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1 Introduction

Intense atmospheric vortices occur in dust devils,
waterspouts, tornadoes, mesocyclones and tropical
cyclones. The tangential wind profiles of these at-
mospheric vortices are often approximated by con-
tinuous functions that are zero at the vortex center,
increase to a maximum at some radius and then de-
crease asymptotically to zero. A number of mod-
els, such as the idealized, inviscid Rankine (1882)
[4], the viscous Burgers (1948) [2] -Rott(1958) [5]
and Sullivan (1959) [7] analytical vortex models have
been used to approximate observed profiles of tan-
gential winds. New models have been proposed by
Wood-White (2011) [10] that use a rational func-
tion to model an inner core of solid-body rotation
and an outer profile that decays to zero at infinity.
The various models for tangential winds have pa-
rameters that contain useful information about the
physical structure of a vortex. Also, it is possible
that these models can be used to determine vortex
structure when there is incomplete data and predict
other physical quantities, such as radial and vertical
winds and the vortex pressure field. Therefore, It is
of interest to select the most appropriate tangential
wind model that provides the best possible estimate
for each task.

The focus of this paper is to make valid inferences
from meteorological vortex data when the analysis
depends on a model of the information in the data.
Candidate models with parameters are selected that
model the tangential velocity of the vortex. There
are no assumption that the ”true” model of vortex
tangential velocity is in this candidate list. The goal
is to select the ”best” model using information and
likelihood theory, (Burnham 2002 [3]). The ”best”
model may be defined as the model that loses the
minimum amount of information that the data con-
tains on tangential velocity. Furthermore, the ”best”
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model may be defined as the model that gives the
best estimation of radial and vertical wind compo-
nents along with the pressure in a vortex. There is
an assumption that the data contains information
about the true vortex winds which are inherently
unknown. Therefore, an approximating model must
be used to estimate these vortex winds. Data arise
from full reality and can be used to make formal
inferences back to this truth. The model selected
should provide precise predictions, as well as fit the
data without over-fitting. This means selecting a
model with the smallest possible number of param-
eters for adequate representation of the data. There
are three aspects of valid statistical inference when
the analysis depends on a model. These are:

1. Model specification. A list of candidate models
is selected based on scientific principles.

2. Estimation of model parameters. Precise unbi-
ased estimators are desired. Let Θ be a vector of
parameters. An unbiased estimator of Θ would
have the property that the expected value of Θ
would be some Θ0 which corresponds to the pa-
rameters that produce the ”best” model. Since
this ”best” model is unknown and must be es-
timated, then the Maximum Likelihood Esti-
mation (MLE) method is used to estimate Θ0.
After this estimation of Θ0, the ”best” model is
estimated.

3. Estimation of precision. The probability that
the correct model was selected.

2 Information and likelihood
theory

2.1 Maximum Likelihood Theory

Let Θ be the vector of parameters in an approxi-
mating model. This vector may differ from model
to model. Some models may have a subset of pa-
rameters from other models and some models may
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have no parameters in common with other mod-
els. Assume that there is only one observation at
each distance from the center of the vortex and that
there are n distances. Let {x (ri) |i = 1, . . . , n} be
the observations. For each x (ri), assume ε (ri) =

(v (ri)− x (ri))
2

is normally distributed with mean
zero and unknown variance σ2, i.e.,

g (ε (ri) |θ) =
1√
2πσ

exp

{
−
(
ε (ri)√

2σ

)2
}

where v(r) is calculated using a model from the
set of candidate models. Assume the {ε (ri) |i =
1, . . . , n} are independent. In this case, the likeli-
hood function becomes

L (θ| observations) =

n∏
1

g (ε (ri) |θ) =

(
1√
2πσ

)n
exp

{
−

n∑
1

(
ε (ri)√

2σ

)2
}

There is an assumption that ε (ri) has mean zero
with unknown variance σ2 that must be estimated
from the data. It is easier to work with the natural
logarithm of the likelihood function because

log (L (θ| observations)) =

− nlog
√

2π − nlogσ − 1

2σ2

n∑
1

(ε (ri))
2

The following computation will lead to an estima-
tion of σ2:

∂

∂σ2
log (L (θ| observations)) =

− n

2σ2
+

1

2σ4

n∑
1

(ε (ri))
2

= 0

when σ̂2 =
1

n

n∑
1

(ε (ri))
2

The model parameters are now estimated by min-
imizing

∑n
1 (ε (ri))

2
.

