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1.  INTRODUCTION 
 
 This study is a first step toward 
understanding the impacts and importance of the 
sources of uncertainties in model physics, model 
dynamics, and initial and lateral boundary conditions 
(IC/LBC) for convection-allowing ensemble forecasts. 
Some of the key issues for future study of optimal 
ensemble design and post-processing are inferred 
through a Hierarchical Cluster Analysis (HCA) of a 20-
member convection allowing ensemble from the 2009 
Hazardous Weather Testbed (HWT) Spring 
Experiment (Xue et al 2009). Non-precipitation 
variables (10m Wind Speed and 500hPa 
Temperature) are clustered using Ward’s minimum 
variance algorithm (Ward 1963) and hourly 
accumulated precipitation is clustered using a new 
object-oriented form of Ward’s algorithm. 
 
 Ward’s algorithm is traditionally based on 
Euclidean distance which often does not agree with 
subjective evaluation of convection-allowing 
precipitation forecasts (Baldwin et al 2001). 
Precipitation forecasts are therefore evaluated using 
the object-oriented Method for Object-based 
Diagnostic Evaluation (MODE; Davis et al 2006). 
MODE is used to compute an Object-based Threat 
Score (OTS) that is defined, discussed, and 
compared to a Neighborhood-based Euclidean 
Distance (NED) in the present study. It is found that 
OTS is a more effective distance measure for the 
HCA than NED and that OTS is more effective when 
forecast objects have a fuzzy degree of similarity 
rather than a binary classification as matching or not 
matching. Therefore “Fuzzy” OTS is used to create 
dendrograms composited over multiple forecasts in 
order to better understand the systematic clustering of 
explicit forecasts of convection. 
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The design of the CAPS ensemble that is 
analyzed in this study is summarized in Table 1. The 
control members used initial conditions from the 
operational NCEP NAM analysis with additional radar 
observations, along with mesoscale wind and 
temperature observations, assimilated using ARPS 
3DVAR and cloud analysis (Hu and Xue 2007).  One 
member from each of the three models (ARW C0, 
NMM C0, and ARPS C0) used identical configuration 
to the control member with the same model (ARW 
CN, NMMCN and ARPS CN respectively) except 
without radar and mesoscale data assimilation. Initial 
condition perturbations were generated by taking the 
control analysis as a base state and adding only the 
perturbations from the NCEP SREF members 
indicated in Table 1. Perturbed LBCs were taken 
directly from the SREF member forecasts, while 
control member LBCs were taken directly from NCEP 
NAM forecasts. A more thorough description of the 
Spring Experiment and the CAPS ensemble design is 
found in Xue et al (2009). 
 
 The goal of this study is to infer the issues 
related to ensemble design that require further 
research in order to optimally design useful 
ensembles for the explicit prediction of convective-
scale phenomena such as severe storms. It is found 
that object-oriented precipitation forecasts cluster 
primarily by model dynamics at all forecast times, with 
secondary sub-clusters corresponding to 
microphysics scheme at 3hr forecast time (valid 
03UTC) and, for NMM members, according to 
Planetary Boundary Layer (PBL) scheme at 24hr 
forecast time (valid 00UTC).  
 
