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1. INTRODUCTION 
 
 Understanding the relationship between 
tropical convection and the large scale circulation is vital 
to improving our understanding of weather and climate.  
At the heart of this relationship is latent heating, both in 
the horizontal and vertical.  Vertical profiles of latent 
heating (or the distribution of latent heating in the 
vertical) can provide information about the distribution of 
where clouds and precipitation develop, as well as 
provide insight with respect to where atmospheric 
heating occurs and global energy and moisture budgets. 
 Unfortunately, vertical latent heating profiles 
are difficult to retrieve.  This is despite the fact that a 
variety of algorithms have been constructed in order to 
estimate latent heating profiles and rid of retrieval 
difficulties.  Such difficulties in consistent estimation of 
latent heating profiles are shown in figure 3 of Hagos et 
al (2010), where estimated latent heating profiles over 
the tropical ITCZ (Inter-Tropical Convergence Zone) 
region vary significantly amongst various estimation 
algorithms. 
 Along with latent heating profile retrieval 
difficulties, the idea that variability of latent heating 
profiles is associated with percent stratiform rain fraction 
(Houze 2004) may not necessarily be true in every 
scenario.  For example, Back and Bretherton (2006) 
(referred throughout this paper as BB06 hereafter) 
investigate vertical motion profiles (analogous to latent 
heating profiles) within two regions along the tropical 
ITCZ (Inter-Tropical Convergence Zone), and this is 
shown in figure 1.  In the western (central-east) Pacific 
region, a top (bottom) heavy profile is observed, where 
maximum UVM (upward vertical motion; analogous to a 
maximum in latent heating) occurs in the upper (lower) 
troposphere.   
 Based on Schumacher and Houze (2003), 
Schumacher et al (2004), Houze (2004) and Jakob and 
Schumacher (2008), we would expect the western 
(central-east) Pacific to contain a higher percentage of 
stratiform (convective) rain fraction.  Our figure 1 and 
table 1 shows that this is not the case, because the 
percent stratiform rain fraction in the western Pacific, 
where a top-heavy profile resides, is less than the 
central-east Pacific, where a bottom-heavy profile 
resides.  Therefore, something else (along with 
stratiform rain fraction) seems to be associated with 
vertical motion profile (and thus latent heating profile) 
variability.  A second look at BB06 shows that the 
magnitude of surface convergence is twice as strong in 
the central-east Pacific compared to the western Pacific,  
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suggesting that surface convergence is associated with 
profile variability. 
 Our work is centered on taking a new approach 
towards the estimation of latent heating profiles via 
estimation of vertical motion profiles using observed 
surface convergence and precipitation data.  We first 
construct two vertical motion basis functions, which 
describe the most dominant modes of vertical motion 
profile variability.  This is done using a PCA (Principal 
Component Analysis).  After constructing these modes, 
we constrain our vertical motion profile estimates using 
the dry static energy budget and mass continuity.  From 
this, we test our methodology by estimating vertical 
motion profiles for six tropical mesoscale weather states 
defined in Rossow et al (2005).  We test the hypothesis 
that latent heating profile shape varies (in space and 
time) in association with cloud regime type. 
 

 
Figure 1: Adapted from BB06, the top panel shows 
monthly averaged GPCP rainfall in the tropical ITCZ 
region.  The bottom panel plots show reanalysis-
estimated vertical motion profiles for the western (left 
panel) and central-east Pacific (right panel) regions 
boxed in black in the top panel. 
 

Percent Stratiform Rain Fraction 
Western Pacific 53.56% 
Central-East Pacific 58.73% 

 
Table 1: Percent Stratiform Rain Fraction values in 
regions investigated in BB06 calculated from TRMM 
algorithm 3A25. 
 