2.2 K-L information and Different
Model Selection Approaches

The Kullback-Leibler (K-L) information between
models f and g is defined for continuous functions as

the (usually multi-dimensional) integral. This gives
the information lost when g is used to approximate
f .

I(f, g) =

∫
f(x) log

(
f(x)

g(x|θ)

)
dx,

where log denotes the natural logarithm.

Note that the data is integrated out, therefore I(f, g)
does not depend on the data if θ is known. Normally,
θ is unknown and must be estimated by the Maxi-
mum Likelihood Estimator (MLE).

There are different model selection approaches.

1. Statistical hypothesis testing tests the null hy-
pothesis. This provides little information of sci-
entific interest whether rejected or not (Burn-
ham 2002 [3]). In particular, hypothesis testing
for model selection is often poor (Akaike 1981
[?]) There is no statistical theory that supports
the notion that hypothesis testing with a fixed α
level is a basis for model selection. Furthermore,
under Monte-Carlo simulations and other data
analysis scenarios, they have performed poorly
in selecting an appropriate model for inference
and prediction (Burnham 2002 [3]).

2. Akaike’s Information Criterion (AIC) estimates
the relative Kullback-Liebler distance between
truth f(x) and the approximating model. This
gives a method to determine which model cap-
tures the greatest amount of information in the
data without over-fitting the data.

3. Bayesian Information Criterion (BIC) was de-
veloped based on the assumptions that an ex-
actly ”true model” exists, that it is one of the
candidate models being considered, and that
the model selection goal is to select the ”true”
model. Implicit is the assumption that ”truth”
is of fairly low dimension and that this dimen-
sion and the data-generating (true) model has
a fixed sample size.

2.3 AIC and BIC

Akaike’s Information Criterion (AIC) uses the
Kullback-Leibler (K-L) information as a fundamen-
tal basis for model selection. This paper will ap-
proach model selection in the special case of least
squares parameter estimation with normally dis-
tributed errors with constant variance. In this spe-
cial case, AIC can be computed as
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AIC = nlog(σ̂2) + 2K

where

σ̂2 =

∑
ε̂2i
n

(the Maximum Likelihood

Estimate (MLE) of σ2)

ε̂2i are the estimated residuals for a particular

candidate model

n is the sample size

K is the number of parameters including σ̂2

AIC may perform poorly if there are too many pa-
rameters in relation to the size of the sample. Burn-
ham [3] advocates the use of AICc when the ratio
n/K < 40. Sugiura (1978) [6] derived a second or-
der variant of AIC given by

AICc = AIC +
2K(K + 1)

n−K − 1

The Baysian Information Criterion (BIC) can be
computed as

BIC = nlog(σ̂2) + (logn)K

3 Underlying scientific models

The momentum and conservation of mass equations
in cylindrical coordinates (r, θ, z) are given by

∂u

∂t
+ u

∂u

∂r
+
v

r

∂u

∂θ
− v2

r
+ w

∂u

∂z
= −1

ρ

∂p

∂r

+ κ

(
1

r

∂

∂r

(
r
∂u

∂r

)
− u

r2
+

1

r2

∂2u

∂θ2
− 2

r2

∂v

∂θ
+
∂2u

∂z2

)
∂v

∂t
+ u

∂v

∂r
+
v

r

∂v

∂θ
+
uv

r
+ w

∂v

∂z
=

+ κ

(
1

r

∂

∂r

(
r
∂v

∂r

)
− v

r2
+

1

r2

∂2v

∂θ2
+

2

r2

∂u

∂θ
+
∂2v

∂z2

)
∂w

∂t
+ u

∂w

∂r
+
v

r

∂w

∂θ
+ w

∂w

∂z
= −1

ρ

∂p

∂z

+ κ

(
1

r

∂

∂r

(
r
∂w

∂r

)
+

1

r2

∂2w

∂θ2
+
∂2w

∂z2

)
+ gb(r, z)