 Post-processing is needed to effectively 
communicate probabilistic information based on the 
large amounts of data generated by a convection-
allowing ensemble. Initial probabilistic verification 
results are also presented to help understand the 
potential advantages of different types of post-
processing. 
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Member IC LBC R MP PBL SW LSM 
ARW CN ARPSa NAMf Y Thom. (@) MYJ (^) Goddard Noah 
ARW C0 NAMa NAMf N Thom. (@) MYJ (^) Goddard Noah 
ARW N1 CN – em em N1 Y Ferr. ($) YSU (&) Goddard Noah 
ARW N2 CN – nmm nmm N1 Y Thom. (@) MYJ (^) Dudhia RUC 
ARW N3 CN - etaKF etaKF N1 Y Thom. (@) YSU (&) Dudhia Noah 
ARW N4 CN - etaBMJ etaBMJ N1 Y WSM6 (#) MYJ (^) Goddard Noah 
ARW P1 CN + em em P1 Y WSM6 (#) MYJ (^) Dudhia Noah 
ARW P2 CN + nmm nmm P1 Y WSM6 (#) YSU (&) Dudhia Noah 
ARW P3 CN + etaKF etaKF P1 Y Ferr. ($) MYJ (^) Dudhia Noah 
ARW P4 CN + etaBMJ etaBMJ P1 Y Thom. (@) YSU (&) Goddard RUC 
NMM CN ARPSa NAMf Y Ferr. ($) MYJ (^) GFDL Noah 
NMM C0 NAMa NAMf N Ferr. ($) MYJ (^) GFDL Noah 
NMM N2 CN - nmm nmm N1 Y Ferr. ($) YSU (&) Dudhia Noah 
NMM N3 CN - etaKF etaKF N1 Y WSM6 (#) YSU (&) Dudhia Noah 
NMM N4 CN - etaBMJ etaBMJ N1 Y WSM6 (#) MYJ (^) Dudhia RUC 
NMM P1 CN + em em P1 Y WSM6 (#) MYJ (^) GFDL RUC 
NMM P2 CN + nmm nmm P1 Y Thom. (@) YSU (&) GFDL RUC 
NMM P4 CN + etaBMJ etaBMJ P1 Y Ferr. ($) YSU (&) Dudhia RUC 
ARPS CN ARPSa NAMf Y Lin TKE 2-layer Noah 
ARPS C0 NAMa NAMf n Lin TKE 2-layer Noah 
 
Table 1: Details of ensemble configuration, modified from Xue et al (2009), showing the IC/LBC source, whether 
radar data is assimilated (R), and which microphysics scheme (MP), planetary boundary layer scheme (PBL), 
shortwave radiation scheme (SW), and land surface model (LSM) was used with each member. Symbols identifying 
MP and PBL schemes in other figures are also included. Perturbations added to CN members and LBC conditions 
are from NCEP SREF (Du et al 2006). 
 
 
Attribute Weight Confidence 
Centroid Distance 2.0 AR 
Area Ratio 2.0 1.0 if CD ≤ 160 km  

1 – [(CD – 160) / 640] if 160 km < CD < 800 km  
0.0 if CD ≥ 800 km 

Aspect Ratio Difference 1.0 CDI * AR 
Orientation Angle Difference 1.0 CDI * AR * ��� � �� 

Where a,b are ����	

�

���	

�
� for the two objects being compared 

Table 2: Attributes and parameter values used for MODE fuzzy matching algorithm. (CD denotes Centoid Distance, 
CDI denotes Centroid Distance Interest, AR denotes Area Ratio, T denotes aspect ratio) 
 
 
 
 
2. OBJECT-ORIENTED CLUSTER ANALYSIS 
 
 HCA iteratively merges N clusters of 1 
forecast each into 1 cluster of N forecasts, where N is 
the number of forecasts being clustered. This study 
uses Ward’s algorithm to determine which two 
clusters to merge next. Ward’s algorithm merges the 
two clusters which result in the smallest increase of 
total within cluster Error Sum of Squares (ESS) (Ward 
1963). Ward’s algorithm is modified for use with 
convection-allowing precipitation forecasts by 
replacing squared Euclidean distance with an object-

oriented measure of distance and replacing ESS with 
an object-oriented measure of variability as the 
objective function to be minimized at each step. HCA 
results are illustrated with dendrograms (Alhamed et 
al 2002) showing the entire sequence of cluster 
merging. 
 
