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1. INTRODUCTION

The rising cost of fossil fuels and the threat of global
climate change have driven governments to actively pur-
sue alternative (“green”) energy sources (Isom et al. 2008).
Among various kinds of “green” energy, wind energy is of
special interest, due to its easy maintenance, relatively low
long-term cost and the conducive geography of many areas.
Thus, in recent years, wind energy production capacity in
North America has maintained an annual rate of increase of
more than 30% except in the 2010’s (15%) (TheWindPower
2010). The U.S. Department of Energy has set a goal for
wind energy to supply 20% of U.S. electricity consumption
by 2030 (DOE 2008). Despite these advantages of wind
energy, the construction of wind farms may be restricted
partially because of severe interference with air traffic con-
trol, surveillance, and weather radar systems. Therefore,
there has been recent interest in understanding the impact
of turbine interference and the corresponding mitigation
methods in radar systems.

The wind farms’ interference on the surveillance radar
systems was first noticed in Europe, e.g. (Butler and John-
son 2003)(Poupart 2003)(Greving et al. 2007)(Greving and
Malkomes 2008). Some of these works focus on the mitiga-
tion solution for air surveillance radar (ASR) (Butler and
Johnson 2003)(Perry and Biss 2007) or air traffic control
(ATC) radar systems (Poupart 2003)(Webster 2005), and
in (Butler and Johnson 2003), an estimated cost was given
for the necessary modifications/upgrades in 30 ASRs. In
contrast to the weather-surveillance-radar, which is the fo-
cus of this paper, the air-surveillance-radar faces the prob-
lem of detecting and tracking fast moving point targets
with large Radar Cross Section (RCS). The detection of
such large RCS targets is different from the detection of the
echoes from distributed weather scatterers, especially un-
der the interference from wind turbines. For the large RCS
targets, many tracking dependent techniques, e.g. Plot and
Track Filters, Track Initiation Inhibit, Sensitivity Time
Control and etc., can be employed to identify and remove
the turbine interference (Perry and Biss 2007). However,
most of the mitigation methods for ASR and ATC are not

disclosed as either proprietary or sensitive, and their de-
tailed concepts are not easy to ascertain.

Despite of the non-transparency of the research works
related to ASR, there are many publications, e.g. (Bach-
mann et al. 2010a)(Bachmann et al. 2010b)(Isom et al.
2008)(Nai et al. 2011), describing the details of the mitiga-
tion methods for weather surveillance radar systems. Be-
cause of the vast number of operational systems, 159 radars
in the Next Generation Weather Radar (NEXRAD) net-
work [http://www.roc.noaa.gov/WSR88D/About.aspx], the
turbine interference on the weather Doppler radar systems
has received intensive attention (Vogt et al. 2007b). Early
researches and investigations, e.g. (Vogt et al. 2007a)(Kent
et al. 2008)(Vogt et al. 2009), focused on the impact of the
wind farm interference on the weather radars, especially
concerning at the large RCS of the wind turbines and the
potential techniques that radar operators may deploy to
work around the wind turbine clutter. These works urged
the communication and cooperation between the wind farm
owners, developers and the radar surveillance stakeholders.
Among radar surveillance stakeholders, Radar Operation
Center (ROC) is a representative of the national weather
radar surveillance. The Federal Aviation Administration
(FAA) regulates the Obstruction Evaluation Process, in
which wind farm developers must submit their proposals
to FAA for the evaluation of potential impact on ATC. In
the past, ROC has not been involved in these proceedings.
Today ROC is contributing to the wind farm planning and
has the ability to influence the decision process and to con-
sequently reduce the wind turbine construction within the
line-of-sight of the corresponding weather radars. There-
fore, planning a wind farm in the vicinity of a weather
radar may become unfavorable to the wind energy indus-
try, because the proposal may not realize. In addition to
providing online tools to assist the wind farm developers in
planning the placement of the turbines, weather radar com-
munity established regulations to promote the coordination
between the wind farm developers and the NEXRAD op-
erators. To potentially loosen the constraints presented
to the wind farm developers by weather radar surveillance
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stakeholder, the radar signal processing mitigation meth-
ods are explored. Such mitigation methods rely merely on
the modifications/upgrades of the digital signal processing
algorithms of the weather radars, cost less, and seem more
practical and favorable than many other methods, e.g. ter-
rain masking.