∂u

∂r
+
u

r
+

1

r

∂v

∂θ
+
∂w

∂z
= 0

where ρ is the density of air and g is gravity.

Under the assumptions of time independence (t =
0), axisymmetry (θ = 0), pressure dependence only
on r and z, and body force b(r, z) due to buoyancy
alone, the equations in cylindrical coordinates (r, z)

become:

u
∂u

∂r
− v2

r
+ w

∂u

∂z
=

− 1

ρ

∂p

∂r
+ κ

(
1

r

∂

∂r

(
r
∂u

∂r

)
− u

r2
+
∂2u

∂z2

)
u
∂v

∂r
+
uv

r
+ w

∂v

∂z
= κ

(
1

r

∂

∂r

(
r
∂v

∂r

)
− v

r2
+
∂2v

∂z2

)
u
∂w

∂r
+ w

∂w

∂z
=

− 1

ρ

∂p

∂z
+ κ

(
1

r

∂

∂r

(
r
∂w

∂r

)
+
∂2w

∂z2

)
+ gb(r, z)

∂u

∂r
+
u

r
+
∂w

∂z
= 0

For the purposes of this study, the tangential com-
ponent of the vortex is assumed known.

4 The Cylindrical Case

The tangential velocity is assumed known and a
function of r only. In this cylindrical case, the ver-
tical vorticity is given by

ζ =
∂v

∂r
+
v

r

Therefore, the vertical vorticity ζ is a function of r
only. The tangential momentum equation becomes

u
∂v

∂r
+
uv

r
= κ

(
∂

∂r

(
1

r

∂

∂r
(rv)

))
uζ = κ

(
∂ζ

∂r

)
, r > 0

and this gives a solution for u given by

u = κ

(
∂ζ
∂r

ζ

)
, ζ 6= 0

Therefore, the radial velocity u is a function of r
only. Using the conservation of mass equation, the
vertical velocity w is found by

∂w

∂z
= −

(
∂u

∂r
+
u

r

)
w = −

(
∂u

∂r
+
u

r

)
z

Under the assumption that pressure is a function
of r alone, the radial momentum equation can be
used to compute pressure.
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Let Λ =
∂u

∂r
+
u

r
so that w = −zΛ, since

w = −
(
∂u

∂r
+
u

r

)
z

u
∂u

∂r
− v2

r
= −1

ρ

∂p

∂r
+ κ

(
∂

∂r

(
1

r

∂

∂r
(ru)

))
which can be seen to be

u
∂u

∂r
− v2

r
= −1

ρ

∂p

∂r
+ κ

(
∂Λ

∂r

)
so that

∂p

∂r
= ρ

(
−u∂u

∂r
+
v2

r
+ κ

(
∂Λ

∂r

))
Solving this differential equation gives

p(r) = ρ

(
−u2/2 +

∫ r

0

v2

s
ds+ κΛ

)
+ p(0)

Now use the vertical momentum equation to solve
for the buoyancy b(r, z)

u
∂w

∂r
+ w

∂w

∂z
= κ

(
1

r

∂

∂r

(
r
∂w

∂r

)
+
∂2w

∂z2

)
+ gb(r, z)

gb(r, z) = u
∂w

∂r
+ w

∂w

∂z
− κ

(
1

r

∂

∂r

(
r
∂w

∂r

)
+
∂2w

∂z2

)
gb(r, z) = −uz ∂Λ

∂r
+ zΛ2 + κz

(
1

r

∂

∂r

(
r
∂Λ

∂r

))