 
 
 
 
 
 



3 
 

2.1 Object-Oriented Distance 
 
In this study, the distance between forecasts is 
calculated using a new measure, OTS, which is 
based on total interest, I, between forecast objects. 
Total interest is a weighted sum of the interest values 
for each of M object attributes (Davis et al 2009): 
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Where c is the confidence in an attribute, w is the 
weight assigned to an attribute, and F is the interest 
value of the ith attribute for the jth pair of objects. The 
user of MODE must choose several parameters and 
those most relevant to the present study are 
illustrated in Table 2, and Figure 1.  It should also be 
noted that a different convolved threshold is used for 
each ensemble member so the average total area of 
all objects forecast by a given member is within 5% of 
the average total area of observed objects. These 
thresholds are intended to minimize the impact of 
systematic forecast bias. 
 
 The attributes in Table 2 are selected to 
quantify location (centroid distance), organization 
(area), and structure (aspect ratio and orientation 
angle) of intense rainfall. Confidence for angle 
difference follows Davis et al (2009) to give less 
weight to angle difference of circular objects, while 
angle difference and aspect ratio confidence is the 
product of area ratio (AR) and centroid distance 
interest (CDI). Thus the effective weights become half 
location and half size for objects that are far apart or 
very different in area and become one third location, 
one third size, and one third structure for objects of 
similar size in similar locations. This is because as 
size or location becomes less similar there is less 
confidence that the objects represent the same 
feature so it is less relevant whether they have similar 
structure. The confidence value for area ratio is a 
function of centroid distance (CD) so that objects that 
are extremely far apart (i.e. CDI of 0.0) but happen to 
have similar size (i.e. AR about 1) have a near zero 
interest (rather than 0.5) since those objects do not 
correspond to each other. 
 
 Figure 1 maps differences in object attributes 
to a fuzzy interest value. Approximate, rather than 
precise, location is emphasized by assigning objects 
with up to 40 km centroid distance an interest value of 
1.0. A linear form of all interest functions is chosen for 
simplicity in lieu of established guidelines otherwise. 

The x-intercepts in Figures 1c and 1d are selected to 
be consistent with subjective evaluations of how well 
the total interest described the degree of similarity 
over a large number of different object pairs. 
 
OTS is then calculated between forecast i and 
forecast j as:  
 

1 1

1 iN Nj
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    (2)  
Where A is the total area of all objects in the 

forecast, N is the number of objects in the forecast, a 
is the area of the kth object in the forecast, and I is the 
fuzzy value of total interest between the kth object and 
its corresponding object in the other forecast. The 
corresponding object is the object with highest total 
interest that doesn’t already correspond to a different 
object with higher total interest. Thus each object in 
one forecast corresponds to exactly one object (at 
most) in another forecast and the correspondence is 
the same in reverse.  
 

If w in eqn (2) were replaced with a binary 1 
or 0 depending on whether its corresponding object 
has total interest above a specified matching 
threshold, then OTS becomes the Area Weighted 
Critical Success Index (AWCSI; Weiss et al 2009, 
also fraction of area in matched objects; Davis et al 
2009). Some differences between (fuzzy) OTS and 
AWCSI (i.e. binary OTS) are discussed further below. 
When used as a distance measure OTS is first 
subtracted from 1. 

2.2 Object-Oriented Variability 
 
 Ward’s algorithm is modified by defining the 
distance between clusters as the increase in a new 
measure of cluster variability, rather than ESS, that 
would result from a merge of those clusters. 
Variability is defined as the average distance, d, 
between all pairs of forecasts in the cluster, multiplied 
by N-1 where N is the number of forecasts in the 
cluster: 
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When squared Euclidean distance is the distance 
measure, d, variability is equal to ESS and the 
modified Ward’s algorithm is equivalent to the 
traditional Ward’s algorithm.  



4 
 

 

 
Figure 1: Functions mapping attribute value to interest 
value for (a) area ratio, (b) centroid distance, (c) 
aspect ratio difference, and (d) angle difference. 
 

                              .                        