Raw radar signals are the sequences of the in-phase and
quadrature-phase (I/Q) components of the radar echo volt-
age. Prior to becoming useful for the meteorological inter-
pretation, I/Q data undergo extensive processing stages
including digital signal processing, Doppler spectral pro-
cessing, data quality and contamination assessment, and
consequent filtering and mitigation of unwanted echoes.
From the point of view of digital signal processing, the
radar echoes from the turbines comprise of two parts, the
stationary one and the Doppler-shifted one. The station-
ary part is mainly the echoes from the towers supporting
the turbines. It appears as a narrow-band clutter centered
at the Zero-Doppler-Frequency (ZDF) in the Doppler spec-
trum representation of the raw radar signal. Because of its
narrow-band property, it can be suppressed by the conven-
tional Ground-Clutter-Filters. The Doppler-shifted part,
which we refer to as Non-Zero Doppler Frequency Com-
ponent (NZDFC), is the echoes from the rotating blades
and/or nacelles. In the Doppler spectrum representation,
it occupies a large range (or sometimes the entire range)
of the non-zero Doppler frequencies including those of the
weather signals. At close ranges (range here is the distance
between the radar and a wind turbine) the magnitude and
the variance of most of the Doppler coefficients from wind
turbines are usually larger than or at least on the same
order of that of the weather Doppler coefficients. Conse-
quently, it is very difficult for signal processing algorithms
to recover the weather Doppler spectrum by using the data
only from the contaminated resolution cells. Thus, one of
the solutions is to exploit the large scale and continuity
properties of the weather scatterers. This means that the
weather returns should have similar characteristics across
the neighboring resolution cells and occupy larger areas
in the (Elevation-)Range-Azimuth domain than the wind
farms.

In (Isom et al. 2008), a signal processing algorithm,
which is referred to as Multiquadric Spectral Interpola-
tion (MQSI) in this paper, was proposed to exploit such
property. MQSI assumes that all the resolution cells are
classified on clean and contaminated. Then, several clean
cells surrounding the wind farm area are carefully selected.
The Doppler coefficients from these cells are utilized to con-
struct models using Multiquadric interpolation method, for
the region covering both the selected and the contaminated
resolution cells. The values of these models at the contam-
inated cells are used to replace the corresponding Doppler
coefficients. (We refer readers to (Isom et al. 2008) for
more details of MQSI). Through this interpolation scheme,

MQSI was shown to have good performance in recover-
ing the reflectivity, radial velocity, and spectrum width in
the contaminated resolution cells. However, the identifi-
cation of the contaminated resolution cells is not trivial
because of the multi-path effect and the occasional halt
of turbines. Further, it is not clear on how to choose the
clean cells around the wind farm and a key parameter of the
multiquadric interpolation method. These two choices are
crucial to the computational complexity and the recovery
performance of MQSI.

Another signal processing mitigation method, which we
refer to as Range-Doppler Pixel Classification (RDPC),
was proposed in (Nai et al. 2011). In contrast to the identi-
fication plus interpolation scheme of MQSI, the philosophy
of RDPC is just to identify and remove the pure turbine
Doppler coefficients, with the others untouched. In the
Range-Doppler-Spectrum domain, for any fixed azimuth
angle, RDPC seeks to classify the Doppler coefficients with
three labels: weather (including both clean weather and
contaminated weather), turbine and noise. Such classifi-
cation is performed by exploiting the differences between
weather signal and turbine signal in the aspects of the con-
tinuity of the power level in range and the spread of signal
power in Doppler frequencies. After removing the Doppler
coefficients that are classified as turbine, the spectrum mo-
ments (reflectivity, radial velocity and spectrum width) are
estimated by using only the remaining Doppler coefficients.
(We refer readers to (Nai et al. 2011) for details of RDPc).
Compared to MQSI, RDPC has much smaller computa-
tional complexity and keeps the resolution capability of the
original system, since it does not employ any interpolation
technique. However, RDPC usually provides biased esti-
mates of the reflectivity, which results from the untouched
but contaminated weather coefficients.

