as to how 
varying the radial profiles of the RV tangential wind 
affects the pressure deficits within the vortex core region 
when the cusp is unable to match the broadly peaked 
wind profile.  The RV model with cyclostrophic flow, for 
instance, explained about 75% of the in-situ pressure 
deficit measurements in the vicinity of dust devils 
(Sinclair 1973) and waterspouts (Leverson et al. 1977).  
This discrepancy could be attributed to the neglect of 
radial and vertical components of flow in the model.  For 
a given tangential velocity maximum, Fiedler (1994), 
however, showed that his non-Rankine vortex1 
(henceforth non-RV) has a central pressure deficit twice 
that of the RV, suggesting that varying tangential wind 
profiles in the non-RV model have an important 
modulating influence on the behavior of pressure 
profiles.  The profiles underscore the limitation of the RV 
model for many applications because of the 
mathematical simplicity in the model.  The profiles 
underscore the limitation of the RV model for many app- 

                                                      
1 The “non-Rankine vortex” may be defined as a 
viscous vortex which exhibits a smooth transition 
between solid-body rotation and potential flow that 
encompasses the annular zone of the velocity 
maximum, resembling the viscous Burgers-Rott 
tangential velocity profile. 
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lications because of the mathematical simplicity in the 
model.  Consequently, the inadequacy of the model 
provides motivation to apply the Wood and White (2011) 
parametric tangential-wind profile model to a wind-
pressure relationship and to determine whether the 
model can better fit realistic pressure deficit profiles than 
the RV model does. 
 The objective of this paper is to develop a parametric 
model of wind-pressure profiles by applying the Wood-
White (WW) model to the cyclostrophic wind-pressure 
relationship of an assumed axisymmetric vortex.  
Analytical tangential wind profiles in the RV and non-RV 
models are described in section 2.  In section 3, a 
mathematical description of pressure deficits obtained, 
via this relationship, in the RV and non-RV (WW) models 
is presented.  Section 4 elucidates the roles of the shape 
velocity parameters in the behaviors of the radial 
distributions of tangential winds and pressure deficits of 
the RV vs. non-RV models for comparison.  A summary 
of the analytical results is discussed in section 5. 
 
2. ANALYTICAL TANGENTIAL WIND PROFILES 
 
2.1 Rankine Vortex Tangential-Wind Profile 
 
 A classic model of inviscid vortex flow is the 
idealized, steady-state Rankine vortex that frequently is 
used as a first approximation to an atmospheric vortex.  
It consists of tangential velocity that increases linearly 
from zero at the center of the vortex to a maximum value 
at the core radius (solidly rotating core region) and then 
decreases, with velocity being inversely proportional to 
distance from the center.  Tangential velocity, RVV , is 

expressed as a function of radius, r , as 
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where XV  is the peak tangential velocity that occurs at 

the core radius XR , XRr /≡ρ  is the dimensionless 

radius, and µ  is an exponent that is equal to 1 within 

the core region ( 1≤ρ ) and equal to –1 outside the core 

region ( 1>ρ ).  The exponent can be modified to 

describe different shapes of the inner and outer profiles.  
In their proximity radar observations of tornadoes by 
mobile, high-resolution Doppler radars, Wurman and Gill 
(2000), Wurman (2002), and Wurman and Alexander 
(2005), for instance, used the tangential wind profiles of 
the Rankine model to closely match the inner cores of 
solid-body rotation – in some cases, to the inner radial 
profiles of Doppler velocities.  Outside the cores, they 

observed Doppler velocity profiles of 1.06.0 ±−∝ rV .  The 



Rankine vortices with varying exponents will be used to 
compare against non-Rankine vortices that are described 
in the subsequent subsections. 
 