  
 
 Variability, as defined here, is intended to 
provide an automated comparison of spread in 
different groups of forecasts in a way that mimics how 
a subjective analyst would compare them manually. In 
this way it is consistent with the intended use of 
MODE as a way to mimic a subjective analysis (Davis 
2009). For example, consider three clusters of three 
members in Figure 2 from a case study of forecasts 
valid 00 UTC 14 May 2009. The cluster in column (a) 
subjectively appears to have a lot of spread since it 
includes forecasts both with and without an object in 
east-central IL while the forecasts in MO range from a 
single linear object, to several small objects, to 
nothing at all. The cluster in column (b) has less 
spread because all the forecasts have a large rain 
area although they have large differences in 
placement. The cluster in column (c) has the least 
spread because they all forecast a large rain area in 
northern IL and have similar placement and structure 
of objects in MO. This subjective comparison is also 
reflected in the variability for columns (a), (b) and (c) 
of 1.36, 1.11, and 0.66 respectively. Most other cases 
that were subjectively examined exhibited the same 
correspondence between variability and subjective 
impressions of spread. 

 
 
Figure 2: Object-oriented variability for clusters of forecasts valid 00 UTC 14 May 2009 including (a) 
members NMM N4, NMM P1, and ARW N2, (b) members ARW P3, ARPS C0, and NMM P2, and 
(c) NMM N3, NMM P4, and ARW P2.  
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2.3 OTS vs. NED 
 

Clusters created using fuzzy OTS as the 
distance measure (i.e. 1-OTS) with the modified 
Ward’s algorithm are compared to clusters created 
using Euclidean Distance of Neighborhood probability 
forecasts with traditional Ward’s algorithm (NED). 
Neighborhood probability is defined as the percentage 
of grid points within a search radius that exceed a 
threshold of interest (Theis et al 2005). Clusters 
created using fuzzy OTS agree with subjective 
analysis more than clusters created using NED on 
several case study days (not shown) for two main 
reasons: OTS accounts for forecast features that are 
more closely related to convective mode and 
organization and OTS is not as sensitive as NED to 
overall forecast precipitation amount because OTS 
does not suffer from the “double penalty”. Even 
though the neighborhood ED relaxes the strict spatial 
accuracy required of traditional ED, NED is still 
unable to properly account for similar forecast 
features at different locations. This is demonstrated 
with a brief case study of a severe weather event on 
13 May 2009 (Figs. 3 through 5).  

 
In terms of convective mode, organization, 

and coverage the NMM CN and NMM C0 forecasts 
subjectively appear more similar to each other than to 
the ARW P1 forecast. This is because NMM CN and 
NMM C0 both show a cluster of cells of intense 
precipitation near the MO/IL border, with a line of 
smaller and generally weaker cells extending 
southwestward to the OK/KS border. In contrast, 
ARW P1 shows just one strong cell in central IL with 
much weaker showers elsewhere (Fig. 3). 

 
The NED dendrogram (Fig. 3) indicates that 

NMM CN is more similar to ARW P1 than to NMM C0. 
A relative lack of intense precipitation in ARW P1, 
combined with the largest maximum in ARW P1 being 
precisely co-located with a maximum in NMM CN, 
decreases NED compared to other members. At the 
same time, the NED from NMM CN to NMM C0 is 
penalized once because NMM C0 forecast maxima 
are at grid points without maxima in NMM CN and is 
penalized again because NMM C0 has no maxima at 
the grid points where NMM CN does have maxima. 
This is the essence of the double penalty. 
 

The OTS dendrogram (Fig. 5) indicates 
NMM CN and NMM C0 forecasts are particularly 
similar relative to the other forecasts. This clustering 
is caused by the similarity of the main forecast 
features in terms of approximate location, total area, 
aspect ratio, and orientation angle. These attributes 
are also more likely to influence the subjective 
interpretation of severe weather forecasters interested 

in convective mode and organization than a 
Euclidean-based distance.  