5 Vortex candidate models

5.1 The Wood-White tangential ve-
locity vortex models

The radial, vertical velocity, vorticity, pressure and
buoyancy terms are calculated as in the previous
section for the Wood-White vortex models. For all
the Wood-White models, k mainly controls the inner
core of the vortex with values that allow for both a
one- and two-cell structure. The parameter n mainly
governs the decay of the vortex at radial distances
beyond the location of maximum tangential winds.
The parameter λ controls the curvature of the vor-
tex. The form of the tangential velocity profile φ(r)
is given below for each model.

1. The Wood-White vortex 1.

φ(r) =
r

1 + rn

2. The Wood-White vortex 2.

φ(r) =
rk

1 + rn

3. The Wood-White vortex 3.

φ(r) =
r(

1 + r
n
λ

)λ
4. The Wood-White vortex 4.

φ(r) =
rk(

1 + r
n
λ

)λ
5. The Wood-White vortex 5.

φ(r) =
rk + r

1 + rn

6. The Wood-White vortex 6.

φ(r) =
rk + r(

1 + r
n
λ

)λ
5.2 The Rankine combined vortex

u(r, θ, z) = 0

v(r, θ, z) =

{ Vxr
Rx

if r ≤ Rx
VxRx
r if r > Rx

w(r, θ, z) = 0

where Vx is the maximum tangential velocity mag-
nitude and Rx is the radius of the vortex core. Vx

Rx
is the angular velocity of the solid body rotation.

Since the angular momentum at infinity, Γ∞ is

lim
r→∞

2πrv = Γ∞,

then these equations can be written as

u(r, θ, z) = 0

v(r, θ, z) =

{
Γ∞r
2πR2

x
if r ≤ Rx

Γ∞
2πr if r > Rx

w(r, θ, z) = 0

In this model the vertical vorticity is given by

ζ =
∂v

∂r
+
v

r
=

{
2Vx
Rx

if r ≤ Rx
0 if r > Rx

Under the assumption of cyclostrophic balance,
for r ≤ Rx the pressure term can be calculated by
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∂p

∂r
= ρ

v2

r
= ρ

V 2
x r

R2
x

Therefore, p is a function of r alone.
For r > Rx the pressure term can be calculated

by

∂p

∂r
= ρ

v2

r
= ρ

V 2
x

R2
xr

3

Therefore, p is a function of r alone.
In summary, for the combined Rankine vortex,

pressure is given by

p(r) =

 p(0) +
ρV 2
x

R2
x

r2

2 if r ≤ Rx
p(0) +

2ρV 2
x

R2
x

r2

2 −
ρV 2
xR

2
x

2r2 if r > Rx

The parameters in this vortex are Rx and Vx.

5.3 The Burgers-Rott vortex

u(r, θ, z) = −ar

v(r, θ, z) =
Γ∞
2πr

(
1− e− ar

2

2κ

)
w(r, θ, z) = 2az

where a is the strength of the suction, and Γ∞ is

lim
r→∞

2πrv = Γ∞,

Setting
∂v

∂r
= 0 gives maximum tangential winds

when
1

2π

(
− 1

r2
+

1

r2
e−

ar2

2κ +
a

κ
e−

ar2

2κ

)
= 0

This can be used to add parameters Vx and Rx.

p(r, z) = p0 + ρ

∫ r

0

v2

s
ds− ρa

2

2

(
r2 + 4z2

)
The parameters in this vortex are Rx and Vx.

5.4 Vatistas vortex

The radial, vertical velocity, vorticity, pressure and
buoyancy terms are calculated as in the previous sec-
tion for the Vatistas vortex model. The form of the
tangential velocity profile φ(r) is given below.