2.2 Wood-White Parametric Tangential-Wind Profile 
 
 The simple non-Rankine vortex may be modeled 
using the parametric tangential-wind ( WWV ) profile of 

Wood and White (2011).  The profile for inviscid, 
axisymmetric flow is expressed by 
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The WW profile employs a model vector of five key 

parameters: Tm ],,,,[ ληκXX RV= , where XV  and XR  

have been defined previously, and ,κ  η  and λ  

represent different shape velocity parameters that are 
related to different shapes of the velocity profile.  Note 
that κ  and η  are the same parameters “k” and “n” as 

initially developed by Wood and White (2011). 
 The radial profile families of normalized tangential 

velocity ( ∗
WWV ) as functions of κ , η  and λ  are 

schematically presented in Fig. 1.  The κ  parameter 
may be thought of the growth parameter since it controls 
a linearity or nonlinearity of the inner velocity profile near 
the vortex center ( 0=ρ ).  When 1=κ , the linear profile 

is V-shaped and is related to the inner core of solid-body 
rotation (Figs. 1a, 1d, 1g).  As κ  becomes large (i.e., as 
one progresses from left to right panels of the figure), the 
curvature of the profile progressively changes such that 
the V-shaped profile (left column of Fig. 1) transitions into 
the bowl-shaped profile (center column) and eventually 
into the U-shaped profile (right column).  At the same 
time, the width of zero tangential velocity increases at the 
vortex center. 
 The η  parameter may be thought of the decay 

parameter since it controls the size of the decaying outer 
velocity profile (Fig. 1).  In each panel of the figure, three 
varying values of η  are presented for each fixed value of 

κ  and λ .  The higher the η  value, the more rapidly the 

outer profile decreases with ρ  beyond 1=ρ . 

 The λ  parameter may be thought of the size 
parameter since it controls the radial width of the velocity 
profile in the annular zone of the maximum.  When 

1=λ , a broadly peaked profile results (Fig. 1).  As 
0→λ , three radial profiles for different η  values merge 

together in each panel to form one superimposed radial 
profile at 1≤ρ .  Simultaneously, the profile transitions to 

a sharply peaked profile that resembles the modified 
Rankine velocity profile.  Both κ  and η  alone cannot 

allow adjustment of the sharp profile at 1=ρ .  To show 

how (2) coincides with the modified RV tangential 
velocity in (1) as shown in the bottom panels of Fig. 1, 

we follow the approach of Wood and White (2011) by 
taking the limit of (2) as 0→λ .  Thus, 
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The κ  and η  are easily determined by setting µρ  in 

(1) equal to (3) and then taking the natural logarithm of 
the result which yields 
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When 1== µκ , for example, ∗
WWV  increases linearly 

from a circulation center to 1=ρ .  When 1−=µ , 

1+=−= κµκη , meaning that ∗
WWV  is inversely 

proportional to ρ  beyond 1=ρ  (potential flow).  The 

RV model in (1) may be viewed as a limiting case for the 
non-RV (WW) model as 0→λ . 
 
3. WIND-PRESSURE RELATIONSHIP FOR A       

CYCLOSTROPHIC VORTEX 
 
 Since the horizontal scale of an atmospheric vortex 
is small (e.g., a tornado), the Coriolis force can be 
neglected in the horizontal momentum equation (i.e., 
high Rossby numbers).  In an axisymmetric vortex, 
assumption of balance between central pressure and 
wind speed, termed cyclostrophic balance, is given by 
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where )(rVC  is the cyclostrophic (tangential) velocity, 

)(rP  is the radial pressure fluctuation from that of the 

motionless, equilibrium state multiplied by the constant 
specific volume of air oα .  The pressure deficit P∆  is 

obtained by integrating (5) radially inward from an 
environmental pressure )]([ ∞→= rPPe  at which the 

tangential winds decrease asymptotically to zero infinitely 
far from the vortex center, and is given by 
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Note that s  is a dummy variable for the integration.  
Integration of (6) is done numerically in all but simple 
cases.  (6) involves the inward integral which is 
calculated using the trapezoidal rule (e.g., Press et al. 
1992, p. 125-126).  Using (6), the cyclostrophic wind 
balance for the vortex is employed to derive a pressure 
profile from a varying non-RV tangential wind profile as 
functions of κ , η  and λ , as will be presented in the 

subsequent sections. 
 To facilitate comparison with the profiles, normalized 
composites were constructed that preserved the 
underlying tangential wind and pressure structures.  
Each individual profile was expressed in the convenient 
dimensionless form utilizing the typical scales XV  and 