 
Another reason that OTS is preferred over 

NED as a distance measure for this cluster analysis is 
that NED is very sensitive to the overall precipitation 
amount. For example, Figure 3 indicates that ARW 
N2 and NMM P1 are the two most similar forecasts on 
this case. However, these two forecasts actually have 
different looking storms in completely different 
locations (Fig. 4). These members simply have in 
common an overall lower amount of precipitation than 
the other forecasts which results in a small Euclidean 
distance between them. This is also related to a 
reduced impact of the double penalty.  

 
2.4 Binary vs. Fuzzy OTS 
 

Fuzzy OTS has two main advantages over 
binary OTS, both of which result from the lack of a 
matching threshold in the fuzzy context. 
 

The first advantage of fuzzy OTS, relative to 
binary OTS, is an increase in self-consistency of the 
distances among a large group of forecasts. Binary 
OTS does not change as large objects get 
incrementally less similar until the threshold is 
reached and a sudden large change in distance 
occurs. The result is that sometimes a large 
subjective difference between forecasts has little 
impact on binary OTS while other times a small 
subjective difference between forecasts has a very 
large impact on binary OTS. In contrast, fuzzy OTS 
changes continuously as forecasts get incrementally 
less similar. 

 
The second advantage of fuzzy OTS is that it 

is conceptually more robust since it can discriminate 
matches that are very good from matches that are not 
as good. In contrast, binary OTS will give 2 forecasts 
(A and B) an equal distance to a third forecast (C) if 
the same objects in A and B match the same objects 
in C. This is true even if the objects in A are 
subjectively much more similar to the objects in C 
than are the objects in B. This limitation of binary OTS 
cannot be avoided by raising the matching threshold 
because then the limitation would be that all 
unmatched objects are treated equally. 
 
3.  CLUSTER ANALYSIS OF COMPOSITE 
DENDROGRAMS 
 

Fuzzy OTS distance is used to examine 
systematic clustering of ensemble member forecasts 
of precipitation at forecast times of 3 and 24 hours, 
valid 03UTC and 00UTC respectively.  
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Figure 3:  Dendrogram resulting from clustering the forecasts of hourly accumulated precipitation 
valid at 00UTC 14 May 2009, using NED as the distance measure. Also shown are the raw 
forecasts from NMM CN, NMM C0 and ARW P1 members. 
 
 
 
 
 
 

 
 
Figure 4: Raw forecasts valid 00UTC 14 May 2009 from ARW N2 and NMM P1 members for 
comparison to Figure 3. 
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Figure 5: Dendrogram resulting from clustering the forecasts of hourly accumulated precipitation 
valid at 00UTC 14 May 2009, using fuzzy OTS as the distance measure. Also shown are the 
MODE objects from NMM CN and NMM C0 members  
 
 
 
 
 
 
 

  
Figure 6: Dendrograms composited over 26 days using fuzzy OTS as distance measure between hourly accumulated 
precipitation forecasts at (a) 3 hour lead time valid 03UTC and (b) 24 hour lead time valid 00UTC. Labels are defined 
in Table 1. 
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The systematic clustering is examined by 

defining a composite distance between members as 
the average normalized distance between those 
members over all cases. The normalized distance is 
defined as the distance minus the largest distance 
between any pair in each case, divided by the range 
of distances on that case.  

 
The composite dendrogram at 3hr lead time 

(valid 03UTC; Fig. 6a) shows that the primary 
distinction among members is based on the 
assimilation of radar and mesoscale data. The 
remaining members form two clusters according to 
WRF model dynamics while ARPS CN is included in 
the ARW cluster. These primary clusters of model 
dynamics contain sub-clusters that are entirely 
determined by the microphysics scheme for both 
ARW and NMM. 

 
The composite dendrogram at 24hr lead time 

(valid 00UTC; Fig 6b) also contains three primary 
clusters of members with common model dynamics 
(ARW, NMM and ARPS). The NMM cluster has two 
sub-clusters, one containing all the NMM members 
with MYJ PBL scheme and another containing all the 
NMM members with YSU PBL scheme. Unlike the 
NMM cluster, the ARW cluster does not have sub-
clusters with a common PBL scheme.   
 
