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1.   INTRODUCTION INTO THE PROBLEM 

 
During the last decade a new field of 

atmospheric modelling - the chemical weather 
forecasting (CWF) - is quickly developing and 
growing. However, in most of the current studies 
this field is considered in a simplified concept of 
the off-line running of chemical transport models 
with operational numerical weather prediction 
(NWP) data as a driver (Lawrence at al., 2005). A 
new concept and methodology considering the 
“chemical weather” as two-way interacting 
nonlinear meteorological and chemical/aerosol 
dynamics processes of the atmosphere have been 
suggested (Grell et al., 2005; Baklanov and 
Korsholm, 2007; Baklanov, 2010; Grell and 
Baklanov, 2011). The on-line integration of meso-
meteorological models (MetM) and atmospheric 
aerosol and atmospheric chemical transport (ACT) 
models gives a possibility to utilize all 
meteorological 3D fields in the ACT model at each 
time step and to consider nonlinear feedbacks of 
air pollution (e.g. atmospheric aerosols) on 
meteorological processes / climate forcing and 
then on the chemical composition of the 
atmosphere. This very promising way for future 
atmospheric modelling systems (as a part of and a 
step toward the Earth System Modelling, ESM) will 
lead to a new generation of models for 
meteorological, environmental, chemical and bio-
chemical weather forecasting. The methodology 
on how to realize the suggested integrated 
concept is demonstrated on an example of the 
European Enviro-HIRLAM (Environment – HIgh 
Resolution Limited Area Model) integrated 
modeling system (Baklanov et al., 2008a; 
Korsholm, 2009). European experience in the on-
line integrated meteorology-chemistry modelling, 
importance of different chains of feedback 
mechanisms for meteorological and atmospheric 
chemistry processes and their strong 
nonlinearities are also discussed.  
 
*Corresponding author address: Alexander Baklanov, 
Research Department, Danish Meteorological Institute, 
Lyngbyvej 100, DK-2100 Copenhagen, Denmark; e-mail: 
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2. OVERVIEW OF EUROPEAN EXPERIENCE 
 
2.1 Overview of European on-line CWF models 
 

Although most of the European operational 
CWF systems are currently fully off-line (Kukkonen 
et al., 2011), several modelling systems have also 
some on-line capabilities. Within the 18 CWF 
modelling systems considered there, only two 
(Enviro-HIRLAM and WRF-Chem) are realised as 
on-line integrated models with two-way 
interactions. The COST-728 model overview 
(COST-WMO, 2007) shows a surprisingly large 
number (at least 10) of on-line coupled MetM and 
ACT model systems already being used in 
Europe. This list of on-line models in Europe is 
continuously growing. Table 1 summarizes current 
list and characteristics of the on-line coupled or 
on-line access MetM and ACT models developed 
or applied in Europe.  In 2007 there were only two 
models considered indirect aerosol feedbacks, 
nowadays, there are several models considering 
direct and indirect aerosol feedbacks.   
 
However, these developments are realized on 
different platforms separately by local/national 
research groups in different countries, and there is 
no any coordination of these efforts within Europe 
(compared with USA, for example). Historically, 
Europe has not adopted a community approach to 
modelling, and this has led to a large number of 
model development programmers, usually carried 
out independently. However, a strategic 
framework would definitely help to provide a 
common goal and direction to European research 
in this field while having various multiple models. 
 
2.2 Main chemistry feedbacks on meteorology 
 
Chemical species influencing weather and 
atmospheric processes include greenhouse gases 
(GHGs) which warm near-surface air and aerosols 
such as sea salt, dust, primary and secondary 
particles of anthropogenic and natural origin. 
Moreover, some aerosol particle components 
(black carbon, iron, aluminium, polycyclic and
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Table 1.  On-line coupled or on-line access Atmospheric Chemistry-Meteorology models developed or applied in 
Europe (EuMetChem, 2010).  