In this paper, we first define the Azimuth-Doppler Spec-
trum (ADS) in Section 2. In Section 3, a digital-signal-
processing based mitigation method is proposed. The method
features an automatic detector of the wind turbine con-
tamination (based on Azimuth-Doppler spectrum) and a
bilinear interpolator. Experiment and simulation results
are provided in Section 4. Finally, conclusions are made in
Section 5.

2. Azimuth-Doppler Spectrum

A common weather radar system, such as NEXRAD,
has a parabolic dish antenna. The dish is mechanically
rotated and tilted to acquire data from a volumetric 360
degree coverage. The Volume Coverage Pattern (VCP)
defines the elevation tilts and the scan specifics, such as
Pulse Repetition Times (PRT), number of pulses for co-
herent processing in one radial, etc. When a dish radar is
in a stare mode (not rotating), the radial of data would
represent 1 azimuth. These data can be processed in time,
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Doppler and range dimensions. When a dish radar rotates,
additional azimuth dimension can be used for processing.
Because a mechanically rotating dish cannot stare at each
azimuth separately, each pulse is transmitted at an incre-
ment of azimuth. Therefore, there is a great flexibility on
how such data can be processed. Traditionally, signal pro-
cessing algorithms implemented in weather Doppler radar
systems calculate the Doppler spectrum of each resolution
cell and then apply filtering or interpolation methods in the
Range-Doppler plane. However, in this paper, we develop
our algorithms based on the Azimuth-Doppler Spectrum
(ADS), which is generated as follows. Suppose, at range
gate R, the received complex I/Q signal xR(t) is from the
azimuth angle θt with t = 0, ..., T , which is assumed to
scan through the surveillance area with constant step size
δθ. Further, assume that any successive 2WH + 1 samples
are within one beam-width. Thus, centered at azimuth an-
gle θt, all the samples between xR(t−WH) and xR(t+WH)
are from the corresponding resolution cell. Here, we define
the data vector for this resolution cell as

xR(θt) = [xR(t−WH), xR(t−WH + 1), ..., xR(t+WH)]T .
(1)

Then, by applying windowing technique in time do-
main, the corresponding complex Doppler spectra are de-
fined as

BR(θt) = DFT (xR(θt)×w),

and
XR(θt) = DFT (xR(θt)),

whereDFT stands for the Discrete-Fourier-Transform,w ∈
C2WH+1×1 is the Blackman window series and the multipli-
cation between xR(θt) and w is in element-wise. By using
the Blackman window, the magnitude of the Doppler coef-
ficients of BR(θt) ∈ C2WH+1×1 suffers less from the spec-
trum leakage and better represents the signal power of the
corresponding frequency bins than that of XR(θt). In con-
trast, XR(θt) ∈ C2WH+1×1 uses the rectangular window
and, therefore, has higher resolution and side-lobe level
while keeping the phase information of the Doppler coef-
ficients which is important to our detector. Both BR(θt)
and XR(θt) are used in our detector and the bilinear inter-
polation is performed on BR(θt).

Based on these definitions, the complex Azimuth-Doppler
Spectrum is constructed as:

BR = [BR(θWH
), BR(θWH+1), ..., BR(θT−WH

)]T ,

and

XR = [XR(θWH ), XR(θWH+1), ..., XR(θT−WH )]T .

Note that the data samples used in XR(θt) (BR(θt)) and
XR(θt+1) (BR(θt + 1)) have 2WH -point overlapped. Fur-
ther, by putting the ADS of all the range gates together,

we can get three dimensional data sets:

B(R, θ,K) = BR(θ,K),

and
X(R, θ,K) = XR(θ,K).