4. POST-PROCESSING METHODS 
 
 Two methods of post-processing to provide 
calibrated probabilities for hourly accumulation 
exceeding 2.54 mm/hr (.1 in/hr) are described in this 
section and compared in the following section. 
 
4.1 NEIGHBORHOOD-BASED CALIBRATION 
 
 The first post-processing method obtains 
forecast probability from the percentage of grid points 
exceeding the accumulation threshold within a 
neighborhood (radius of 48km) of a point, averaged 
over all members. Over-forecasting is evident in such 
forecasts in a typical reliabilitiy diagram (Fig. 7a) 
showing the observed frequency corresponding to 
each forecast probability. 
 
 The neighborhood method is calibrated by 
excluding the day of the forecast from the reliability 
diagram, applying a Gaussian, and using the result to 
convert forecast probability to a calibrated probability 
(Fig 7b). No calibration is applied to very high forecast 
probabilities that rarely, if ever, occurred during the 
training period. 

 

 

 
Figure 7: Reliability Diagram of a representative 
ensemble (a subensemble of 8 ARW members) (a) 
before and (b) after applying gaussian smoothing. 
 
4.2 LOGISTIC REGRESSION 
 
 The second post-processing method applies 
logistic regression to the ensemble mean hourly 
accumulated precipitation. Following Hamill et al 
(2004), forecasts at each grid point from each day 
(except the day of the forecast) are used to fit values 
of 
�

0 and 
�

1 to the following equation: 

 
0 1

1
1
1 exp( * )

P
xβ β

= −
+ +  
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where P is the probability of exceeding the threshold 
and x is the predictor variable (i.e., ensemble mean 
hourly accumulated precipitation). As suggested by 
Hamill et al (2004) we actually use x’ = x0.25 in this 
equation which we also find to slightly improve the 
performance. A typical curve of P vs. x’ is shown in 
Fig. 8a and the same curve in terms of P vs. x is 
shown in Fig. 8b for direct comparison to Fig. 7. 
Additional predictors had little impact on our initial 
results so only the one predictor variable is used and 
discussed here. 

 

 

Figure 8: Representative example of fitted Logistic 
Regression Function at 24 hour lead time. Forecast 
probability is on vertical axis and horizontal axis is (a) 
ensemble mean accumulation raised to ¼ power and 
(b) ensemble mean accumulation. 

 5. PROBABILISTIC VERIFICATION 
  
 This section presents a verification of 
probabilistic forecasts for hourly accumulated 
precipitation exceeding 2.54 mm/hr (.1 in/hr). The first 
subsection uses 8 member sub-ensembles to 
compare the skill of these perturbations. The second 
subsection compares the two methods of post-
processing, described in section 4. Both subsections 
use the Brier Score which allows the contributions to 
skill from reliability and resolution to be decomposed 
(Stephenson et al 2008, their eqn. 7). For calculation 
of skill score a reference forecast is defined 
separately for each grid point as the observed 
frequency of occurrence, over 3 spring seasons, on 
all days except the day of the forecast, at the same 
lead time.  
 

 
Figure 9: Brier Skill Score as a function of forecast 
lead time for uncalibrated neighborhood ensemble 
probability forecasts for (a) model-based sub-
ensembles and (b) PBL scheme-based sub-
ensembles. 
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Figure 10: Brier Skill Score as a function of forecast 
lead time for calibrated neighborhood ensemble 
probability forecasts for (a) model-based sub-
ensembles and (b) PBL scheme-based sub-
ensembles. 
 
5.1 IMPACT OF CLUSTERS ON SKILL 
 

The cluster analysis showed model and PBL 
scheme perturbations to be most effective at creating 
forecast diversity so 8 member sub-ensembles are 
defined as follows. ARW, NMM, and MODEL sub-
ensembles have 8 ARW members, 8 NMM members, 
and 4 of each chosen randomly each day, 
respectively. Likewise, MYJ, YSU and PBL sub-
ensembles have 8 MYJ members, 8 YSU, and 4 of 
each chosen randomly each day, respectively.  