 
Model/Country/References On-line coupled gas phase 

chemistry and aerosol 
Feedback of 
pollutants to 
meteorology 

Applications Scale 

BOLCHEM, Italy 
http://bolchem.isac.cnr.it/ 

SAPRC90 gas phase chemistry, 
AERO3 aerosol module  

Direct aerosol 
effect  on 
radiation 

CWF; climate; 
Episodes 

Conti-
nental to 
regional 

COSMO-ART, Germany 
Vogel et al., 2009 

Extended RADM gas phase 
chemistry, modal aerosol, soot, 
pollen, mineral dust 

Direct aerosol 
effect on 
radiation 

Episodes Conti-
nental to 
regional 

COSMO-LM-MUSCAT, 
Germany 
Wolke et al., 2004; Heinold et 
al., 2007 

RACM gas phase chemistry, 2 
modal aerosol models, mineral 
dust module 

Direct aerosol 
effect on 
radiation for 
mineral dust 

Episodes Conti-
nental to 
regional 

ECHAM5/6-HAMMOZ, 
Germany 
Pozzoli et al., 2008 

MOZART gas phase chemistry, 
HAM aerosol scheme 

Direct aerosol 
effect, indirect 
aerosol effect 

Episodes, long 
term 

Global 

Enviro-HIRLAM, Denmark and 
HIRLAM countries 
Baklanov et al, 2008a; Korsholm 
et al., 2008, Korsholm, 2009 

NWP gas phase chemistry, 
modal and sectional  aerosol 
modules, liquid phase chemistry 

Direct and 
indirect aerosol 
effects 

Episodes,  
chemical 
weather  
forecast 

Hemis-
pheric to 
regional 
and urban 

IFS-MOZART (MACC/ ECMWF)  
Flemming et al., 2009, Kinnison 
et al., 2007,  http://www.gmes-
atmosphere.eu 

MOZART gas phase chemistry 
with updates to JPL-06, MACC 
aerosol scheme 

Direct aerosol 
effect, indirect 
aerosol effect 

Forecasts, 
Reanalysis, 
Episodes 

Global 

MCCM, Germany 
Grell et al., 2000; Forkel & 
Knoche, 2006 

RADM, RACM or RACM-MIM 
with modal aerosol module 

Direct aerosol 
effect 

Episodes, 
climate-
chemistry 

Regional 

MC2-AQ, Canada (use in Polen)  
Kaminski et al., 2007 

ADOM gas phase chemistry none, but 
possible 

Episodes Regional 
to urban 

Meso-NH, France 
http://mesonh.aero.obs-
mip.fr/mesonh/ 

RACM or ReLACS gas phase 
chemistry, modal aerosol module 

Direct aerosol 
effect 

Episodes Continent
al to 
regional  

MESSy(-ECHAM5) , Germany 
Jöckel et al., 2005;  
http://www.messy-interface.org/ 

Various gas phase chemistry 
modules, modal aerosol module 

Direct aerosol 
effect, indirect 
aerosol effect 

Episodes, long 
term 

Global 

MetUM (Met Office Unified 
Model), UK 
Morgernstern et al, 2009; O’ 
Connor et al 2010 

2 tropospheric chemistry 
schemes, 1 stratospheric 
chemistry scheme. 2 alternative 
aerosol schemes. 

Direct & indirect 
aerosol effects, 
radiative impacts 
of N2O, O3, CH4 

Episodes,  
CWF, climate-
chem. studies, 
poll. transport 

Regional 
to Global 

M-SYS (on-line version), 
Germany 
von Salzen & Schlünzen, 1999 

RADM Gas phase chemistry, 
sectional aerosol module  

none, but 
possible 

Episodes Regional 
to local 

RegCM-Chem, Italy 
Zakey et al., 2006, Solmon et 
al., 2006 
 

Updated GEOS-CHEM RACM, 
CBMZ, uni-modal aerosol, 
sectional mineral dust, sulfur 
chemistry 

Direct aerosol 
effect 

Climate-
chemistry 

Continent
al to 
regional 

RAMS/ICLAMS, USA/Greece 
http://forecast.uoa.gr/ICLAMS/in
dex.php, Kallos et al. 2009, 
Solomos et al. 2011 

On-line photolysis rates. Coupled 
SAPRC99 gas phase, modal 
aerosol, ISORROPIA equilibrium 
and SOA, cloud chemistry.  

