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Abstract

Two-component horizontal motion vectors are de-

rived through the cross-correlation of aerosol features

in sequences of near-horizontal scans collected by

the Raman-shifted Eye-safe Aerosol Lidar (REAL) at

the 2007 Canopy Horizontal Array Turbulence Study

(CHATS). Time-series comparisons of the velocity com-

ponents representative of square regions surrounding an

instrumented tower are compared with averaged sonic

anemometer data. Results from the current implemen-

tation of the algorithm show that more than 80% of

47,000 u-components from 10 s scan update periods and

500 m × 500 m blocks are within ± 1 m s−1 of the

corresponding time-averaged anemometer data. In gen-

eral, better agreement is found at night when the atmo-

sphere has lower turbulent kinetic energy (TKE). During

the day, when the atmosphere is unstable and turbulent,

the agreement becomes poorer—presumably the result

of a less uniform velocity field and the two very differ-

ent sampling and measurement methods. Distributions

of the velocity differences are shown as a function of

hour, TKE, strength of the peak of the cross-correlation

function (CCF), and signal-to-noise ratio (SNR) of the

raw backscatter data. It is shown that larger block ar-

eas, shorter time between scans, lower TKE, higher

CCF maximas, and stronger SNR contribute to improved

agreement. The results also reveal that the u-components

are in better agreement than the v-components. A reason

for this discrepancy is not known at the time of this writ-

ing.

1. INTRODUCTION

Remote measurements of the vector wind field in the

atmospheric boundary layer from ground-based loca-

tions on the order of kilometers away from the area of

interest are still needed in several applications. Examples

include wind resource assessments and monitoring near

established wind farms; determining the initial transport

and dispersion of hazardous materials (i.e. nuclear power
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and industrial chemical sites); wind shear and wake vor-

tex detection near airports; and micro-meteorological re-

search. Doppler lidars provide precise direct measure-

ments of only the radial component of motion. However,

in many of the above applications it is not practical to

collect 360◦ azimuth scans or assume horizontal homo-

geneity of the atmospheric boundary layer, or combine

radial measurements with numerical flow retrieval mod-

els, to derive two or more wind components from a single

Doppler lidar. The use of two Doppler lidars separated

by several kilometers can provide multiple wind com-

ponents over a common area, but this is likely to be a

prohibitively expensive solution in many cases. Instead,

a direct observation of two or more components of the

vector wind field is desired from scanning over a sector

with a single instrument. It is in this scenario that the

application of the cross-correlation technique to aerosol

backscatter lidar images may hold significant value.

The cross-correlation technique has been applied to

aerosol lidar data several times previously (Eloranta

et al., 1975; Sroga et al., 1980; Kunkel et al., 1980;

Sasano et al., 1982; Hooper and Eloranta, 1986; Kolev

et al., 1988; Schols and Eloranta, 1992; Piironen and

Eloranta, 1995; Mayor and Eloranta, 2001). Similar ap-

proaches were also applied to weather radar data (Rine-

hart and Garvey, 1978) and satellite images (Leese et al.,

1971). The most recent of these papers (Mayor and

Eloranta, 2001) showed two-component vector fields

with 250 m horizontal resolution over areas as large

as 60 km2. These vectors however were the result of

large amounts of temporal averaging of many cross-

correlation functions—up to 41 minutes in one case. Fur-

thermore, the lidar system used in Mayor and Eloranta

(2001) was not eye-safe and the scans were not coinci-

dent with any independent forms of wind measurement

for validation.

In the present work, no temporal averaging of the

cross-correlation functions was performed. The data was

collected with an eye-safe elastic lidar operating at 1.5-

microns wavelength (Mayor et al., 2007) and an instru-

mented tower penetrated the lidar scan plane. The re-

mote and in situ data were collected nearly continuously

over three months. The data set enables a comprehensive

evaluation of the technique.



