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Motivation

→ Quantitative precipitation estimation (QPE) and short-term forecasting
(QPF) are a challenge in complex orography
→ Further observational studies are needed to characterize orographic rainfall
enhancement processes to aid QPE and QPF

Methodology
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Fig 1. Sample radar QPE over-
laid on Swiss DEM. (A) Thun-
derstorms driven by a cold front;
(B) Pre-frontal thunderstorms trig-
gered at the top of mountains by
thermal winds. Estimated flow and
detected cells are also shown.

Step 1: estimate the velocity field from subsequent radar images

Step 2: compute a set of multiscale topographical descriptors from the DEM including

the slope exposure to flow by combining terrain gradient and flow direction

Step 3: extract a set of precipitation cells from filtered radar imagery

Step 4: apply a clustering algorithm to group cells into similar flow regimes

Step 5: within each cluster, count how many times a precipitation cell passes over

a pixel. Locations/pixels with persistent and repetitive precipitation cells indicate a

stronger influence of orographic triggering and enhancement mechanisms

Step 6: prepare a binary dataset of orographic and non-orographic cells by using a

threshold on the counter of cell repeatability

Step 7: apply support vector machines to classify the two classes in the high-

dimensional space composed of multiscale topographic and flow features

Step 8: use the decision function of SVM, i.e. the membership probability to the class

“orographic”, as an indicator of orographic enhancement

Spatial distribution of precipitation cells
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Fig 2. 28758 cells detected during 6
days of intense orographic rainfall at
the northern side of the Alps (18th-23rd

of August 2005). Crosses: cells which
touched more than 4 times a pixel

Fig 3. 15176 cells detected during 15 summer
events of orographic rainfall between 2005 and
2008 at the southern side of the Alps. Cells are
stratified by clustering according to flow direction
and speed. Crosses: cells which touched more than
3 times a pixel. Arrows result from the averging of
within cluster flow vectors

Multiscale topographic features and clustering of cells
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FD - NE FD - SWDoGs

High-dimensional vectors of topo-
graphic features, including terrain
altitude and rainfall rates, are regis-
tered for each cell (16 features in total)
DoGs: differences of Gaussians ∼

terrain convexity
Flow derivative (exposure to flow):

FD = ∇z · u

∇z is the gradient vector of terrain
height and u = (u, v) is the flow vector
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Clustering of cells during August 2005
(Fig. 2) w.r.t. similar flow directions,
speeds and large scale FD

Classification of cells with support vector machines
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y = class label,    x = input vector of topographic features
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high generalization skills
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K(x’,x) =  ϕ(x’).ϕ(x)
The kernel maps implicitly the data 

into a higher dimensional space to 

find linear solutions
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Two-class SVM (TC− SVM): One-class SVM (TC− SVM):

h(x) =
∑

i

αiyiK(x,xi) + b h(x) =
∑

i

αiK(x,xi)− ρ

Effect of spatial sampling on SVM parameters selection
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tion of SVM (1 complex-
ity parameter and 1 band-
width σ for the Gaussian
kernel). AUC: area under
ROC curve.

Spatial declustering sets ideal conditions for SVM compared to random sampling,
which often leads to overfitting due to the spatial-autocorrelation of cells

Maps of orographic enhancement likelihood

TC− SVMlinear TC− SVMgaussian

OC− SVMlinear OC− SVMgaussian

The maps depict the posterior probability of membership to the class “orographic”
(∼ h(x)), which is composed of cells exceeding the threshold of 4 counts (Fig. 2).

Input flow is from Southwest (Fig. 1).

Model verification
Observed orographic cells
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Contingency table evaluated
on the testing set for the 4
different models. Results are
averaged over 10 splits.

Conclusion and future perspectives
→ Persistent and stationary precipitation cells are found on upwind slopes and at the
top of mountains but only at specific spatial scales
→ The orographic conditioning factors can be characterized by non-parametric SVM
models taking multiscale topographic features as inputs
Potential applications:
- Multiscale topographic and directional features can be integrated into linear and
nonlinear regression models for real-time adjustment of radar-rain gauge biases
- Lagrangian persistence nowcasting models need to account for growth, fallout and
stationarity of rainfall patterns due to orographic forcing
- Stochastic simulations of rainfall fields can be conditioned upon the orographic
enhancement maps
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