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1 INTRODUCTION* 
 Data assimilation estimates the best analysis 
state to initialize a numerical model by combining 
the information of the model forecast state and 
observations. A good data assimilation system can 
improve the forecast skill and provide better use of 
observation system. The three dimensional 
variational analysis (3D-Var), widely used in many 
operational centers, has been considered as an 
economically and statistically reliable method. 
However, the flow-independent characteristic of 3D-
Var (it does not include “errors of the day”) limits 
the quality of the corrections to the first guess. 
 Four-dimensional variational analysis (4D-Var) is 
an optimal technique to seek the initial condition 
leading to a forecast that best fits the observations 
within an assimilation interval or window (Talagrand 
and Courtier 1987; Courtier et al, 1994; Rabier et al 
2000). The minimization of the 4D-Var cost function 
(defined over a time interval) requires the gradient 
of the cost function, which in turn involves the use 
of the tangent linear and adjoint models. During the 
past decade, experience with ensemble forecasting 
has suggested that ensemble forecast and data 
assimilation could be combined in a natural way 
(i.e., in Ensemble Kalman Filter, Evensen 1994). 
Experiments based on the ensemble-based data 
assimilations have indicated the possibility that they 
could become an alternative method to 4D-Var 
(Whitaker and Hamill 2002, Anderson 2001, Ott et 
al. 2004; Kalnay et al. 2005).  The Kalman Filter 
can optimally update (predict) the model state and 
forecast error covariance. The error statistics of the 
forecast is flow-dependent and estimated 
nonlinearly by ensemble members, which may be 
beneficial for analyses in situations where 
nonlinearity is strong and statistics exhibit some 
non-normality (Hamill 2003; Yang et al. 2005).  
 Compared with 4D-Var, an ensemble-based 
scheme is easy to implement and maintain, since it 
does not require the development and maintenance 
of the tangent linear and adjoint models. Moreover, 
it creates an ensemble of possible analysis states, 
providing information on both the mean analysis 
and the uncertainty. It automatically generates the 
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initial ensemble perturbations, while 3D-Var/4D-Var 
schemes can only provide the mean analysis and 
an additional procedure is needed to start an 
ensemble prediction system. The information about 
the flow state, such as the uncertainties associated 
with flow instabilities, will be propagated through 
the ensemble-based data assimilation cycle, while 
each data assimilation cycle is an independent 
cycle in the variational-based methods. Reviews of 
the ensemble-based data assimilations are 
available in Hamill (2003) and Evensen (2003).  
Lorenc (2003) and Kalnay et al. (2005) discuss the 
pros and cons of ensemble Kalman filter and 4D-
Var.   
 In this study, we would like to consider how the 
characteristics of data assimilation methods impact 
results. Two variational and two ensemble-based 
schemes have been implemented in a channel 
quasigeostrophic (QG) model (Rotunno and Bao, 
1996) that has been widely used for testing and 
comparing problems related to data assimilation 
and adaptive observations (e.g., Morss et al, 2001, 
Hamill et al 2000, Hamill and Snyder 2000, Corazza 
et al, 2003). The model variables are potential 
temperature at the bottom and top levels, and 
potential vorticity at the interior 5 levels. 
“Rawinsonde observations” provide velocity 
components and temperatures at all levels. In this 
study, we would like to compare how the data 
assimilation schemes perform when offered the 
same noisy observations. The two variational 
schemes are 3DVAR (developed by Morss, 1998) 
and 4DVAR (newly developed for this study). The 
two ensemble schemes are the Local Ensemble 
Kalman Filter (LEKF, based on Ott et al, 2004), and 
a hybrid system using an ensemble of bred vectors 
added to the regular 3DVAR system (Corazza et al, 
2002) to augment the background error covariance 
with information on the “errors of the day”. The 
object of this study is to explore the differences 
between the variational-based and ensemble-based 
data assimilation methods and discuss 
considerations that would be applicable to a more 
realistic scenario (if implemented operationally).  
 
2 DATA ASSIMILATION SCHEMES 

 



2.1 3D-Var 
The 3D-Var system, developed by Morss 

(1999) is based on the approach of Parrish and 
Derber (1992). The analysis increment from 3D-Var 
is obtained solving (1) with the conjugate gradient 
method.  