XR .  A profile of *
WWP∆  for the non-Rankine vortex is 

obtained by incorporating WWC VV =  in (2) into (6), 

dividing the result by 21
Xo V−α , and integrating the further 

result.  Thus, it is expressed by 
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A normalized pressure deficit ( *
RVP∆ ) for the RV is 

derived by incorporating **
RVC VV =  in (1) into (7) and 

integrating the result inward radially in a piecewise 
manner (that is, from ∞  to 1=ρ  and also from 1=ρ  to 

1<ρ ).  Thus, *
RVP∆  is obtained as 
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Note on the top-hand side of (8) that )(* ρRVP∆  must 

change continuously at 1=ρ  between the inner ( 1≤ρ ) 

and outer ( 1≥ρ ) tangential velocity profiles.  A few 

values of the model parameters ( ληκ ,, ) are selected to 

investigate the effects of the cyclostrophic winds on the 
behavior of pressure deficits in order to compare against 
the radial profiles of the Rankine tangential wind and 
pressure deficit, as will be shown in the later section. 
 
4. RADIAL PROFILES OF TANGENTIAL VELOCITY 

AND PRESSURE DEFICIT IN THE RANKINE AND 
NON-RANKINE VORTICES 

 
 Figures 2-5 provide what the model parameters 
( ληκ ,, ) may deduce about the non-RV tangential wind 

and pressure deficit changes when comparing against 
the radial distributions of the RV tangential velocity and 
pressure deficit.  We performed comparative 
experiments by varying the size parameter ( λ ) while 
keeping the growth (κ ) and decay (η ) parameters 

unchanged in the radial distributions of the non-RV 
tangential velocity and pressure deficit (Fig. 2).  Note that 
the selected values of κ , η  and λ  are shown in the 

lower panel of the figure.  The values were used as 
inputs to calculate (1)-(2), (7) and (8) to produce such 
profiles.  When κ  and η  remain constant, different inner 

and outer velocity profiles controlled by various λ  
values have an important influence on the behavior of 

pressure deficit profiles.  As 0→λ , the non-RV 
tangential velocity and pressure deficit profile coincide 
with those of the RV.  For a given tangential velocity 
maximum, vortex A (red curve) has twice the central 
pressure deficit of the RV, owing to the broadly peaked 
profile of vortex A. 
 We now investigate the role of the growth parameter 
(κ ) in the behavior of the radial profiles of tangential 
velocity and pressure deficit (Fig. 3).  By keeping η  and 

λ  fixed, different inner velocity profiles controlled by 
different κ  values can have an impact on the behavior 
of the pressure deficit profiles, as comparison between 
Figs. 2 and 3 shows.  At a given value of λ , a transition 
from a V-shaped to a U-shaped profile of tangential 
velocity inside 1=ρ  produces a change in the 

corresponding pressure deficit profiles (Fig. 3).  At the 
vortex center, the pressure profile is flat, while at the 
same time, the central pressure deficit fills.  Outside 

1=ρ , the outer profiles appear to be relatively 

insensitive to variations in κ  because this parameter is 
dominant near the vortex center. 
 As 0→λ  and κ  and η  remain unchanged, the 

non-RV tangential velocity and pressure deficit 
distributions agree with those of the RV.  For a given 
tangential velocity maximum, vortex D (red curve in Fig. 
3) has the central pressure deficit about half that of the 
RV (gray curve), owing to the drastic reduced tangential 
velocity profile inside the radius of the maximum. 
 Now that we comprehend how the different κ  
variables at a given value of λ  control the inner profiles, 
we further explore the role of the decay parameter (η ) in 

influencing the radial distributions of tangential velocity 
and pressure deficit (Fig. 4).  Comparing to the 0.2=η  

(Fig. 2), this η  is reduced to 1.5, indicating the slow 

decay of the outer tangential velocity profile (Fig. 4).  
Various outer velocity profiles controlled by different η  

values can have an impact on the behavior of the 
pressure deficit profiles, as dual inspection of Figs. 2 and 
4 evidently illustrates.  When κ  is fixed, decreasing η  

causes the pressure profile to fall at a given value of λ .  
As 0→λ , the non-RV tangential velocity and pressure 
deficit profiles concur with those of the RV.  For a given 
tangential velocity maximum, vortex G (red curve in Fig. 
4) has almost twice the central pressure deficit of the RV, 
owing to the slow decay of the outer tangential velocity 
profile.  Inside 1=ρ , the inner profiles appear to be 

relatively insensitive to variations in η  since this 

parameter is dominant beyond 1=ρ . 