2. EXPERIMENT

The data used in this study were collected between 14

March and 11 June 2007 in Dixon, California, during the

Canopy Horizontal Array Turbulence Study (CHATS)

(Patton et al., 2011). The REAL was located 1.61 km di-

rectly north of the NCAR Integrated Surface Flux Facil-

ity (ISFF) 30-m vertical tower (VT) (see Fig. 1). The VT

was located in a large orchard of 10 m tall walnut trees.

The VT supported 13 Campbell Scientific CSAT3 3-D

sonic anemometers of which 5 were located above the

tree tops at 12.5, 14, 18, 23, and 29 m above ground level

(AGL). The flat terrain in the vicinity of the experiment,

relatively short height and uniformity of the orchard, and

absence of additional obstructions between the lidar and

the orchard enabled nearly horizontal scans to be col-

lected over a wide area surrounding the orchard. The

lidar’s laser beam, which was projected from the REAL

at a height of 4.2 m AGL, passed just above the tops of

the trees in the orchard and intersected the VT at a height

of approximately 12.5 m AGL. The approximate eleva-

tion angle during the vast majority of PPI scans was 0.2o.

Assuming the terrain is perfectly flat, this corresponds to

a slope of 3.5 m per kilometer. Therefore, the PPI scans

were well within the roughness sublayer and the derived

motion vectors are essentially horizontal. The laser beam

at the point where it is emitted from the lidar is 6.6 cm in

diameter and has a half-angle divergence of 0.12 mrad.

This results in a beam diameter of 45 cm at 1.61 km range

and 1 m at 4 km range. The laser pulse duration was 6 ns

which corresponds to 1.8 m length.

The REAL operated at CHATS with a constant pulse

repetition frequency (PRF) of 10 Hz. However, all

other parameters controlling the scans were variables

that could be altered in order to optimize the scans to

achieve a variety of experimental objectives, some that

were weather dependent. The variables include the an-

gular scan rate, the angular range of a scan, and the se-

quence of scan types to be performed. In summary, a

large number (approximately 200,000) of the PPI scans

collected were intended to reveal a broader view of the

experimental area. These are called “wide” and ranged

from approximately 150o to 210o azimuth and were per-

formed at a rate of 4o s−1. Another large percentage of

the PPI scans (approximately 75,000) were termed “nar-

row” and were intended to probe the fine-scale structure

and motion of the atmosphere in the immediate vicinity

of the tower. The narrow scans ranged from 175o to 185o

azimuth.

At an azimuthal scan rate of 4o s−1, and a PRF of 10

Hz, the distance between laser pulses in the east-west di-

rection at the range of the VT was 11 m. The backscatter

signal digitization rate was 100 million samples per sec-

ond corresponding to a point every 1.5 m in range. As a
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Figure 1: Diagram of the experimental area. The shaded

regions from 150o – 210o and 175o – 185o azimuth rep-

resent the areas covered by “wide” and “narrow” PPI

scans, respectively. The tower was located 1.61 km di-

rectly south of the lidar. The squares centered on the

tower represent the regions extracted from the gridded

scan data that were used to compute motion vectors via

the cross-correlation technique.

result of this pulse rate, scan speed, and digitization rate,

the number of data points in the native spherical coordi-

nate system of the lidar falling into blocks that are 250

m × 250 m, 500 m × 500 m, 750 m × 750 m, and 1

km × 1 km, and centered on the VT are 3692, 14885,

33650, and 60222, respectively. After interpolation to

a Cartesian grid with spacing of 10 m in both east-west

and north-south dimensions, the number of points in the

blocks are 625, 2500, 5625, and 10000, respectively.

The VT intersected the 0.2 degree elevation PPI scan

surface at about 12.5 m AGL (see Fig. 2). However,

a hard target reflection from the tower does not always

appear in the PPI images. This is because the beams

were separated by approximately 11 m at the range of

the tower during a 4o s−1 scan. The laser beam steering

unit operated independently of the 10 Hz transmitter and,

as a result, laser pulses were usually not projected at the

same azimuth angles from one scan to the next. The cen-

tral column of the tower was 32 cm wide. Guy wires 0.47

cm in diameter were attached to the tower at 4 heights on

the tower. Guy wires from 7.9 and 18.8 m AGL were

anchored into the ground 13.4 m from the tower base.