φ(r) =
r

(1 + r2q)
1
q

5.5 The Sullivan vortex

u(r) = −ar +
6κ

r

(
1− e− ar

2

2κ

)
v(r) =

Γ∞
2πH(∞)r

H

(
ar2

2κ

)
w(r) = 2az

(
1− 3e−

ar2

2κ

)
where Γ∞ = lim

R→∞
v(R) · 2πR and

H(x) =

∫ x

0

exp

[
−β + 3

∫ β

0

(1− e−s)1

s
ds

]
dβ

The vertical vorticity is computed as follows

∂H(r)

∂r
= exp

(
−r + 3

∫ r

0

1− e−s

s
ds

)
∂

∂r

(
H

(
ar2

2κ

))
=

ar

κ
exp

(
−ar

2

2κ
+ 3

∫ ar2

2κ

0

1− e−s

s
ds

)

ζ =
Γ∞

2πrH(∞)

∂

∂r

(
H

(
ar2

2κ

))

ζ =
aΓ∞

2πκH(∞)
exp

(
−ar

2

2κ
+ 3

∫ ar2

2κ

0

1− e−s

s
ds

)
The azimuthal vorticity for is given by the equation

ωθ =
∂u

∂z
− ∂w

∂r
=
−6a2rz

κ
e−

ar2

2κ

The pressure computations are as follows:

u
∂Λ

∂r
− Λ2 − κ

(
∂2Λ

∂r2
+

1

r

∂Λ

∂r

)
= −4a2

p(r, z) = p0 + ρ

∫ r

0

v2

s
ds− ρa

2

2

(
r2 + 4z2

)
− 18ρκ2

r2

(
1− e− ar

2

2κ

)2

The parameters in this vortex are Rx and Vx.

6 Normalized vortex candi-
date models

These candidate models have been normalized so
that the maximum tangential velocity is equal to
one at the distance ρ = 1 from the center of the
vortex.
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1. The Wood-White vortex 1

Φ(ρ) =
nρ

n− 1 + ρn

2. The Wood-White vortex 2

Φ(ρ) =
nρk

n− k + kρn

3. The Wood-White vortex 3

Φ(ρ) =
ρ(

1 + 1
n

(
ρ
n
λ − 1

))λ
4. The Wood-White vortex 4

Φ(ρ) =
ρk(

1 + k
n

(
ρ
n
λ − 1

))λ
5. The Wood-White vortex 5

Φ(r) =
(rr?)

k + rr?
1 + (rr?)n

/
(r?)

k + r?
1 + (r?)n

where r? is the radius where φ(r) is maximum.
Notice that all of the Wood-White tangential
vortex models have a maximum value as long
as k is less than n.

6. The Wood-White vortex 6

Φ(r) =
(rr?)

k + rr?(
1 + (rr?)

n
λ

)λ / (r?)
k + r?(

1 + (r?)
n
λ

)λ
where r? is the radius where φ(r) is maximum.

6.1 The Rankine combined vortex

v(r, θ, z) =

{
ar if r ≤ 1
a
r if r > 1

6.2 The Burgers-Rott vortex

The following equation with parameters a and b is
normalized to have a maximum value of 1 at r = 1:

v(r, θ, z) =
b

r

(
1− e− ar

2

2κ

)

6.3 Vatistas vortex

The normalized form of φ(r) is given by:

φ(r) =
2

1
q r

(1 + r2q)
1
q

6.4 The Sullivan vortex

The following equation with parameters a and b is
normalized to have a maximum value of 1 at r = 1:

v(r) =
b

r
H

(
ar2

2κ

)
H(x) =

∫ x

0

exp

[
−β + 3

∫ β

0

(1− e−s)1

s
ds

]
dβ

7 Analysis and Results

The data sets used in the analysis were provided by
Vincent T. Wood of NOAA/OAR/National Severe
Storms Laboratory. These data include data from
the 2008 hurricane, Ike, a numerical model from
Trapp (1999) [8] and a numerical model from Davies-
Jones (1997) [9]. A description of the analysis per-
formed on each vortex data set is given below. A
table summarizes the analysis of each data set. The
table contains the model number as described in the
previous section, the number of parameters K, AIC,
AICc, ∆AIC, ∆AICc, and the Akaike weights, wi
for each model. ∆AIC and ∆AICc are computed
over all candidate models in the set as follows:

∆AICi = AICi −AICmin

∆AICci = AICci −AICcmin

Models with ∆AIC > 19 (or ∆AICc > 10) have ei-
ther essentially no support, and might be eliminated
from further consideration, or at least those models
fail to explain some substantial explainable variation
in the data (Burnham). It is not the absolute size
of the AIC value, it is the relative values that are
important (Burnham). The Akaike weights wi are
used to measure the relative likelihood of a model,
given the data and the candidate set of R models.
The Akaike weights are calculated as follows:

wi =
exp

(
− 1

2∆i

)∑R
r=1 exp

(
− 1

2∆r

) .
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Each model’s parameters were estimated using a
least squares fit to the data. In order to put all the
models in the table, the variable a was used for k, the
variable b was used for n and the variable c was used
for λ in the Wood-White models. Also, the variables
a and b were used for the Rankine, Burgers-Rott,
Vatistas and the Sullivan models. The following ta-
bles summarize the AIC values computed for all the
vortex models under consideration. In the first table
the fitted parameters are given for the normalized
models. The range of values for the Wood-White
models were [0.5, 5,5] for k, [0.6, 8] for n with n > k
and [0.2, 2.7] for λ. In the second table, AIC is used
to select the best approximating model (or models).

7.1 Ike040 hurricane data

Figure 1 contains all the normalized models un-
der consideration fitted to data from the hurricane
Ike040 for comparative purposes.

Figure 1: All models fitted to Ike040.

Model a b c σ2

Wood-White1 NA 2.28 NA 0.00007
Wood-White2 0.98 2.30 NA 0.00007
Wood-White3 NA 2.32 1.04 0.00007
Wood-White4 0.96 2.25 0.93 0.00006
Wood-White5 0.97 2.30 NA 0.00005
Wood-White6 3.10 4.30 2.03 0.00005
Rankine 1.30 NA NA 0.01078
Burgers-Rott 5.08 1.72 NA 0.00061
Vatistas 1.43 NA NA 0.00031
Sullivan 2.40 1.17 NA 0.04327

AIC was used for the model selection because
there are 301 data points. Results are given in the
table below.

Model K ∆AIC w
Wood-White1 2 76.3 0.000000
Wood-White2 3 55.9 0.000000
Wood-White3 3 68.4 0.000000
Wood-White4 4 48.5 0.000000
Wood-White5 3 0.0 0.810027
Wood-White6 4 2.8 0.189973
Rankine 1 1592.2 0.000000
Burgers-Rott 3 731.0 0.000000
Vatistas 2 525.1 0.000000
Sullivan 3 2014.5 0.000000

The Wood-White1, Wood-White2, Wood-White3,
Wood-White4, Rankine, Burgers-Rott, Vatistas and
Sullivan models all have ∆AIC values greater than
19 and could be eliminated from further considera-
tion. The Wood-White5 model has a relative likeli-
hood of 86% that this model is the best model for
this set of data from this candidate list of models.
The Wood-White6 model’s ∆AIC is small enough to
be considered for model averaging with the Wood-
White5 model for this data set.

7.2 Ike180 hurricane data

Figure 2 contains all the normalized models un-
der consideration fitted to data from the hurricane
Ike180 for comparative purposes.

Figure 2: All models fitted to Ike180.
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Model a b c σ2

Wood-White1 NA 1.63 NA 0.00024
Wood-White2 1.03 1.62 NA 0.00024
Wood-White3 NA 1.58 0.88 0.00022
Wood-White4 0.81 1.30 0.54 0.00016
Wood-White5 1.11 1.56 NA 0.00024
Wood-White6 0.67 1.37 0.58 0.00016
Rankine 1.52 NA NA 0.04947
Burgers-Rott 4.91 1.66 NA 0.03846
Vatistas 0.54 NA NA 0.00085
Sullivan 5.04 2.69 NA 0.10515

AIC was used for the model selection because
there are 301 data points. Results are given in the
table below.