Direct and 
indirect aerosol 
effect 

Episodes, 
CWF, meteo-
chemistry 
interactions 

Continent
al to urban 

WRF/Chem, US (used in UK, 
Spain, etc.) 
Grell et al., 2005; Fast et al., 
2006, refs see in Zhang, 2008 

RADM, RACM, RACM-MIM with 
modal aerosol module or CBM-Z 
with sectional aerosol module, 
liquid phase chemistry 

Direct aerosol 
effect, indirect 
aerosol effect  

Episodes,  
CWF, 
climate-
chemistry 

Continent
al to 
regional 

WRF-CMAQ Coupled System, 
USA (used in UK) 
Pleim et al., 2008; Mathur et al., 
2010 

Gas-phase mechanisms: CB05, 
SAPRC-99;  Modal aerosols 
based on the AERO5 CMAQ 
module 

Direct aerosol 
effects on 
radiation and 
photolysis 

Episodes to 
annual  

Urban to 
Hemisphe
ric 
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nitrated aromatic compounds) warm the air by 
absorbing solar and thermal-IR radiation, while 
others (water, sulphate, nitrate, most of organic 
compounds) cool the air by back-scattering 
incident short-wave radiation to space. Therefore, 
it is necessary to highlight that those effects of 
aerosols and other chemical species on 
meteorological parameters have many different 
pathways, e.g.:   
• Direct effect decreases solar/ thermal-IR 

radiation and visibility; 
- warming: GHGs, BC, OC, Fe, Al, polycyclic/ 

nitrated aromatic compounds 
- cooling: water, sulfate, nitrate, most OC 

(scattering, absorption, refraction, etc.) 
• Semi-direct effects  affect atmospheric boundary 

layer (ABL) meteorology and photochemistry; 
• First indirect effect influences cloud drop size, 

number, reflectivity, and optical depth via CCN; 
• Second indirect effect  influences cloud liquid 

water content, lifetime, and precipitation; 
• Chain of all aerosol effects (nonlinear 

interactions).  
The above mentioned effects have to be prioritized 
and considered in on-line coupled models for 
different space and time scales. High-resolution 
on-line integrated models with a detailed 
description of the ABL structure are necessary to 
simulate such chains of two-way feedback 
mechanisms.  
   
2.3 EU COST Action ES1004 EuMetChem 
 
 New EU COST Action ES1004 EuMetChem:  
’European framework for on-line integrated air 
quality and meteorology modelling’ (2011-2015) 
was recently accepted (web-site: 
http://w3.cost.eu/index.php?id=206&action_numbe
r=ES1004). It will focus on a new generation of on-
line integrated ACT and Meteorology (Numerical 
Weather Prediction and Climate, NWP-CLIM) 
modelling with two-way interactions between 
different atmospheric processes including 
chemistry (both gases and aerosols), clouds, 
radiation, boundary layer, emissions, meteorology 
and climate. The overall objective of the Action is 
to set up a multi-disciplinary forum for on-line 
integrated air quality/meteorology modelling and 
elaboration of the European strategy for a new-
generation integrated ACT/NWP-CLIM modelling 
capability/ framework. The main topics are:  
1. On-line versus off-line modelling: advantages 
and disadvantages,  
2. Analysis of priorities focusing on interaction/ 
feedback mechanisms,  

3. Chemical data assimilation in integrated 
models,  
4. European strategy/ framework/ centre for on-
line integrated modelling,  
5. Evaluation and validation framework of on-line 
ACT/NWP-CLIM models,  
6. Collection of suitable datasets for model 
development, testing and evaluation.  
At least, two application areas of the integrated 
modelling are aimed to be considered:  
(i) improved NWP and CWF with short-term 
feedbacks of aerosols and chemistry on 
meteorological variables, and  
(ii) two-way interactions between atmospheric 
pollution/ composition and climate variability/ 
change.  
The framework will consist of 4 Working Groups 
namely: 1) Strategy and framework for on-line 
integrated modelling; 2) Interactions, 
parameterisations and feedback mechanisms; 3) 
Chemical data assimilation in integrated models; 
and finally 4) Evaluation, validation, and 
applications.  
Establishment of such a European framework 
(involving also key American experts) will enable 
to develop world class capabilities in integrated 
ACT/NWP-CLIM modelling systems, including 
research, forecasting and education. 
More than 20 teams from 14 European countries, 
ECMWF, WMO, US EPA, NOAA, etc. are already 
involved into the Action. 
The COST Action initiated also a new session 
AS4.25: ‘Integrated physical and chemical weather 
modelling with two-way interactions’ at the EGU 
Vienna, Austria, 3-8 April 2011 (see: 
http://meetingorganizer.copernicus.org/EGU2011/
session/7498). 
 