Guy wires 23.8 and 32.0 m AGL were anchored into the

ground 26.8 m from the base.
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Figure 2: Diagram showing the altitude, spacing, and size of REAL laser pulses with respect to the tree tops and the

vertical tower at CHATS. This diagram is an east-west cross section looking either towards or away from the lidar.

Laser pulses colored red are from the same scan at an azimuthal scan rate of 4o s−1 and spaced 11 m apart at this range

of 1.61 km from the lidar.

3. ALGORITHM

A program has been developed in Interactive Data

Language (IDL) to calculate the motion vectors using the

aerosol backscatter data and the cross-correlation tech-

nique. As a first step, the raw lidar returns, in their native

spherical coordinate system, are processed on a shot by

shot basis by calculating and subtracting the mean back-

ground from each waveform; multiplying the waveform

by the square of the range to remove the one-over-range-

squared dependence of the raw signal and converting to

decibels. Each return is low-pass and high-pass median

filtered to remove single point outliers and large scale

features such as the effects of attenuation and the in-

ability to normalize for shot-to-shot laser pulse energy

variations, respectively. For the results shown here, the

low-pass filter length was set to 7 points corresponding

to 10.5 m and the high-pass filter length was set to 333

points corresponding to 500 m.

After processing the returns from a scan as described

above, the data are interpolated to a Cartesian grid with

10 m grid-point spacing in both east-west and north-

south directions. This step is implemented by use of the

IDL polar surface.pro function. In addition to the pro-

cessed backscatter data, time and signal-to-noise ratio

(SNR) data are interpolated to Cartesian arrays so that

this information can easily be extracted over the exact

block regions that the correlation technique will be ap-

plied to. A temporal median is computed for all points

on the Cartesian grid. This is based on all of the PPI

scans contained in each raw data file that currently span

approximately 1 hour of time. A single raw data file typ-

ically contains dozens to hundreds of scans.

Next, subsets of the gridded data are extracted in

square regions corresponding to the 4 blocks shown in

Fig. 1. For this work, vectors were calculated from 250

m × 250 m, 500 m× 500 m, 750 m× 750 m, and 1 km×

1 km blocks to investigate the effect of block size. Blocks

of the same size and position and from pairs of con-

secutive scans are used to calculate each motion vector.

Histogram equalization is applied to each block (Schols

and Eloranta, 1992). Two-dimensional cross-correlation

functions (CCF) are computed using fast-Fourier trans-

forms and the Wiener-Khinchin theorem. The 9 × 9

points centered on the peak of the CCF are used to cal-

culate a bicubic natural nonsmoothing spline with 100

× 100 point resolution. The location of the peak of this

numerically fit function corresponds to the displacement

caused by the predominant motion within the block area

over two scans. The velocity is determined by dividing

the displacement by the time between scans. In addition

to the above, average lidar SNR and the average image

SNR of the block regions is computed for data analysis.

The current version of the program to calculate wind
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Figure 3: Visual depiction of how anemometer time series data was averaged for comparison with the vectors derived

from lidar scans. This example considers a series of four consecutive PPI scans that result in three vectors. The

anemometer data are averaged over the periods corresponding to when the lidar’s beam enters the block on the first

scan (positions 1, 5, and 9 in time) and exits the block on the subsequent scan (positions 6, 10 and 14 in time).

vectors from the lidar data neglected to incorporate im-

provements described by Piironen and Eloranta (1995).

Specifically, they show that fitting a Gaussian to the peak

of the CCF results in less random error than the bicubic

natural spline that was described by Schols and Eloranta

(1992). We are presently replacing the bicubic spline

with the Gaussian method and expect to have improved

results later this year.

4. DATA PROCESSING

The primary objective of this research is to deter-

mine the accuracy and reliability of the cross-correlation

method for remote determination of the 2-component

wind vector. Therefore, a reference wind measurement

is needed for comparison and the sonic anemometer data

from the VT at 12.5 m AGL provide this. However, the

sonic anemometer data are at 60 Hz and the nature of

the lidar and the sonic anemometer measurements are

very different. The lidar vectors are based on the drift of

macroscopic aerosol features over relatively large areas.