3. Mitigation Method

In this section, we propose a mitigation method on the
basis of an automatic turbine interference detector and lin-
ear interpolation. Similar as MQSI, this method works on
the Range-Azimuth-Doppler domain. The dimension of El-
evation was not considered and can be included to further
improve the performance. We begin with the introduction
of the turbine interference detector.

a. Wind Turbine Detector

Although the positions of the wind turbines are usually
known to the weather radar system, it is a good practice
to map the range gates affected by the wind turbine re-
turns. The detection and identification of contaminated
range gates is critical because the radar beam pointing and
the multipath effects depend on the propagation of electro-
magnetic energy in the atmosphere. The propagation path
varies and this variation causes the observable and unpre-
dictable phenomenon - some resolution cells, which do not
correspond to the true locations of wind turbines, register
contaminated returns. While other resolution cells that
are known to represent the locations contaminated by the
echoes from turbines, may become less affected - a beam
propagation path may be higher, a turbine may turn away
in a favorable angle and/or stop rotating by any reason,
etc. In such cases, even the echoes from the cells, which
are known to have turbines, may temporarily contain no
NZDFC and, therefore, the application of mitigation meth-
ods in such cells is unnecessary and even harmful. On the
basis of the ground clutter detector of Warde and Tor-
res (2009), we introduce an adaptive wind turbine interfer-
ence detector. This adaptive detector does not depend on
the prior knowledge of turbines locations and works in the
Azimuth-Doppler domain rather than the Range-Doppler
domain of RDPC.

As in (Warde and Torres 2009), we assume that any
successive 2WH+2 data samples are Wide-Sense Stationary
(WSS) and define the cross spectrum CR(θt) and its phase
vector PR(θt) as

CR(θt) = XR(θt)XR(θt+1)
∗, (2)

and
PR(θt) = angle[CR(θt)],

where ∗ denotes the conjugate operation, the vector mul-
tiplication is in element-wise and each element of PR(θt)
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is the phase (in radius) of the corresponding element of
CR(θt). After some manipulation, we can rewrite (2) as

CR(θt)k = e
−j2πk
2WH+1 [XR(θt)k∆

∗
t + |XR(θt)k|2], (3)

where CR(θt)k and XR(θt)k are the kth elements of CR(θt)
and XR(θt) respectively, and

∆t = xR(t+ 1 +WH)− xR(t−WH). (4)

Assume that the pass-band of the dominating signals ranges
from the frequency index kl to kh. When kl ≤ k ≤ kh,
|XR(θt)k| is much larger than the magnitude of ∆t and,
therefore,

CR(θt)k ≈ e
−j2πk
2WH+1 |XR(θt)k|2.

Thus, PR(θt)k ≈ −2πk/(2WH+1). When k < kl or k > kh,

CR(θt)k ≈ e
−j2πk
2WH+1XR(θt)k∆

∗
t ,

and

PR(θt)k ≈ −2πk

2WH + 1
+ angle[XR(θt)k]− angle[∆t],

which is biased from −2πk/(2WH + 1). Here we define
a linear phase line which is Lk = −2πk/(2WH + 1) for
k = −WH , ...,WH . Then, by using a threshold on the dif-
ference between PR(θt)k and Lk, we can detect the Doppler
coefficients in the pass-band of the dominating signals.
Compared to the convention detector which is simply a
threshold on the magnitude of the coefficients, this detec-
tor is more robust to the leakage from the strong stationary
(low-frequency) signals because it operates on the phase of
the coefficients. Furthermore, by combining this phase-
based detector with the conventional one, we can improve
the detection performance in identifying the pass-band of
the dominating signals. We refer to this new detector by
Phase Difference Detector (PDD) and formally state it here

If |PR(θt)k−Lk| < τP and |BR(θt)k| > τM , then FR(θt)k =
1, otherwise FR(θt)k = 0,

where BR(θt)k is the Doppler coefficient obtained with
Blackman Window, FR(θt)k is the flag of detection for the
corresponding coefficient and τP and τM are the thresholds
on the phase difference and the magnitude respectively.