 Suppose that an outer tangential wind profile decays 
very quickly.  What would happen to the corresponding 
pressure deficit?  This question can be answered by 
increasing the decay parameter (η ) to 2.5 (Fig. 5).  

Comparing to the outer profiles of tangential velocity and 
pressure deficit (Figs. 2 and 4), the pressure deficit 
profiles (Fig. 5) are almost zero beyond approximately 

5.2=ρ  at a given value of λ .  Simultaneously, the 



profiles drop slowly as one approaches 0=ρ  from far 

radius.  This is owing to the quick decay of the outer 
profiles of tangential velocity.  Vortex J (red curve) has 
twice the central pressure of the RV, as is similar to that 
of vortex A (Fig. 2) and vortex G (Fig. 4). 
 
5. CONCLUSIONS 
 
 A parametric model of wind-pressure profiles is 
developed by applying the WW model to the wind-
pressure relationship of a cylostrophic vortex.  The 
experiments demonstrate that the model is capable of 
explaining significant fluctuations in tangential wind 
speeds and pressure deficits and may replicate the 
general aspects of observed profiles in dust devils, 
tornadoes, tornado cyclones and mesocyclones.  The 
main conclusions of this study are as follows: 
 
1) The shape velocity parameters ( ληκ ,, ) play a vital 

role in modulating all portions of the cyclostrophic 
wind profile.  In our formulation, the profile is defined 
by (a) the growth parameter (κ ) that predominantly 
dictates the inner wind profile near the vortex center, 
(b) the decay parameter (η ) that primarily governs 

the outer profile beyond the radius of the tangential 
wind maximum, and (c) the size parameter ( λ ) that 
mainly determines the radial size of the velocity 
profile in the annular zone of the maximum. 

 
2) The pressure deficits are sensitive to the shape 

velocity parameters in the cyclostrophic wind profile 
because the shape profile determines the wind-
pressure relation.  For a given tangential velocity 
maximum, a decrease (increase) in λ  narrows 
(broadens) the tangential wind profile straddling the 
maximum.  Also it raises (lowers) the corresponding 
pressure deficit profile and, hence, the central 
pressure minimum.  Increasing (decreasing) the κ  
parameter changes the inner wind profile in such a 
way to not only raise (lower) the pressure profile but 
also increase (decrease) the width of the profile 
inside the radius of the tangential velocity peak.  On 
the other hand, increasing (decreasing) the η  

parameter decreases (increases) the wind profile 
beyond the radius of maximum tangential velocity 
and increases (decreases) the pressure deficit 
profile.  Furthermore, the central pressure deficits for 
given values of XV , κ , η  and λ  at 0=ρ  remain 

unchanged, regardless of the vortex size. 
 
3) When comparing to the non-Rankine central 

pressure deficit for a given tangential velocity 
maximum, the Rankine central pressure deficit 
profile is mismatched because the Rankine 
tangential wind profile’s unrealistic cusp at the radius 
of the maximum remains unchanged and is not able 
to match the wind maximum, as commonly seen in 

various observations.  It is suggested that the 
Rankine vortex model may not provide an analytical 
model for the observed tangential wind and pressure 
structures in dust devils, waterspouts, tornadoes and 
mesocyclones. 

 
Acknowledgments.  We appreciate the constructive 
comments on this manuscript provided by Qin Xu and 
Robin Tanamachi of NSSL. 
 
6. REFERENCES 
 
Fiedler, B. H., 1994: The thermodynamic speed limit and 

its violation in axisymmetric numerical simulations of 
tornado-like vortices.  Atmos.-Ocean, 32, 335-359. 

Hoecker, Jr., W. H., 1961: Three-dimensional pressure 
pattern of the Dallas tornado and some resultant 
implications.  Mon. Wea. Rev., 89, 533-542. 