[I + BHT R-1H](xa − xb ) = BHT R-1(y − Hxb )           (1) 
 
The 3D-Var background error covariance B is 
derived using “the NMC method” of Parrish and 
Derber (1992). In this study, results from obtained 
with 3D-Var where the amplitude of B has been 
optimized, will be taken as the baseline for 
comparison with more advanced methods. 
 
2.2 4D-Var 
The cost function in the 4D-Var system is the 
generalization of the formula used in 3D-Var, 
considering observations distributed in a time 
interval. The operators include the time-dependent 
model states and observations, which allow 
comparing their differences at the appropriate time. 
Through the minimization of the cost function, 4D-
Var seeks the initial condition such that its forecast 
best fits the observations within the assimilation 
interval.  
 For practical applications, the incremental form 
(Courtier et al, 1994) of 4D-Var is used in the cost 
function (2) and its gradient (3). In (2) and (3), 
δx(t0)  is the difference between initial and first 
guess (forecast) states in model grid coordinate 
and d(ti)  is the difference between forecast state 
and observations at observation coordinate at 
observation time, ti. L is the tangent linear model 
that maps a set of small perturbations from t0 to ti 
through forward integration and LT is the adjoint 
operator of the linear tangent operator that maps 
the adjoint perturbations backward in time. 

 

J(δx(t0)) =
1
2

δx(t0)( )T B−1 δx(t0)( )

+
1
2

H iL(t0, ti)δx(t0) − d(ti)[ ]T

i= 0

n

∑ R−1 H iL(t0, ti)δx(t0) − d(ti)[ ]
 

(2) 

∇J(δx(t0)) = B−1 δx(t0)( )+ LT (ti,t0)H
T

i=0

K

∑ R−1 HL(t0,ti)δx(t0)− d(ti)[ ]
                 

(3) 
A variable transformation is applied in (2) and (3) in 
order to avoid the difficulty of the inverting B. The 
transform operator, U, is chosen to be the square 
root of the inverse of B ( UUB T- =1 ). The variable 
transformation not only enables us to compute the 
cost function directly, but also contributes to 
efficient minimization by preconditioning. The cost 
function and its gradient are reformulated with the 
preconditioned variable, δv , and δx = U−1δv . 
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∇J(δv(t0)) = δv(t0 ) + (U-1 )T LT (ti, to)HT

i= 0

K
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            (5) 
The minimization is made with respect to the 
variable δv , which is initially set to zero, and only 
U-1 is needed. As in Morss et al (2001) and Parrish 
and Derber (1992), B is built by constructing the 
horizontal error covariance at each level and linked 
with a vertical correlation matrix with the 
assumption that there is no correlation between 
different wavenumbers. Therefore, we can define 
U−1 as: 

U−1 = S ˆ C 
1

2E                                 (6) 
In (6), S is the operator that maps from spectral to 
model coordinates, ˆ C 1/2 is the square root of the 
horizontal background error variance of each 
wavenumber, and E is the square root of the 
vertical correlation matrix. In our case, ˆ C 1/2  will be a 
diagonal matrix, and E is simply a 7x7 matrix. Note 
that the control variable is δv(t0)  expressed in 
spectral coordinates. Given a guess for δv(t0) , the 
cost function and its gradient are computed using 
(4) and (5). Then, the quasi-Newton minimizer finds 
a better guess for δv(t0) , which is used to compute 
the next cost function and its gradient value. This 
process is repeated till the minimization criterion is 
satisfied. In addition, we approximate the innovation 
vector with the full nonlinear model as 

HL(t0,ti)U
−1δv −d(ti) ≈HM(x(t0))− y(ti)        (7) 

This is based on the assumption that the analysis 
state is close to the background state. 
 
2.3 Hybrid schemes 
  
In the 3D-Var scheme, the background error 
covariance is time-independent and therefore does 
not include “errors of the day”. The breeding 
method proposed by Toth and Kalnay (1993 and 
1997) can generate the fast growing perturbations 
in a nonlinear dynamic system for ensemble 
prediction. Bred vectors, defined as the differences 
between perturbed and non-perturbed nonlinear 
runs, carry information on “errors of the day”, since 
both are related to flow instabilities. This was 
confirmed by Corazza et al (2003) who found that 
the background error strongly projects on the 
subspace spanned by 20-bred vectors (BV). 
Therefore, it is reasonable to use BVs to provide 
the structure of evolving “errors of the day” and 
augment the time-independent background error 
covariance in the 3D-Var scheme. The new 
background error covariance (7) is a linear 
combination of the 3D-Var background error 
covariance with an error covariance constructed 
from a BV ensemble weighted by a coefficient α. 
The additional covariance B’ is given by the inner 
product of BV ensemble that represent flow 
dependent growing perturbations. 
  