The sonic anemometer data are based on air motion at es-

sentially a point. The anemometer measurement is per-

formed 60 times per second while the cross-correlation

technique currently results in a measurement once every

10 to 30 s. Therefore, substantial time averaging of the

sonic anemometer data is required to make a comparison

with each lidar vector. Presently, we arbitrarily chose to

average the anemometer data over the time required for

the lidar to sweep across the block twice (see Fig. 3).

This choice may or may not be optimal. Further research

is required to determine optimal averaging of the sonic

anemometer data.

Agreement between the two forms of measurements

is likely to vary in space and time and depend on sev-

eral factors such as the presence of aerosol features in

the block and the amount of noise in the data. There-

fore, a secondary objective is to identify other variables

that can be extracted from the lidar data and are related

to the agreement between the motion vectors and the

anemometer data. Doing so is expected to enable the

development of a method to estimate the likelihood that

a derived vector is representative of what an anemome-

ter would measure in the region. Knowing this would

provide the ability to disregard noisy vectors in two-

dimensional flow fields. A third objective is to eluci-

date the dynamic atmospheric processes that may influ-

ence agreement of the two forms of wind measurements.

To gain insight on possible processes, turbulent kinetic

energy (TKE) and gradient Richardson number (GRN)



have been calculated from the in situ data. Therefore, for

each vector computed, the program also calculates and

records the maximum of the CCF, the mean SNR of the

raw lidar data in both blocks, the mean SNR of the im-

ages in the two blocks, the TKE, and the GRN. Results

of GRN are not presented in this paper.

5. Results

The author’s original hypothesis of this research was

that the correlation method would perform best during

the daytime when the surface layer tended to be ei-

ther neutral or unstable thereby promoting mixing and

aerosol inhomogeneities that advect with the mean hori-

zontal wind. A corollary hypothesis was that the correla-

tion method would fail at night when the surface layer

tends to become stable, the aerosol distribution more

stratified, and gravity waves are supported. Because

gravity waves are observed in the aerosol imagery, and

wave propagation may not equal the local wind speed

and direction, it was thought that waves would prevent

the method from performing well at night—especially

under weak wind conditions.

Results shown here demonstrate that the opposite is

true: the best agreement between the lidar-derived wind

components and averaged sonic anemometer data tends

to occur at night when the TKE is low. This can be seen

in time-series comparisons (Figs. 4 and 5) and in statis-

tical results (Figs. 6 through 11). It is also shown here

that the performance of the cross-correlation method is

related to the amplitude of the peak of the CCF (Figs. 12

and 13) and the SNR of the raw backscatter data (Figs. 14

and 15). This section is concluded with Fig. 16 that sum-

marizes the agreement as a function of both block size

and time between scans. For the results shown in Figs. 6

through 15, only vectors that resulted from 500 m × 500

m blocks with 17 s scan update times, and correspond-

ing averaged sonic anemometer data, were chosen. This

enabled a sample size of approximately 100,000 vector

comparisons.

5.1 21 March 2007: Weakly stable evening case

Fig. 4 shows time-series comparisons from the

evening of 21 March 2007 between 04:15 and 06:45

UTC. This 2.5 hour period occurred during the evening

from about sunset until 15 minutes before midnight when

the atmospheric surface layer was weakly stable (z/L sta-

bility parameter at 12.5 m AGL was +0.035) and the

winds were light (less than 2 m s−1 for the most part) and

variable. The lidar was programmed to repeat a sequence

of 40 consecutive PPI scans followed by 2 consecutive

RHI scans. The PPI scans ranged from 150◦ to 210◦ az-

imuth at a scan rate of 4◦ s−1. This resulted in one scan

every 17.3 s. For the results shown in Fig. 4, motion vec-

tors were calculated from pairs of 250 × 250 m blocks.