Model K ∆AIC w
Wood-White1 2 129.7 0.000000
Wood-White2 3 121.1 0.000000
Wood-White3 3 92.9 0.000000
Wood-White4 4 0.0 0.808755
Wood-White5 3 120.5 0.000000
Wood-White6 4 2.9 0.191245
Rankine 1 1726.3 0.000000
Burgers-Rott 3 1654.1 0.000000
Vatistas 2 504.3 0.000000
Sullivan 3 1956.8 0.000000

In this case, all of the models could be eliminated
from further consideration except for Wood-White4
and the modified Wood-White2. These two models
are very similar in form. The Wood-White4 model
has a relative likelihood of 81% that this model is the
best model for this set of data from this candidate
list of models. The modified Wood-White2 model’s
∆AIC is small enough to be considered for model
averaging with the Wood-White4 model for this data
set.

7.3 Ike270 hurricane data

Figure 3 contains all the normalized models un-
der consideration fitted to data from the hurricane
Ike270 for comparative purposes.

Figure 3: All models fitted to Ike270.

Model a b c σ2

Wood-White1 NA 1.92 NA 0.00108
Wood-White2 0.71 1.83 NA 0.00010
Wood-White3 NA 1.98 2.75 0.00012
Wood-White4 0.80 2.24 1.55 0.00008
Wood-White5 0.57 1.90 NA 0.00014
Wood-White6 0.70 2.40 1.70 0.00007
Rankine 1.43 NA NA 0.02567
Burgers-Rott 3.80 1.97 NA 0.01300
Vatistas 0.85 NA NA 0.00079
Sullivan 4.57 0.87 NA 0.07255

AIC was used for the model selection because
there are 301 data points. Results are given in the
table below.

Model K ∆AIC w
Wood-White1 2 810.4 0.000000
Wood-White2 3 104.8 0.000000
Wood-White3 3 141.8 0.000000
Wood-White4 4 16.04 0.000329
Wood-White5 3 185.2 0.000000
Wood-White6 4 0.0 0.999671
Rankine 1 1761.1 0.000000
Burgers-Rott 3 1560.3 0.000000
Vatistas 2 714.1 0.000000
Sullivan 3 2077.9 0.000000

In this case, all of the models could be eliminated
from further consideration except for Wood-White4
and the modified Wood-White2. These two mod-
els are very similar in form. The modified Wood-
White2 model has a relative likelihood of approxi-
mately 100% that this model is the best model for
this set of data from this candidate list of models.
The Wood-White4 model’s ∆AIC is borderline and
probably would not be selected for model averaging
with the modified Wood-White2 model for this data
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set.

7.4 Trapp numerical data

Figure 4 contains all the normalized models under
consideration fitted to data from the Trapp numeri-
cal model for comparative purposes.

Figure 4: All models fitted to Trapp.

Model a b c σ2

Wood-White1 NA 2.69 NA 0.01101
Wood-White2 2.58 3.80 NA 0.00214
Wood-White3 NA 2.03 0.18 0.00645
Wood-White4 4.96 6.38 2.75 0.00185
Wood-White5 2.04 3.33 NA 0.00486
Wood-White6 1.85 2.71 0.44 0.00456
Rankine 1.10 NA NA 0.00664
Burgers-Rott 3.90 0.81 NA 0.01640
Vatistas 3.05 NA NA 0.00808
Sullivan 4.90 2.42 NA 0.00431

The small sample size AICc was used because
there are 35 data points. Results are given in the
table below.