 



2. VERTICAL MOTION PROFILES AND LATENT 
HEATING PROFILES 
 
 For this study, we estimate vertical motion 
profile shape as a proxy for latent heating profile shape.  
This is because it can be shown in the budget equation 
for dry static energy with respect to the tropical ITCZ 
region, assuming steady state and that all precipitation 
falls out as liquid, that the most dominant terms are the 
vertical advection of dry static energy and latent heating.  
This is because horizontal gradients of temperature (and 
thus dry static energy) are small in the tropics, and 
because latent heating is the most variable diabatic 
heating term in this region.  From this, since dry static 
energy approximately increases linearly with height, 
vertical motion is proportional to latent heating.  Hence 
we can use vertical motion profiles to infer something 
about the vertical structure of latent heating. 
 
3. RELATIONSHIP BETWEEN VERTICAL MOTION 
PROFILES, PRECIPITATION, AND SURFACE 
CONVERGENCE 
 
 Figure 2 shows the relationship between ω 
(vertical motion) profiles, precipitation and surface 
convergence for a point in the tropical ITCZ region.  The 
left panel shows the effects of precipitation rate given a 
fixed amount of surface convergence.  The blue (red) 
curve shows a ω-profile in a low (high) precipitation 
case.  It is clear that the area contained within the ω-
profile (i.e.: area between ω = 0 and the maximum in 
negative ω) is greater (less) for the high (low) 
precipitation case.  An increase (decrease) in the area 
under the ω-profile is proportional to an increase 
(decrease) in surface precipitation. 
 The right panel shows the effects of surface 
convergence for a fixed precipitation rate.  The blue 
(red) curve shows a ω-profile in a low (high) surface 
convergence scenario.  More (less) surface 
convergence is associated with a more bottom (top) 
heavy ω-profile. 
 We use the relationships outlined in figure 2 in 
estimating ω-profile shape. 
 

 
Figure 2: Illustration of the relationship between the 
shape of the ω-profile and the magnitude of precipitation 
(left panel), and the relationship between the ω-profile 
shape and the magnitude of surface convergence (right 
panel). 

4. GENERATING BASIS FUNCTIONS 
 
 We assume for our profile estimations that only 
two dominant modes of ω-profile variability exist in the 
tropical ITCZ region considered.  To estimate these 
modes, we use PCA on ERA-Interim, NCEP/NCAR 
(National Centers for Environmental Prediction/National 
Center for Atmospheric Research) reanalysis, and 
TOGA-COARE (Tropical Ocean Global Atmosphere 
Coupled Ocean Atmosphere Response Experiment) 
data, because we wish to choose basis functions, (or 
idealized ω-profile shapes) that can describe the 
maximum amount of variability in the ω-profile.  The 
amount of influence that each basis function has on 
each space-time grid point we consider is related to the 
amount of surface convergence and precipitation 
observed at that point. 
 Figure 3 shows the two orthogonal (linearly 
independent) basis functions that are derived from our 
PCA on each dataset listed above.  The ERA Interim 
(NCEP/NCAR) reanalysis basis functions are shown in 
blue (black), with the basis functions constructed from 
the TOGA-COARE dataset shown in red.  In all three 
cases, the first mode (solid curves) shows UVM 
throughout the middle and upper troposphere, while the 
second mode (dashed curves) shows maximum UVM 
near the surface and tropopause.  These modes are 
similar to the vertical motion profile variability shown in 
the field campaign and reanalysis data in BB06.  Note 
that although these basis functions are derived from 
reanalysis datasets rather than observations, we use 
these modes to estimate ω-profiles despite this because 
we have nothing else to use up to this point. 
 