The top panel shows the u-components (east-west com-

ponents) and the bottom panel shows the v-components

(north-south components). Black points are from the li-

dar and red points are from the averaged 12.5 m AGL

sonic anemometer data. Time-lapse animations of the li-

dar backscatter images from this case show what appear

to be a substantial amount of gravity wave activity and

episodes of turbulence during this period.

5.2 26 April 2007: Unstable afternoon case

Fig. 5 shows time-series comparisons from the after-

noon of 26 April 2007 between 22:00 UTC on 26 April

and 01:00 UTC on 27 April 2007. The lidar was pro-

grammed to collect alternating RHI and PPI scans. This

resulted in one PPI scan (or one RHI scan) every 30 s.

The PPI scans were directed between 151◦ and 211◦ az-

imuth at a scan rate of 4◦ s−1. During this period, a

density current front passed over the experimental site at

23:25 UTC on 26 April (see Mayor (2011) for more in-

formation). The z/L stability parameter at 12.5 m height

ranged from –2.0 to –0.6 (strongly to moderately unsta-

ble) before the arrival of the front to –0.5 to –0.2 (mod-

erately to weakly unstable) after the passage of the front.

During the entire period, wind speeds remained below

approximately 4 m s−1. However, the wind direction

changed dramatically from 350◦ (N) before the front to

221◦ (SSW) after the front. These results show a lack of

correlation between the two forms of wind measurement

on the shortest time intervals. However, the abrupt near-

reversal of the v-component in both time-series demon-

strates that the mean flow is captured. The difference be-

tween this case and the former is attributed to the more

turbulent conditions of this case. In the next section, it

is shown how increased TKE results in less agreement

between the two measurements.

5.3 Statistical results

5.3.1 Agreement as a function of hour of day

To clarify whether the cross-correlation technique re-

sults in better agreement during the day or night, the dif-

ferences with anemometer data were binned according

to the hour of the day in which they occurred and 0.1 m

s−1 velocity-difference increments. Figs. 6 and 7 show

these distributions. The Ulidar −U sonic distributions all

show maxima in either the 0.0 or 0.1 m s−1 bins. The

Vlidar −V sonic distributions show maxima ranging from

–0.1 to 0.2 m s−1. The blue colored distributions are

from hours during the night. The violet colored distribu-

tions are from hours during the day. These results show



Figure 4: Comparison of u-component (top) and v-component (bottom) from sonic anemometer data (red points) and

the cross-correlation technique applied to the lidar data (black points) over a 2.5-hour time span on the evening of

21 March 2007. During this period the atmosphere was weakly stable and the winds were light and variable. Lidar

data points were calculated from 250 m × 250 m regions centered on the ISFF tower from pairs of frames at 17.3 s

intervals.

Figure 5: Comparison of u-component (top) and v-component (bottom) from sonic anemometer data (red points)

and the cross-correlation technique applied to the lidar data (black points) over a 3-hour time span on the afternoon

of 26–27 April 2007. During the middle of this period, a density current front passed over the experimental site

approximately reversing the wind direction from south to north (the v-component). Due to the collection of alternating

PPI and RHI scans, the PPI frames used to calculate the motion were spaced in time at 30 s intervals. The algorithm

used a 500 m × 500 m block centered around the tower supporting the sonic anemometer.



that the agreement between the lidar-derived and aver-

aged anemometer wind components is indeed better dur-

ing the night as the distributions from those hours are

narrower.

5.3.2 Agreement as a function of TKE

To explore the relationship between the agreements as

a function of turbulent kinetic energy (TKE), the differ-

ences were binned into TKE increments of 0.25 m2 s−2

and differences of 0.1 m s−1. The resulting distributions

are shown in Figs. 8 and 9. The narrowest distribution

(blue) corresponds to the lowest TKEs (0 – 0.25 m2 s−2)

while the broadest distribution (violet) correspond to the

highest TKEs (2.25 – 2.50 m2 s−2). Next, to confirm that

TKE tends to be low at night and high during the day,

distributionsof TKE were binned into 0.25 m2 s−2 and 1-

hour time intervals and shown in Figs. 10 and 11. These

results confirm that TKE does tend to be increased dur-

ing the day (broader distributions) and reduced (narrower

distribution) at night. Together, these findings support a

new hypothesis that the agreement between lidar-derived

wind components and averaged sonic anemometer wind

components is mostly related to the degree of uniformity

of the velocity field. During the night, static stability sup-

presses turbulence resulting in a more uniform velocity

field.