Model K ∆AICc w
Wood-White1 2 104.4 0.000000
Wood-White2 3 6.8 0.032195
Wood-White3 3 74.0 0.000000
Wood-White4 4 0.0 0.967805
Wood-White5 3 56.7 0.000000
Wood-White6 4 55.2 0.000000
Rankine 1 71.4 0.000000
Burgers-Rott 3 131.0 0.000000
Vatistas 2 85.6 0.000000
Sullivan 3 49.4 0.000000

In this case, the Wood-White models 2 and 4 were
the best models. Since the Wood-White4’s relative
likelihood of 95% that this model is the best model

for this set of data from this candidate list of models
and this model is a refinement of Wood-White2, it
is likely that Wood-White4 would be selected as the
best model for this data set.

7.5 Davies-Jones numerical data

Figure 5 contains all the normalized models under
consideration fitted to data from the Davies-Jones
numerical model for comparative purposes.

Figure 5: All models fitted to Davies-Jones.

Model a b c σ2

Wood-White1 NA 2.32 NA 0.00743
Wood-White2 1.49 2.60 NA 0.00592
Wood-White3 NA 1.79 0.25 0.00302
Wood-White4 0.72 1.45 0.11 0.00211
Wood-White5 4.61 5.24 NA 0.00241
Wood-White6 5.00 5.71 1.16 0.00217
Rankine 1.24 NA NA 0.00803
Burgers-Rott 4.54 1.80 NA 0.00501
Vatistas 2.04 NA NA 0.00431
Sullivan 2.70 0.71 NA 0.02152

The small sample size AICc was used because
there are 51 data points. Results are given in the
table below.

Model K ∆AIC w
Wood-White1 2 59.7 0.000000
Wood-White2 3 50.3 0.000000
Wood-White3 3 16.1 0.000201
Wood-White4 4 0.0 0.631349
Wood-White5 3 4.4 0.068340
Wood-White6 4 1.5 0.300110
Rankine 1 61.5 0.000000
Burgers-Rott 3 41.8 0.000000
Vatistas 2 31.9 0.000000
Sullivan 3 116.2 0.000000
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In this case, three models have a low AICc, how-
ever the modified Wood-White2 is a refinement
of the modified Wood-White1, so only the Wood-
White4 and the modified Wood-White2 would be
considered for model averaging for this data set.

8 Conclusions and Future
Work

AIC consistently selects a Wood-White model as the
model that best captures the information in the data
in all the cases that were examined. Future work will
involve a comparison of these predicted profiles with
simulated or real data.

References

[1] Akaike, H., 1981: Likelihood of a model and in-
formation criteria. Journal of Econometrics, 16,
3-14.

[2] Burgers, J. M., 1948: A mathematical model il-
lustrating the theory of turbulence. Adv. Appl.
Mech., 1, 197-199.

[3] Burnham, K. P. and Anderson, D. R., 2002:
Model Selection and Multimodel Inference: A
Practical Information-Theoretic Approach, (2nd
edition), Springer-Verlag, New York.

[4] Rankine, W. J. M., 1882: A Manual of Applied
Physics, (10th edition), Charles Griff and Com-
pany, London.

[5] Rott, N., 1958: On the viscous core of a line
vortex. Z. Angew Math. Physik, 9, 543-553.

[6] Sugiura, N., 1978: Further analysis of the data
by Akaike’s information criterion and the finite
corrections. Communications in Statistics, The-
ory and Methods, A7, 13-26.

[7] Sullivan, R. D., 1959: A two-cell vortex solution
of the Navier-Stokes equations. J. Aerospace Sci.,
26, 767-768.

[8] Trapp, R. Jeffrey, 1999: A clarification of
vortex breakdown and tornadogenesis. Monthly
Weather Review, 128, 888-895.

[9] Trapp, R. Jeffrey and Davies-Jones, R. P., 1997:
Tornadogenesis with and without a dynamic pipe
effect. J. Atmos. Sci., 54, 113-133.

[10] Wood, Vincent T. and White, Luther W., 2011:
A new parametric model of vortex tangential-
wind profiles: development, testing and verifica-
tion. J. Atmos. Sci., 68, 990-1006.

10