5. CONSTRAINING VERTICAL MOTION PROFILES 
 
 Each estimated ω-profile is a linear 
combination of basis functions 1 and 2.  Since each 
profile is a linear combination of the two modes of profile 
variability, our methodology requires calculation of the 
amplitude of each mode, or the amount of influence that 
each mode has with respect to the shape of the ω-
profile.  We determine these amplitudes by constraining 
ω using precipitation and surface convergence data 
along with the relationships outlined in figure 2. 
  Figure 4 compares ERA-Interim reanalysis ω- 
 

Figure 3: Basis functions constructed from the ERA-
Interim (blue) and NCEP/NCAR (black) reanalyses, and 
the TOGA-COARE (red) dataset. 



profiles from the western and central-east Pacific 
regions investigated in BB06 with ω-profiles that we 
reconstruct using our methodology.  To create this 
figure, we first use the dry static energy budget and 
mass continuity to compute precipitation (as a residual) 
and surface convergence respectively for each region.  
Then we solve for the amplitudes of each basis function 
as discussed in the previous paragraph.  Finally we 
linearly combine the two modes of variability to create 
each ω-profile (solid lines) and compare with the 
reanalysis ω-profiles (dashed lines).  
 The figure shows that the system we use to 
constrain and subsequently reconstruct ω-profiles from 
ERA-Interim is a closed system.  Our reconstructed ω-
profiles for the western and central-east Pacific regions 
investigated in BB06 are nearly identical to the 
reanalysis ω-profiles from the ERA-Interim dataset.  The 
western (central-east) Pacific reconstructed profile 
exhibits a top-heavy (bottom-heavy) profile shape, as 
expected from BB06.  The values of surface 
convergence (which in our study is defined as the slope 
of the ω-profile curve from 1000 hPa to 975 hPa) are 
identical in both cases, and the amount of area 
contained in each profile (for each case) between ω = 0 
and the maximum in UVM is very similar.  Thus, our 
system is closed and can be used to estimate ω 
profiles.   
 
6. RESULTS: ISCCP WEATHER STATE VERTICAL 
MOTION PROFILES 
 
 In order to estimate ω-profiles for the six 
ISCCP weather states, we used basis functions derived 
from the ERA-Interim reanalysis datasets along with 
GPCP (Global Precipitation Climatology Project) one 
degree daily precipitation, QuikSCAT (Quick 
Scatterometer) computed surface convergence data, 
and the ISCCP (International Satellite Cloud Climatology 
Project) weather states dataset generated via a 
clustering analysis in Rossow et al (2005).  We use the 
method described in sections 4 and 5. We again 
assume that there are two dominant modes of ω-profile 
variability and that ω = 0 at 1000 and 100 hPa.  Also, we  
 

 
Figure 4: ω-profile shapes generated for the western 
Pacific (blue) and central-east Pacific (red) regions as 
defined in BB06 using ERA-Interim (top-left panel) 
reanalysis data.  Solid (dashed) profiles are 
reconstructed in each region using our methodology 
(from the reanalysis data itself). 

assume a constant radiational heating value of ~ 
−86.81Wm−2. 

We first estimate ω-profiles for every grid point 
in the tropical ITCZ region (15ºS to 15ºN latitude; all 
longitudes) from 2001-2006 using our methodology from 
the last section.  Then, we bin the data into six weather 
state bins.  Finally, the ω-profiles are spatial-temporally 
averaged in order to generate mean state ω-profiles for 
each weather state. 
 The results of this analysis using ERA-Interim 
data are shown in figure 5.  This figure shows that each 
weather state is associated with a unique ω-profile 
shape.  For example, the vigorous deep convective 
weather state (solid blue profile in figure 5) exhibits high 
amounts of precipitation (large area within the curve 
between ω = 0 and the maximum in UVM ~400 hPa) 
and strong surface convergence (steep slope in the 
profile between 975-1000 hPa).  The lesser deep 
convective regime with thick cirrus outflow (solid black 
profile) exhibits higher amounts of precipitation relative 
to the other weather states, but has a much smaller 
magnitude of surface convergence compared to the 
vigorous deep convection profile.  Both the vigorous 
deep convective and thick cirrus outflow regimes exhibit 
top-heavy profiles.  Both profiles also resemble the top-
heavy profile exhibited in the western Pacific 
reconstructed ω-profile in figure 4. 