Inoue, H. Y., K. Kusunoki, W. Kato, H. Suzuki, T. Imai, T. 
Takemi, K. Bessho, M. Nakazato, S. Hoshino, W. 
Mashiko, S. Hayashi, T. Fukuhara, T. Shibata, H. 
Yamauchi, and O. Suzuki, 2011: Finescale Doppler 
radar observations of a tornado and low-level 
misocyclones within a winter storm in the Japan Sea 
coastal region.  Mon. Wea. Rev., 139, 351-369. 

Lee, W.-C., and J. Wurman, 2005: Diagnosed three-
dimensional axisymmetric structure of the Mulhall 
tornado on 3 May 1999.  J. Atmos. Sci., 62, 2373-
2393. 

Leverson, V. H., P. C. Sinclair, and J. H. Golden, 1977: 
Waterspout wind, temperature, and pressure 
structure deduced from aircraft measurements.  
Mon. Wea. Rev., 105, 715-733. 

Rankine, W. J. M., 1882: A Manual of Applied Physics.  
10th ed., Charles Griff and Co., 663 pp. 

Sinclair, P. C., 1973: The lower structure of dust devils.  
J. Atmos. Sci., 30, 1599-1619. 

Wakimoto, R. M., and J. W. Wilson, 1989: Non-supercell 
tornadoes.  Mon. Wea. Rev., 117, 1113-1140. 

Wood, V. T., and L. W. White, 2011: A new parametric 
model of vortex tangential-wind  profiles: Develop-
ment, testing, and verification.  J. Atmos. Sci., 68, 
990-1006. 

Wood, V. T., L. W. White, H. E. Willoughby, and D. P. 
Jorgensen, 2012: A new parametric tropical cyclone 
tangential wind profile model.  Mon. Wea. Rev. (In 
press.) 

Wurman, J., 2002: The multiple-vortex structure of a 
tornado.  Wea. Forecasting, 17, 473-505. 

Wurman, J., and S. Gill, 2000: Finescale radar 
observations of the Dimmitt, Texas (2 June 1995), 
tornado.  Mon. Wea. Rev., 128, 2135-2164. 

Wurman, J., and C. R. Alexander, 2005: The 30 May 
1998 Spencer, South Dakota, storm.  Part II: 
Comparison of observed damage and radar-derived 
winds in the tornadoes.  Mon. Wea. Rev., 133, 97-
119. 



 
 
 
 
 
 

 

FIG. 1.  Radial profile families of ∗
WWV  for selected values of κ , η  and λ .  Three profile families in each panel are 

indicated by three different values of η .  The gray curve represents the Rankine velocity profile for comparison.  

Normalized radial distance is represented by XRr /≡ρ .  [From Wood and White (2011).] 

 
 
 
 
 
 
 
 



 
 
FIG. 2.  Radial profiles of (a) tangential velocity and (b) 
corresponding pressure deficit as functions of κ , η  

and λ  for non-Rankine vortices A (red curve), B (blue 
curve) and C (green curve).  The profiles are 
normalized.  Radial profile of Rankine vortex (gray 
curve) is indicated for comparison. 
 
 

 
 
 
FIG. 3.    Radial profiles of (a) tangential velocity and (b) 
corresponding pressure deficit as functions of κ , η  

and λ  for non-Rankine vortices D (red curve), E (blue 
curve) and F (green curve).  The profiles are 
normalized.  Radial profile of Rankine vortex (gray 
curve) is indicated for comparison. 
 



 
 
FIG. 4.    Radial profiles of (a) tangential velocity and (b) 
corresponding pressure deficit as functions of κ , η  

and λ  for non-Rankine vortices G (red curve), H (blue 
curve) and I (green curve).  The profiles are normalized.  
Radial profile of Rankine vortex (gray curve) is 
indicated for comparison. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
FIG. 5.  Radial profiles of (a) tangential velocity and (b) 
corresponding pressure deficit as functions of κ , η  

and λ  for non-Rankine vortices J (red curve), K (blue 
curve) and L (green curve).  The profiles are 
normalized.  Radial profile of Rankine vortex (gray 
curve) is indicated for comparison. 