Comparing the shapes of the Doppler power spectra
representative for signal from weather, stationary clutter
and rotating turbine blades, we observed that the signal
power of turbine echoes is usually spread across the entire
spectrum, unlike the signal power of weather and station-
ary clutters which just occupy relatively narrow bands of
frequencies. Therefore, in contrast to RDPC, which classi-
fies the Doppler coefficients individually, we choose to clas-
sify all the Doppler coefficients from resolution cell (R, θt)
as contaminated or uncontaminated. Specifically, for each

resolution cell (R, θt), we first apply PDD to detect the
non-trivial coefficients (which are inside the pass-bands of
either weather, clutter or wind turbines) and next com-

pare
∑2WH+1

k=1 FR(θt)k to a threshold (or equivalently, we

can use a threshold, τI , on
∑2WH+1

k=1 FR(θt)k/(2WH+1)). If
the sum is above the threshold, then all the Doppler coeffi-
cients within this resolution cell are identified as contami-
nated. Note that we apply this detector for each (R, θt)
and, therefore, there are overlaps among the resolution
cells. In Section 4, examples are shown to illustrate the
effectiveness of this detector.

b. Linear Interpolation

By applying PDD, we pinpoint the resolution cells con-
taminated by wind turbines. To reduce the impact of
spectrum leakage, we now turn to the three dimensional
data set B(R, θ,K). Then, the mission of mitigating tur-
bine interference reduces to recovering such Doppler coeffi-
cients in the contaminated cells. Since the strong station-
ary Doppler coefficients in such cells can have significant
impact on the recovery of the spectral moments, especially
the reflectivity and radial velocity, it is necessary to apply
a ground clutter filter, e.g. Gaussian Model Adaptive Pro-
cessing (GMAP), to every resolution cell before the inter-
polation process. Although the interpolation process can
be accomplished by using MQSI, we choose to use simple
bilinear interpolation for its lower computational complex-
ity and parameter-free property.

Suppose that SC = {(Rtj , θtj ), j = 1, ..., J} is the set of
the resolution cells that are detected by PDD as contami-
nated. Then, all the coefficients B(Rtj , θtj , :) are notched
and we define BK(R, θ), for each frequency index K,

BK(R, θ) = B(R, θ,K).

Since the three important spectral moments (reflectivity,
radial velocity and spectrum width) can be calculated merely
from the power of the Doppler coefficients, we focus on
|BK(R, θ)|, and ignore the phases of these coefficients. By
treating |BK(R, θ)| as an image with some missing pixels,
we can fill in those notched coefficients by employing the
bilinear interpolation algorithm. Since the bilinear inter-
polation is very standardized, we omit its details and make
two comments on our mitigation method here. First, in
contrast to RDPC, this new method also notches the con-
taminated weather coefficients and uses the interpolated
values to replace them. Therefore, it can possibly achieve
the recovery of all the three spectral moments at the same
time. Second, although the infrastructure of this method is
very similar to that of MQSI, it features an automatic tur-
bine interference detector, PDD, and the computationally
efficient linear interpolation which does not depend any pa-
rameter and prior information/selection. Several examples
are shown in Section 4 to illustrate the performance of this
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new mitigation method.

4. EXPERIMENTAL RESULTS

In this section, we first apply the proposed Phase Differ-
ence Detector (PDD) and the bilinear interpolation method
to the data sets obtained at Dodge City Kansas (KDDC)
2006. These data sets contain the I/Q or Level I data
recorded from the correspondingWSR-88D radars and com-
posed of turbine echoes with no weather, in clear air con-
ditions. Then, because of the lack of weather data con-
taminated by returns from wind turbines, we turn to the
synthetic data set. This data set were used by RDPC (Nai
et al. 2011) and several related papers, and it is constructed
by adding weather signal time series with turbine time se-
ries. This arrangement gives us the ground truth to eval-
uate the performance of the methods (Nai et al. 2011). In
these examples, we use the Azimuth-Doppler spectra at the
contaminated range gates to show the detection and spec-
trum recovery performance of PDD and the interpolation
scheme.