B = (1−α)B3DVAR + α ′ B             (7) 
′ B = bbT                                     (8) 

 
Corazza et al. (2002) proposed two approaches to 
augment the background error covariance in the 
3D-Var scheme: by directly applying the full rank 
(global) B’ or by localizing the covariance structure. 
 

i.Global approach 
 In the global approach, the augmented 
part is directly inserted in (1). In (7), α is a tuning 
parameter. The analysis increment is considered to 
be as coming from two parts and is solved 
separately to obtain the correction from regular 3D-
Var (B) and from BV error covariance (B’) system. 
Then, corrections from both are linearly combined 
with the weighting coefficient α.  

(I + ((1 − α )B3DVAR + αcbbT )HT R-1H)(xa − xb )
= ((1− α )B3DVAR + αcbbT )HT R-1(y − Hxb )

 (9) 
In (9) c is a normalization factor that ensures the 
error covariance has a reasonable magnitude. 
Results from Corazza et al. (2002) suggested that 
the optimal value for α is 0.4, but in our 
experiments with more careful tuning, it increases 
to 0.7 (section 3). In addition, a small amount of 
random perturbations is added to the bred vectors 
for every breeding cycle in order to “refresh” BVs 
and slightly perturb the subspace spanned by BVs. 
This reduces the tendency of BVs to converge to a 
too small dimension (Wang et al, 2003). The 
perturbations are created at the observation 
locations and converted back to the grid points with 
the transpose of the observation operator. We 
found that this not only accelerates the analysis 
error convergence but also leads to a lower rms 
error level. By default, the size of the random 
perturbation has the amplitude of the observation 
error. In order to avoid excessive noise added when 
the flow is less unstable, the size of the random 
perturbation is made adaptive, i.e., proportional to 
the amplitude of the observation increment 
( y − Hxb ). 

A similar hybrid system by Hamill and Snyder 
(2000) showed that the ensemble-based 
background error covariance could completely 
replace the background error covariance of 3D-Var 
if the ensemble is large enough. However, since the 
errors of the day lie on a low-dimension attractor 
due to the flow instabilities, the need for a large 
ensemble to sustain the rank of the error 
covariance can be lessened if the ensemble 
perturbations are chosen to represent the shape of 
background error. Corazza et al. (2003) found that 
the local dimensionality computed based on 10 BVs 
is always lower than six (out of a maximum of 10) 
and has an average value equal to about four. 
These values do not change when the number of 
bred vectors is doubled, indicating that ten of them 

are able to provide most of the necessary (local, not 
global) information.   

 
ii. Local approach 

 
The fact that the local dimension of the bred vectors 
is low suggests that a local approach may lead to a 
good description of the background error with a 
relatively small ensemble (Kalnay and Toth, 1994, 
Ott et al, 2004). In the local approach, (1) is 
reformulated based on a local patch. The local 
background error covariance, ˆ B , has a form like (8), 
but is constructed by means of the local BV 
ensemble, ˆ b . The local patch we choose has a size 
of 7x7 by 7 levels and then each local BV is 
reshaped to a long vector with a dimension of L 
(equal to 7x7x7 in this case). The local domain we 
choose is small enough to allow for a singular value 
decomposition so that  

ˆ b = VSWT                             (10)  
With K bred vectors, the matrix V has a dimension 
of L by K, storing the K left singular vectors 
columnwise. The K corresponding singular values 
are stored on the diagonal elements of the matrix S. 
An Ensemble-Dimension analysis (Patil et al. 2001) 
is used to define the number Kc of leading singular 
vectors that will be retained. In the experiement 
with 10 bred vectors, typical Kc ranges from 3 to 7. 
We then assume that the local analysis increment 
can be represented by the linear combination of 
these Kc singular vectors as indicated by (11) with 
the Kc coefficients stored in the column vector Γ.   

  ( ˆ x a − ˆ x b ) = VΓ                    (11) 
With the orthogonality property of the local 
background error covariance, we can project (1) in 
a KcxKc space, indicated as (12) and solve for Γ.  
 