 
3. ENVIRO-HIRLAM ON-LINE INTEGRATED 

ACT-NWP MODELLING SYSTEM 
 
3.1 Enviro-HIRLAM on-line integrated model 
with two-way interactions 
 
 The Enviro-HIRLAM is an on-line coupled 
numerical weather prediction and atmospheric 
chemical transport modelling system for research 
and forecasting of joint meteorological and 
chemical weather (Figure 1). Originally this 
integrated modelling system was developed by 
DMI (Chenevez et al., 2004; Baklanov et al., 2004, 
2008a; Korsholm et al., 2008, Korsholm, 2009) 
and further with other collaborators, and now it is 
included by the European HIRLAM consortium as 
a baseline system in the HIRLAM Chemical 



 4

Branch (https://hirlam.org/trac/wiki). The model 
development was initiated at DMI more than 10 
years ago. It was the first meso-scale on-line 
coupled model in Europe that considers two-way 
feedbacks between meteorology and 
chemistry/aerosols. 
The first version was based on the DMI-HIRLAM 
NWP model with fully on-line integrated pollutant 
transport, dispersion and deposition (Chenevez et 
al., 2004), chemical and aerosol (only for sulfur 
particles) dynamics models (Gross and Baklanov, 
2004) and indirect effects of aerosols (Korsholm et 
al., 2008; Korsholm, 2009). For urban areas, 
where most of population is concentrated, the 
meteorological part was improved by 
implementation of urban sublayer modules and 
parameterisations (Baklanov et al., 2008b; Mahura 
et al., 2007; 2009).  
The current version of Enviro-HIRLAM is based on 
the reference HIRLAM version 7.2 with new 
developed more effective chemical lumped 
scheme, multi-compound modal approach aerosol 
dynamics modules, aerosol feedbacks on radiation 
(direct and semi-direct effects) and on cloud 
microphysics (first and second indirect effects). 
The GasChem module consists of:  
• The condensed CBM gas-phase mechanism 

based on CBMZ (Zaveri et al., 1999), which is 
simplified lumped structure photochemical 
mechanism and  most fast chemical solver; the 
radical balance solution technique (Sillman, 
1991); the chemical module has 120 reactions 
and 23 advected species.   

• Photolysis rates are setup as a function of 
altitude, solar zenith angle, cloud optical depth; 
J-values were calculated based on Madronich 
algorithm 

The AeroChem module consists of:   
• Thermodynamic equilibrium module HETV 

(Makar et al., 2003), 
• Simple aqueous-phase module,   
• Aerosol dynamics module M7 (Vignati et al., 

2004).  
These modules in the latest version of the model 
are currently under the testing and validation 
stage.  
 
3.2 Aerosol feedback parameterisations in 

Enviro-HIRLAM 
 
 Enviro-HIRLAM contains parameterisations of 
the direct, semi-direct, first and second indirect 
effects of aerosols. Direct and semi-direct effects 
are realised by modification of Savijarvi radiation 
scheme (Savijärvi, 1990) with implementation of a  

 
 
Figure 1. General scheme of international collaboration, 

research and development, technical support 
and science education for the on-line 
integrated Enviro-HIRLAM: ‘Environment – 
HIgh Resolution Limited Area Model’. 