5.3.3 Agreement as a function of CCF maximum

Figs. 12 and 13 in this paper show how the agreement

between lidar-derived motion components and averaged

sonic anemometer data varies as a function of the maxi-

mum of the CCF. Clearly, the distributions narrow as the

CCF maximum increases. Note that of the 9 curves plot-

ted, the one corresponding to the 0.1 to 0.2 range con-

tains the most samples. Therefore, in the future, substan-

tial improvement to the velocity measurement capability

during a field campaign could be realized by simply pro-

gramming the lidar to avoid long periods between PPI

scans.

Why should the amplitude of the CCF peak be related

to the agreement of the two forms of measurements?

Fig. 22 of Mayor et al. (2003) shows how the peak of the

cross-correlation function decreases as the time between

scans increase. The decrease is due to the deformation

of aerosol features by small-scale turbulence. (If the fea-

tures did not change shape over time, the peak of the

CCF would remain constant at 1.) One possible reason

is that by changing shape, there is increased possibility

that the maximum of the cross-correlation will not occur

precisely at the location of displacement due to the mean

wind but instead a nearby location on the CCF.

5.3.4 Agreement as a function of SNR

Raw SNR is computed by dividing each element of

the background-subtracted backscatter waveform by the

standard deviation of a set of points that was collected

immediately prior to the laser discharge. (See section 3.1

and Fig. 6b in Mayor (2008) for more on this topic.) It is

termed “raw SNR” to distinguish it from “image SNR”.

The raw SNR data are gridded so that averages over the

exact block regions can be obtained. The raw SNR is de-

pendent upon the performance of the specific lidar sys-

tem and the local atmospheric conditions.

Figs. 14 and 15 show how the agreement varies as

a function of mean raw SNR from the backscatter data

in the two blocks used to compute the CCF. The plots

suggest significant improvement as SNR increases, es-

pecially up to about 150. The distributions do not appear

to narrow significantly above that.

6. Summary

In general, gravity wave propagation does not appear

to present a significant problem for deriving wind vectors

from the cross-correlation technique during stable condi-

tions. However, case studies are required to confirm this

by examining time-series comparisons when wave pack-

ets were passing through the tower site. Contrary to the

author’s original hypothesis, results show that the lidar-

derived wind components are in better agreement with

the averaged sonic anemometer wind components during

the night when the gravity waves may be present. Results

show that the agreement is strongly a function of TKE.

Results also show that large CCF maxima and increased

raw SNR tend to support improved agreement.

Fig. 16 summarizes the agreement of the vector com-

ponents for various block sizes and time between scans.

The height of the bars indicate the percentage of obser-

vations falling within ± 1 m s−1 and ± 2 m s−1 of each

other. The best agreement (tallest bars) were achieved

with small scan update periods and large blocks. This

result is consistent with the idea that large blocks are

more likely to capture a larger number of aerosol features

(spatial perturbations in the aerosol backscatter field) and

that quick update times enable capturing the aerosol fea-

tures in the second scan before they have changed shape

substantially. Fig. 16 also shows the agreement of the

v-components to be systematically slightly less than the

u-components. The cause of this is not known at the time

of this writing. It may be a flaw in the algorithm or a bug

in the code.

It is important to keep in mind that the lidar-derived

vectors are not the average of the velocity distribution

over the block area or the period of time spanning the two

scans. Instead, they are the result of observing the ini-
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Figure 6: Distributions of the velocity component differences. Left panel: u-component differences (Ulidar −U sonic).

Right panel: v-component differences (Vlidar −V sonic). The lidar-derived components resulted from 500 m × 500 m

blocks and 17 s time between scans. Velocity differences were binned into 1-hour intervals in time and 0.1 m s−1 in

velocity differences. A 3-point smooth was applied to each curve to reduce noise. The narrower blue curves are from

the nighttime hours and the broader violet curves are from the daytime hours.