a. KDDC Data Set

In Figure 1 is the reflectivity display of the KDDC data
set. As shown in Figure 1, the wind farm is located at
the resolution cells with range gates from 140 to 180 and
azimuth angle from 240◦ to 255◦, and there is no obvious
weather clutter around the wind farm.
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Fig. 1. (KDDC) Reflectivity Display

In Figure 2 and Figure 3, we take range gate 155 and
160 as examples and show the effectiveness of PDD. The
top sub-figures of Figure 2 and Figure 3 are the Azimuth-
Doppler spectra of these range gates. The center and the
bottom sub-figures of Figure 2 and Figure 3 are the coeffi-
cients detected by PDD and their number versus azimuth,
respectively. As shown by these figures, at range gate 155
and 160, the wind turbine contamination appears in two

and three sectors of azimuth angles respectively, and, by
setting threshold τI at around 0.4, PDD not only detectes
the contaminated azimuth angles but also leaves the gaps
separating those contaminated sectors un-detected, which
keeps the weather information and is very important to the
afterwards interpolation.
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Fig. 2. (KDDC) Azimuth-Doppler Spectrum: Range Gate
155

We apply PDD using different τI to each range gates
and show its results in Figure 4 (τI = 0.18) and Figure
5 (τI = 0.4). Figure 4(a) and Figure 5(a) are the gener-
ated wind turbine clutter masks (maps) with the red points
representing the identified resolution cells with turbine con-
taminations, and, the reflectivity displays with the identi-
fied resolution cells notched are shown in Figure 4(b) and
Figure 5(b) respectively. We can see that, in both of these
settings, most of the resolution cells known to contain wind
turbines are successfully detected by PDD, though moder-
ate number of false alarms are present. However, around
the wind farms, there are some resolution cells, which are
of remarkably smaller reflectivity than the wind farms, are
not detected by PDD. When τI is smaller (e.g. 0.18), the
number of such cells is smaller (than τI = 0.4) but the num-
ber of false alarms becomes bigger. Although in this case
these cells affect the recovery/interpolation performance
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Fig. 3. (KDDC) Azimuth-Doppler Spectrum: Range Gate
160

(as shown in next paragraph), they generally do not have
severe impact in the cases of interest where the weather
clutter is around or covering the wind farm.

Since in this data set there are no ground clutters be-
side or around the wind farm, we do not employ any ground
clutter filter and directly apply the bilinear interpolation
on the Doppler spectra. Figure 6, 7 and 8 shows the in-
terpolated reflectivity display, Azimuth-Doppler spectra at
range gates 155 and 160 respectively. According to these
figures, the reflectivity displays for these two τT s are very
similar, but the recovery of the Azimuth-Doppler Spectrum
of τI = 0.18 seems better than that of τI = 0.4. This is
because, compared to τI = 0.4, τI = 0.18 causes PDD
to detect more resolution cells surrounding the wind farm,
which have stronger signal strength than the uncontami-
nated cells in neighborhood area of the wind farm (which
are basically noise cells), and thus, by notching more such
cells, τI = 0.18 leads to smaller interpolated Doppler coef-
ficients and better Azimuth-Doppler spectra.

b. Synthetic Data Set

In this subsection, we present the results of the afore
mentioned synthetic data. Figure 9(a), 9(b) and 9(c) show
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(b) Notched Reflectivity Display

Fig. 4. (KDDC) PDD Results with τI = 0.18

the reflectivity displays of weather data, turbine data and
the combined data (weather+turbine). As shown, the tur-
bine data is obtained at clear air condition and is remark-
ably stronger than the weather, which causes obvious bi-
ases in the estimate of the reflectivity, radial velocity and
spectrum width (shown in the last paragraph of this sub-
section).

Then, we apply the PDD to the combined data with
τI = 0.35, and show the results for range gates 155 and 165
in Figure 10 and 11 respectively. According to these two
figures, PDD can correctly distinguish the contaminated
resolution cells and the gaps between them, while make
many false alarms in the resolution cells of pure weather
signal. As shown later in this subsection, because of the
spatial continuity of the weather signal, these false alarms
does not have severe impact on the performance of the mit-
igation method. In Figure 12 are the detected clutter map
and the reflectivity display with the detected cells notched.
Similar as in Figure 10 and 11, there are many resolution
cells of pure weather signal are classified as contaminated
by PDD.