 

The Brier Skill Score for each of these 
uncalibrated ensembles is shown in Fig. 9. Red dots 
indicate a statistically significant difference between 
ARW and NMM subensembles or YSU and MYJ 
subensembles at the 95% (two dots) and 90% (one 
dot) confidence level. Statistical Significance is 
assessed using the paired Wilcoxan Signed Rank 
Test on the daily Brier Scores (Hamill 1999). Fig. 9 
shows that ARW tends to be significantly more skillful 
than NMM and MYJ tends to be more skillful than 
YSU (although the latter difference is generally not 
significant). 

 
After calibration the skill of ARW and NMM 

sub-ensembles becomes nearly indistinguishable, 
statistically (Fig. 10). This is because the main 
difference between the uncalibrated sub-ensembles 
was due to much poorer reliability component for 
NMM than ARW (not shown) caused by larger 
positive bias in NMM members than ARW members.  
The calibration makes both sub-ensembles very 
reliable. In contrast, MYJ still tends to be more skillfull 
than YSU after the calibration although the difference 
is smaller than before calibration (Fig. 10). This is 
because the uncalibrated YSU sub-ensemble is 
worse than MYJ in terms of both reliability and 
resolution components of the brier score (not shown). 
Since calibration has negligible impact on the 
resolution component, the poorer resolution of YSU is 
reflected in the lower skill of the calibrated forecasts. 
 
5.2 IMPACT OF CALIBRATION ON SKILL 
 

In order to compare the two calibration 
methods, the Brier Skill Score and Brier Score 
components are examined for the full 20 member 
ensemble (Fig. 11), using the Neighborhood 
probability method, both before and after calibration, 
Logistic Regression probabilities, and the traditional 
percentage of ensemble members exceeding the 
threshold at a point. 

Fig. 11 shows that skill scores are highest for 
the neighborhood-based calibration. The reliability 
component is better (i.e., lower) for both calibrated 
methods than the uncalibrated methods (Fig. 11b).  
The resolution component is best (i.e., highest) for the 
neighborhood-based methods, regardless of 
calibration (Fig. 11c). 

In summary, both types of calibration result 
in increased skill due to better reliability while the 
neighborhood-based post-processing also shows a 
further improvement in resolution. 
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Figure 11: Verification of probabilistic forecasts using percentage of ensemble members exceeding .1in/hr at a point 
(traditional; dashed black), uncalibrated Neighborhood Ensemble Probability (NEP; solid black), Logistic Regression 
(LR; blue) and calibrated NEP (green) using (a) Brier Skill Score, (b) Reliability component of Brier Score and (c) 
Resolution component of Brier Score. 
 
 
6. DISCUSSION OF ENSEMBLE DESIGN AND 
VERIFICATION  
 
 This study demonstrates an object-oriented 
distance measure can be applied to Hierarchical 
Cluster Analysis to obtain subjectively more 
reasonable clusters than traditional methods. A 
subsequent cluster analysis revealed that model and 
PBL scheme perturbations are particularly important 
to emphasize when designing an ensemble forecast 
system because of their large impact on clustering.  
 
 Probabilistic forecast verification revealed an 
ensemble based on NMM model is less reliable than 
an ensemble based on ARW model but the difference 
is reduced through a simple calibration procedure. 
Calibration using Neighborhood Method and Logistic 
Regression both improved reliability while only the 
Neighborhood Method was also able to improve 
resolution. 
 

In order to determine if one convection-
allowing ensemble design is better than another, 
appropriate methods of verification are needed. There 
are two concerns that cast doubt on the 
appropriateness of verification metrics such as those 
in the previous section for convection-allowing 
forecasts. First, point-wise metrics were shown to be 
inadequate for cluster analysis so they also may not 
be ideal for verification purposes.  Second, the storm 
scale details that are one of the justifications of the 
expense of using a convection-allowing resolution are 
often lost in the process of creating probabilistic 
forecasts.  
 

