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Adams-Bashforth trapezoidal (ABt) scheme: 
 
 For the generic tendency equation 
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the proposed ABt scheme is defined via two steps: 
Predictor step, 
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Corrector step, 
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Here Ψ is an arbitrary prognostic variable, which is a function of space and time (t); 
][ *)1(*)1( ++ Ψ≡ nn FF . The superscripts n-1, n, and n+1 denote the three time level 

indices, while t∆  is the time step. The superscript (n+1)* denotes a provisional index 
for the time level n+1. 

The stability and phase-change characteristics of the ABt scheme applied to the 
 the oscillation equation 
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and the friction equation 
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are displayed below in terms of the amplitude and phase of the amplification factor. The 
ABt scheme is stable for 287.1<∆tω  and .320 ≤∆< tκ    
 
Stability diagrams for the oscillation equation

Stability diagrams for the friction equation

In the numerical tests to follow, we compare the ABt scheme with the Asselin time-filtered 
leapfrog scheme (Robert 1966, Asselin 1972) and the leapfrog-trapezoidal scheme (Kurihara 
1965).   

Application of the ABt scheme to a linear advection problem 
 

For an arbitrary variable ),( txΨ transported in the x-direction by a fluid with a 
constant velocity c, the one-dimensional linear advection equation is governed by 

0=Ψ∂+Ψ∂ xt c . The exact solution is )(),( 0 ctxtx −Ψ=Ψ , for an initial distribution of 
Ψ  given by )()0,( 0 xx Ψ=Ψ . A 4th order centered scheme is used for Ψ∂ x . The domain 
is periodic with a grid size x∆ . The advective-Courant number is denoted by 

xtc ∆∆=µ . The filter parameter )(σ of the time-filtered leapfrog scheme is varied 
between 0.12 and 0.4. An initially specified normal-mode distribution of Ψ  is translated 
three times around the domain by separate numerical time integrations using the ABt 
scheme, the time-filtered leapfrog scheme, and the leapfrog-trapezoidal ‘Kurihara’ 
scheme. Within stability limits, µ  is first set at the value of 0.5 and then at 0.2. For the 
first set of integrations, 321=∆x . For the second set of integrations, the grid resolution 
is doubled to 641=∆x . 
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Application of the ABt scheme in a nonlinear shallow-water model 
 
 A global, nonlinear, shallow-water, grid-point model (Kar et al. 1994) is 
integrated in time using the ABt scheme and the leapfrog-trapezoidal scheme, the latter 
used to obtain a reference solution. The horizontal finite-difference scheme for the model 
is based on the second-order mass-conserving and partial fourth-order energy and 
potential-enstrophy conserving scheme on the staggered C grid (Arakawa and Lamb, 
1981). A zonal polar filter is employed at the high latitudes. A Rossby-Haurwitz wave-
number 4 initial condition (Phillips 1959) is used with the mean-depth of the shallow 
water, m108 3

0 ×=h . The model is configured with a uniform latitude-longitude grid 
resolution of 4=∆ϕ  and 5=∆λ . The model has been integrated for 12 days with 

s640=∆t  for both schemes. The initial free-surface height, followed by the day-6 and 
day-12 forecasts of the free-surface height made by the ABt scheme and the leapfrog-
trapezoidal scheme are displayed below and in the next panel.  

Initial global field of free-surface height (m) for the Rossby-Haurwitz wave number 4. The contour interval is 120 m. 
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Summary 
 
 An explicit time-difference scheme with an Adams-Bashforth predictor and a 
trapezoidal corrector, thus named the ABt scheme, has been proposed. Linear 
computational stability analyses of the proposed scheme were carried out for the 
oscillation and the friction equation. The ABt scheme was applied to a one-dimensional 
linear advection problem and the numerical solutions were compared to those obtained 
using the Robert-Asselin time-filtered leapfrog scheme and the leapfrog-trapezoidal 
scheme (Kurihara 1965). The proposed scheme was also implemented in a global, 
nonlinear, grid-point shallow-water model. The numerical time-integration solutions 
were then obtained for the Rossby-Haurwitz wave-number 4 initial condition and 
compared to the same obtained using the leapfrog-trapezoidal ‘Kurihara’ scheme. 
Numerical results obtained from the linear and nonlinear models seem to indicate that 
the ABt scheme is conditionally stable with accuracies comparable to the Kurihara 
scheme. 
 The proposed scheme is uniquely suitable for implementation into a predictor-
corrector type two-time-level fully-implicit semi-Lagrangian scheme for 3D 
hydrostatic/nondrostatic models, in which (i) the advection terms are treated with a two-
time-level semi-Lagrangian scheme; (ii) the gravity/sound wave terms are treated with a 
two-time-level implicit trapezoidal scheme; and (iii) the nonlinear (leftover from the 
semi-implicit linearization) terms are treated with the ABt scheme proposed here. 
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