 
new fast analytical SW and LW (2-stream 
approximation) transmittances, reflectances and 
absorptances (Nielsen et al., 2011). Simplified 
analytical parametrization for inclusion of direct 
aerosol effect on short-wave radiation was 
developed based on Koepke et al. (1997) using 
the DISORT model and considering the full 
spectral radiance field.  
The species include BC (soot), minerals (nucleus, 
accumulation, coarse and transported modes), 
sulphuric acid, sea salt (accumulation and coarse 
modes), "water soluble", and "water insoluble“.  
Condensation, evaporation and autoconversion in 
warm clouds are considered to be fast relative to 
the model time step and are not treated 
prognostically.  
The bulk convection and cloud microphysics 
scheme STRACO (Sass, 2002) and the 
autoconversion scheme by Rasch and 
Kristjansson (1998) form the basis of the 
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parameterisation of the second aerosol indirect 
effect. 
As aerosols are convected they may activate and 
contribute to the cloud droplet number 
concentration, thereby, decreasing the cloud 
droplet effective radius affecting autoconversion of 
warm cloud droplets into rain drops.  
Cloud radiation interactions are based on the 
cloud droplet effective radius (Wyser et al., 1998).  
As it decreases warm cloud droplet size and 
reflects more incoming short wave radiation, 
thereby, we parameterise the first aerosol indirect 
effect.  
A clean background cloud droplet number 
concentration is assumed and the anthropogenic 
contribution is calculated via the aerosol scheme.   
 
3.3 Model validation and application 
 

Possible applications of the Enviro-HIRLAM 
for meteorological, environmental and climate 
forecasting and assessment studies are 
highlighted in Figure 1.  
Validation and sensitivity tests (on examples of 
case studies and short-time episodes) of the on-
line vs. off-line integrated versions of Enviro-
HIRLAM (Korsholm et al., 2008) showed that the 
on-line coupling improved the results. Different 
parts of the model were evaluated vs. the ETEX-1 
experiment, Chernobyl accident and Paris 
campaigns (summer 2009) datasets and showed 
that the model had performed reasonably 
(Korsholm, 2009; Korsholm et al., 2009; 
MEGAPOLI, 20010). 
On-line vs. off-line coupled simulations for the 
ETEX-1 release (Korsholm et al., 2009) showed 
that the off-line coupling interval increase leads to 
considerable error and a false peak (not found in 
the observations), which almost disappears in the 
on-line version that resolves meso-scale 
influences during atmospheric transport and plume 
development. 
The effects of urban aerosols on the urban 
boundary layer height, can be comparable with the 
effects of the urban heat island (Δh is up to 100–
200m for stable boundary layer) (Baklanov et al., 
2008a). Current studies (Korsholm et al., in 
MEGAPOLI, 2010) of megacities effects on the 
meteorology/climate and atmospheric composition 
showed that aerosol feedbacks through the first 
and second indirect effect induce considerable 
changes in meteorological fields and large 
changes in chemical composition, in particular 
NO2, in a case of convective clouds and little 
precipitation. The monthly averaged changes in 
surface temperature due to aerosol indirect effects 

of primary aerosol emissions in Western Europe 
were analyzed and validated vs. measurement 
data. It was found that a monthly averaged signal 
(difference between runs with and without the 
indirect effects) in surface temperature is about 
0.5°C (Figure 2). 
 

 
 
Figure 2. Averaged monthly (June 2009) difference in 

surface temperature Ts (°C) for the Enviro-
HIRLAM runs with and without aerosol indirect 
effects (MEGAPOLI, 2010). 

 
 
4. SUMMARY  
 
• Suggested concept - chemical weather as two-

way interacted meteorological weather and 
chemical composition of the atmosphere - is 
realised in the new COST Action ES1004 
EuMetChem. 

 
• On-line integration of MetMs and ACT models 

enables: 
 utilisation of all meteorological 3D fields in ACT 
models at each time step;  
 consideration of feedbacks of air pollution on 
meteo-processes and climate forcing.  

 
• New generation of integrated models - not only 

for CWF, but also for climate change modelling, 
NWP (e.g., in urban areas, severe events, etc.), 
air quality and mitigations, long-term 
assessment of chemical composition, etc.  

 
• Main advantages of on-line coupling:  

 only one grid for MetM and ACT models, no 
interpolation in space and time;  
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 physical parameterizations are the same, no 
inconsistencies;  
 all 3D meteorological variables are available at 
each time step;  
 no restriction in variability of meteorological 
fields;  
 possibility to consider two-way feedback 
mechanisms;  
 does not need meteo- pre/ post-processors.  

 
• Feedback mechanisms can be important 

(supported by simulation results) in CWF 
modelling and quantifying direct and indirect 
effects of aerosols (and probably GHGs). 

• Indirect aerosol feedbacks (based on the Paris 
case study): sensitivity of meteorology and 
chemistry, strong non-linearity, e.g. indirect 
effects induce large changes in NO2. 
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