Figure 12 shows the energy decomposition 
of deterministic forecasts, traditional ensemble 
probability, and observations using a Haar Wavelet 
Filter (see Casati and Wilson 2007). While 
deterministic forecasts from individual members have 
somewhat realistic energy spectra the probabilistic 
forecasts (all methods considered in this study show a 
similar spectrum) have most of the energy at much 
larger scales than what is observed (Fig. 12). Since 
increased realism is one of the benefits of convection 
allowing ensembles more work is clearly needed to 
determine the best ways to obtain both skillfull and 
realistic calibrated probabilities. 
 

 
Figure 12: Haar Wavelet decomposition of energy by 
spatial scale averaged over 2009 season for 
deterministic forecasts of all ensemble members 
(black line), observed precipitation (green line) and 
traditional ensemble probability forecasts (blue line) 
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 A potential alternative verification method 
was also examined using the MODE algorithm, and is 
now discussed. For this method the ARW CN 
member is arbitrarily selected as the “best guess” or 
control forecast. The remaining members are used to 
assign a probability (of being matched by an observed 
object) to each object in the control forecast according 
to the percentage of members that have a matching 
forecast object. The verification “event” is the 
occurrence of an observed object matching each 
control forecast object. Unlike all previous methods in 
this study, 6-hourly accumulations are used here as a 
demonstration of the method. 
 
 The reliability diagram and ROC curve 
corresponding to this verification method are shown in 
Fig. 13. A calibration was also approximated from Fig. 
13 as a constant factor of 0.7 multiplied by the 
uncalibrated forecast. Verification statistics are shown 
in Table 3. Even before calibration there is positive 
skill that is improved even further by calibration which 
shows that the ensemble can skillfully forecast the 
probability of an object begin “matched” by the 
observations. 

 
Figure 13: Reliability Diagram for probabilistic 
forecasts of an observed object “matching” control 
member forecast objects. 
 
 BSS Rel. Res. samples ROCarea 
Uncal. .077 .02 .03 681 .786 
Calibr. .176 .005 .03 681 .786 
Table 3: Brier Skill Score, Reliability Component of 
Brier Score, Resolution Component of Brier Score, 
number of objects (samples) forecast by control 
member, and ROC area for both calibrated and 
uncalibrated probabilistic forecasts of an observed 
object matching control member forecast objects 
 

It is important to note that a different interest map 
than that used for the cluster analysis was found to 
subjectively give the most reasonable results. 
However, the statistics in Table 3 are very sensitive to 
the choice of an interest map used to determine if 
objects are “matching” or not. Even if a suitable 
interest map is identified, a “matching” object is 
difficult to translate into an operationally useful 
forecast, although forecasters may still find such 
information useful. 
 
 In order to allow for verification that is 
consistent with commonly used methods we also tried 
using the above approach only to assign probabilities 
but a point-wise verification. Here the verification 
event is an observed 6.5mm accumulation (Table 4). 
The advantage of this approach is that it allows storm-
scale detail to be retained while providing probabilistic 
forecasts for the same event as more traditional 
methods. The disadvantages include the lack of 
resolution with this method and the fact that, like the 
previous method, scenarios only forecast by members 
other than the control member are not reflected in the 
control forecast.  
 
 BSS Rel. Res. Unc. 
6.5mm/hr -.086 .0008 .00003 .0081 
6.5mm/6hr -.216 .0146 .00265 .04779 
Table 4: Brier Skill Score and Brier Score components 
for hourly and 6hourly probabilistic forecasts of 
exceeding 6.5mm accumulation at a grid point, using 
objects to determine probabilities. 
 

These alternative verification methods are 
not proposed as replacements for traditional methods 
at convection-allowing resolution. Instead, they are 
meant to illustrate the challenges when trying to 
objectively evaluate such forecasts.  
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