In this case, we use a simple group clutter filter (which
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Fig. 5. (KDDC) PDD Results with τI = 0.4

keeps the phase of the stationary coefficients and scale it by
the magnitude of randomly picked High-Frequency Doppler
coefficients) to remove the stationary signals in every res-
olution cell before the interpolation process. To have fair
comparison, we also use PDD to detect the contaminated
resolution cells for MQSI and all the parameters are inde-
pendently and empirically chosen. In Figure 13, 14 and
15, we show the displays of reflectivity, radial velocity and
the spectrum width of pure weather data (sub-figures (a)),
the proposed method (sub-figures (b)), RDPC (sub-figures
(c)) and MQSI (sub-figures (d)), respectively. As shown
by Figure 13, all the three methods exhibit similar per-
formance in recovering reflectivity. However, according to
Figure 14 and 15, the proposed method has better perfor-
mance than the other two in recovering radial velocity and
spectrum width. This is because, first, RDPC misses many
pure turbine coefficients which do not have remarkable ef-
fect on reflectivity but severely degrades the estimation of
radial velocity and spectrum width. Second, for MQSI,
PDD may miss some contaminated resolution cells, which
have relatively very weak turbine signals, and these cells af-
fect the model construction process of MQSI, which leads
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Fig. 6. (KDDC) Reflectivity: Interpolation Result

to degraded performance in recovering radial velocity and
spectrum width. For better illustration, we also show the
Azimuth-Doppler spectra of the interpolation results in the
range gates 155 and 160 in Figure 16 and 17 respectively.
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polation: Range Gate 155
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Fig. 9. (SYNTHETIC) Reflectivity of Original Data
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Range Gate 155
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Fig. 11. (SYNTHETIC) Azimuth-Doppler Spectrum:
Range Gate 160
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Fig. 12. (SYNTHETIC) PDD Results
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Fig. 13. (SYNTHETIC) Reflectivity
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(d) Radial Velocity: Result of MQSI

Fig. 14. (SYNTHETIC) Radial Velocity
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Fig. 15. (SYNTHETIC) Spectrum Width
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Fig. 16. (SYNTHETIC) Azimuth-Doppler Spectrum Af-
ter Interpolation: Range Gate 155

5. CONCLUSION

In this paper, an automatic detector of wind turbine
interference and a mitigation method of signal contamina-
tion have been proposed. Identification of Wind Turbine
Clutter (WTC) independent of weather is based on rela-
tive attributes of the evolutionary Azimuth-Doppler spec-
trum coefficients and cross-spectral analysis of successive
azimuth frames. Mitigation of WTC-corruption is carried
out by nulling the contaminated Doppler spectra, followed
by bi-linear interpolation on planes in the azimuth-range-
Doppler 3D data set. The data used in the course of the
investigation consisted of NEXRAD Level 1 scanning and
synthetic Doppler weather radar returns. With compar-
ison to the methods proposed in (Isom et al. 2008) and
(Nai et al. 2011), promising results are demonstrated on
the aforementioned measured and synthetic data.

Azimuth

V
el

oc
ity

 (
m

/s
)

Weather Azm−Doppler Spectrum

235 240 245 250 255 260

−20

0

20

Azimuth

V
el

oc
ity

 (
m

/s
)

Turbine Azm−Doppler Spectrum

235 240 245 250 255 260

−20

0

20

Azimuth

V
el

oc
ity

 (
m

/s
)

Weather−Turbine Azm−Doppler Spectrum

235 240 245 250 255 260

−20

0

20

Azimuth

V
el

oc
ity

 (
m

/s
)

Azm−Doppler Spectrum After Interpolation

235 240 245 250 255 260

−20

0

20

Fig. 17. (SYNTHETIC) Azimuth-Doppler Spectrum Af-
ter Interpolation: Range Gate 160
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