Figure 7: Same data as shown in Fig. 6 except as contour plots. Left panel: u-component differences (Ulidar−U sonic).

Right panel: v-component differences (Vlidar−V sonic). Both as a function of time. The distributions narrow during the

night indicating improved agreement during that time.
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Figure 8: Distributions of the velocity component differences. In this case, each curve corresponds to a different range

of turbulent kinetic energy (TKE) as measured by the sonic anemometer. The narrowest and tallest distribution (dark

blue) occurs from the lowest range of TKEs (0 – 0.25 m2 s−2) while the shortest and broadest distribution (violet)

occurs from the highest range of TKEs (2.25 – 2.50 m2 s−2). A 7-point smooth was applied to each curve to reduce

noise. Note that the sample size of each distribution is printed on the figure and varies substantially.

Figure 9: Same data as shown in Fig. 8 except as contour plots. Left panel: u-component differences (Ulidar−U sonic).

Right panel: v-component differences (Vlidar −V sonic). Both as a function of TKE. The distributions broaden as TKE

increases.
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Figure 10: Distribution of turbulent kinetic energy (TKE) by hour. Violet curves occurred during the night. Violet

curves occurred during the day.

Figure 11: Same distributions of TKE as shown in Fig. 10, but shown as a contour plot.
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Figure 12: Distributions of the velocity component differences as a function of the CCF maximum. In this case, each

curve corresponds to a different range of CCF maximums. The narrowest distribution (dark blue) corresponds with the

largest CCF maximums (0.80 – 0.90) while the broadest distribution (bright violet) corresponds to the set of vectors

having low CCF maximums (0.1 – 0.2). Note that the sample size of each distribution is printed on the figure and

varies substantially.

Figure 13: Same data as shown in Fig. 12 except as contour plots. Left: u-component differences (Ulidar −U sonic).

Right: v-component differences (Vlidar−V sonic). Both as a function of the max amplitude of the CCF peak. A 3-point

smooth was applied to each curve to reduce noise. The distributions become narrow as the peak amplitude of the CCF

maximum increases.
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Figure 14: Distributions of the velocity component differences as a function of the mean raw SNR in the blocks used

to compute the vectors. In this case, each curve corresponds to a different range of SNRs. The narrowest distributions

(dark blue) correspond to high SNRs (> 150) while the broadest distribution (bright violet) corresponds to the set of

vectors having low SNRs (25 - 30).

Figure 15: Same data as shown in Fig. 14 except as contour plots. Left: u-component differences (Ulidar −U sonic).

Right: v-component differences (Vlidar −V sonic). Both as a function of raw SNR. A 7-point smooth was applied to

each curve to reduce noise. The distributions narrow with increasing raw SNR.



tial and final positions of the aerosol perturbations in the

block. As an illustration, consider two separate aerosol

clouds moving in opposite directions within the same

block. The resulting vector for the entire block is not

the average of the two vectors representing each cloud.

The CCF in this case will contain two maxima and the

algorithm, as currently implemented, will select the CCF

maximum that is largest. In the highly unlikely scenario

that two or more maximums are identical, the first occur-

rence in the array containing the peaks and their locations

will be selected.

This paper has described the experiment, algorithm,

and preliminary data analysis results that are aimed at

clarifying the accuracy and reliability of the basic cross-

correlation technique when applied to aerosol lidar data.

Enhancements to the basic technique may yield im-

proved results. For example, we are currently investigat-

ing the use of recursive local-correlation (Hart, 2000) to

increase the accuracy of local displacement. Recursive

local-correlation is a method where a cross-correlation

is performed on a region followed by another cross-

correlation on the same region using a smaller block

size; the larger correlation is used to limit the search

for the peak in the correlation of the smaller area. Fu-

ture research will include an investigation of the image

SNR, the gradient Richardson number, improved grid-

ding methods, implementation of a polynomial fit to the

CCF peak, and a search for the reason causing the supe-

rior performance of the u-component.
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