The isolated convective systems weather state 
(solid red) is the only convectively active regime from 
Rossow et al (2005) to exhibit a bottom-heavy profile.  
This profile has strong surface convergence but lower 
magnitudes of precipitation compared to the other 
convectively active regimes.  This profile strongly 
resembles the reconstructed central-east Pacific profile 
in figure 4. 
 As for the convectively inactive weather states, 
the profiles all exhibit surface divergence and minimal 
precipitation.  All of these weather states should not 
contain high amounts of precipitation on average, and 
this is confirmed by figure 5. 
 

 
Figure 5: mean state ω-profiles for the six ISCCP 
weather states defined by Rossow et al (2005) for years 
2001-2006.  The convectively active (inactive) weather 
states are vigorous deep convection (thin cirrus) in solid 
(dashed) blue, lesser deep convection (mixed trade 
shallow cumulus) with thick cirrus outflow in solid 
(dashed) black, and isolated, disorganized convective 
systems (marine stratus) in solid (dashed) red. 



 Figure 6 shows a method of representing both 
the amount of variability for the ω-profiles associated 
with each weather state, as well as the variance of the 
mean state ω-profiles.  The vectors and outer ellipse 
represent the variability of both the surface convergence 
and precipitation data for each weather state, as well as 
the variability of ω-profiles associated with each weather 
state.  The inner ellipses are the confidence intervals 
(95th percentile with 100 degrees of freedom, a 
conservative estimate) for the mean state profiles. 

This figure was constructed by performing a 
PCA on combined (and normalized) GPCP precipitation 
and QuikSCAT surface convergence data.  The first 
(second) EOF (Empirical Orthogonal Function) is 
represented as a vector directed in the positive 
(negative) surface convergence and positive 
precipitation directions in figure 6 for each weather 
state. The first (second) EOF represents the variability 
with respect to the surface convergence and 
precipitation data itself (variability with respect to the 
data as well as the shape of the ω-profile).  The outer 
ellipse (bold ellipse), with major (minor) axis equal to the 
magnitude of EOF 1 (EOF 2), represents the range of 
variability associated with the ω-profiles associated with 
each weather state.  The center of each ellipse 
represents the mean surface convergence and 
precipitation associated with each mean state ω-profile. 

Figure 6 shows that the mean state ω-profile 
shapes for each weather state are well constrained.  
Therefore, the mean state profiles associated with each 
weather state are unique.  On the other hand, each 
weather state exhibits significant variability with respect 
to the various ω-profile shapes associated with each 
weather state.  Thus, if one were to estimate the shape 
of a ω-profile at a grid point, it may be difficult to 
determine which weather state is associated with this 
particular profile.  When investigating the mean state of 
the tropical ITCZ, one would be able to identify the 
weather state that matches the estimated profile shape. 
 
7. CONCLUSIONS 
 
 The goal of this study was to test the 
hypothesis that latent heating profile shape varies (in 
space and time) in association with cloud regime type.  
We do this by estimating ω-profiles for six ISCCP 
mesoscale tropical weather states (Rossow et al 2005).  
We apply an innovative methodology that estimates ω-
profiles using observed precipitation and surface 
convergence data. 

We showed that ω-profile variability (analogous 
to latent heating profile variability) is not solely 
associated with stratiform rain fraction, but is also 
associated with the magnitude of surface convergence 
at the point of interest (figure 1).  We also showed that 
each weather state is associated with its own unique 
mean state ω-profile (figure 5).  Finally, while the mean 
ω-profile shapes are well constrained, the amount of ω-
profile variability with respect to each weather states is 
observed to be large in our work (figure 6). 
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Figure 6: Ellipses representing variability (outer), 
confidence intervals (inner) associated with the 
convectively active (inactive) weather states (same color 
and line scheme for each weather state as in figure 5).
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