Institut für Physik der Atmosphäre

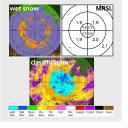
Identification of snow and rain at the surface using polarimetric radar

Martin Hagen¹ and Alice Dalphinet^{1,2}

¹ Institut für Physik der Atmosphäre, DLR, Oberpfaffenhofen, Germany, ² Direction Interrégionale Nord, Météo-France, Villeneuve-d'Ascq, France

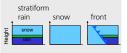
Motivation

- · The transition from rain to snow at the surface is one of the challenging facts in aviation and road traffic during winter weather condition.
- · Numerical weather forecast is able to provide reasonable good forecasts. Often timing and localization of precipitation is not correct.
- · Nowcasting applications still suffer from the precise observation of the transition from rain to snow at the surface.
- · Polarimetric weather radar allow detailed classification of hydrometeors. However, radar measurements are normally several hundred meters above ground and can therefore not represent the situation at the surface.



Freezing Level **Estimation**

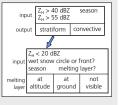
Modelized rain / dry snow limit (MRSL)



Estimation of MRSL for volume scan sectors

Situation Classification

 Hvdrometeor classification is used to identify convective and stratiform regions in the volume scan



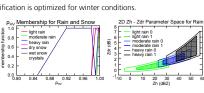
 Fuzzy logic situation classification for each volume scan sector

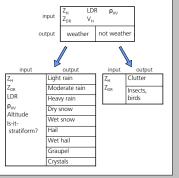
	favored hydromet.	adverse hydromet.	
convective	hail, graupel	snow	
stratiform rain	snow rain	hail, graupel	
stratiform snow	snow	hail, graupel rain	
stratiform front	snow	hail, graupel	

Classification at Ground

- Without further observations an extrapolation of radar hydrometeor classification towards the ground is limited.
- Situation classification

• Hydrometeor classification at ground


hydro- met. graupel snow snow	situation	con- vect.	stratiform		
	Situation		ML	front	no ML
					snow


Cold front Southern Germany 21 Nov. 2008 DWD radar composite POLDIRAD reflectivity 12:30 UTC 13:30 UTC Classification 13:30 UTC RHI 12:28 UTC Reflectivity Z_H Verification by MRR fall velocities Met. Obs. at radar site 10-15

Fuzzy Logic Classification

- · Fuzzy logic hydrometeor classification schemes are now standard for the application of polarimetric weather radar. They easily can be adapted to different operational requests and radar systems.
- · POLDIRAD can use LDR and HV for the identification of melting hydrometeors
- The current classification is optimized for winter conditions.

 1-D and 2-D membership functions are

Summary - Perspectives

Summarv

- · Hydrometeor classification by polarimetric radar
- Melting layer detection by Z_H , Z_{DR} , LDR, and ρ_{HV} · Snow fall estimation at
- ground is encouraging

Characteristics

- · Globally robust method · Rapid and easily adaptable
- Less sensitive to measurements errors
- · Correct detection of the non-meteorological echoes
- · Representation of the melting layer
- · Detection of the snowfall

Limits

- · Robustness of the detection of the snowfalls
- · Detection of a front delineating an area of rain and of snow at the ground
- · Limited precision in the hydrometeors classes
- Validity of the membership

Perspectives

- Add new input parameters like sounding or surface temperatures
- · Determination of the contents of hydrometeors
- · Comparison with the model data and others observations