 [ ′ ˆ B −1 + (HV) T ˆ R −1 (HV)]Γ = (HV) T ˆ R −1 ( ˆ y − H( ˆ x b )) 
(12) 
 
In (12), ˆ ′ B −1  is now simply a diagonal matrix whose 
elements are the inverse of the square of S and is 
trivial to compute. This formula is similar to the 
singular evolutive extended Kalman (SEEK) filter 
introduced by Pham et al (1998) that computes 
Kalman Filter in the rank-reduced space spanned 
by several leading singular vectors. The analysis 
increment obtained according to (12) will also be 
linearly combined with the analysis increment from 
3D-Var with a weighting coefficient. As in the global 
approach, bred vectors will be “refreshed” with a 
small amount of random perturbations. Unlike the 
global approach, the random perturbations are now 
introduced at the model grid points. 
 
2.4 Local ensemble Kalman Filter 
 

The LEKF system implemented for this work 
is based on the scheme described in Ott et al. 
(2004) and we refer to this paper for a detailed 



description. Here we only describe the specific 
implementation related to the use of the QG-model 
adopted in all the experiments of this study. The 
LEKF system is based on the use of an ensemble 
of models and on the decomposition of the 
representation of the flow on local domains, where 
the data assimilation step and the construction of 
the new vectors of the ensemble is performed 
simultaneously. The process can be schematically 
represented as follows:  
1. Localize the K ensemble members after 
removing the (global) ensemble mean from each 
ensemble member;  
2. Define the local background error 
covariance matrix Pl

b  by means of the local vectors 
(here b represents background and l represents the 
l-th local patch);  
3. Decompose the local vectors in order to 
find the most unstable directions of the local space. 
Now, Pl

b  is transformed onto a K-dimensional 
space spanned by those directions and becomes 
ˆ P l

b , a diagonal matrix in this new K-dimension 
coordinates.  
4. Solve the local analysis error covariance in 
the K-dimension coordinates. The local analysis 
ensemble is then derived for two parts: the mean 
analysis state and the ensemble perturbations. 
Note that the local analysis perturbations are a 
linear combination of the local background 
perturbations (also in the K-dimension). 
5. Transform the local analysis ensemble 
back to the global space but using only the analysis 
at the center of this local patch to update the global 
analysis ensemble.  
 
The main issues related to the technical 
implementation of the LEKF for the QG-model are 
due to the structure of the “Observation Operator'' 
H , which maps from the model space, where the 
model variables are potential vorticity q and 
potential temperature θ at the top and bottom 
boundaries, to the observational space, where the 
observation variables are the horizontal velocity 
components u and v, and temperature T. This 
mapping requires the computation of the 
streamfunction and the solution of a Poisson 
equation. In a global approach, as in the case of the 
original 3D-Var developed by Morss (1998), this 
problem can be solved in the entire domain and, in 
particular, the Poisson solver can be simplified 
working in the spectral space. This is not true in the 
framework of a local domain, since the fast Fourier 
transform cannot be applied. Moreover, even 
adopting a finite difference approach for the 
Poisson solver, it is not possible to avoid large 
errors due to the dominance of the lateral boundary 
conditions.  
For these reasons we have chosen to solve H  
using a different approach, following the scheme 
described by Corazza et al. (2005). This solution is 

based on the fact that H  can be split in two parts: 

HHH ~= ,where H~  is the operator that maps from 

q and θ  to u, v and T in the global domain, and H  
is the operator mapping from the model domain 
(the model grid) to the observational grid. The 
localization of H  is then trivial, since only an 
interpolation is required, and this leads to 
implementing the LEKF by first applying the global 

operator H~  to all the ensemble vectors, and then 
performing the rest of the data assimilation as if the 
model variables were u, v and T. Once the new 

global vectors are computed a global 
TH~  can be 

applied in order to go back to the QG-model 
variables. 
 
Horizontal dimension of the local 
domain 

l=3 

Number of members in the ensemble K=30 
Method to update the global field average 
Amplitude of the random 
perturbations 

∼5% vectors 
amplitude 

 
Table 1: Settings adopted for the LEKF system for 
the simulations described in this work. 
 
The choice of the main parameters adopted for the 
LEKF implementation follows the study performed 
by Corazza et al. (2005), where different versions of 
this system using the same QG-model discussed in 
this work are presented. In Table 1 the most 
important choices are summarized. In particular, 
the local domain are chosen to be columns of 
7×7×7 grid points (l=3) and no vertical localization is 
performed. In the final part of the data assimilation 
process the global fields are built as the average of 
the contributions provided by the local domains 
containing the considered grid point. 
 
In order to maintain the space spanned by the 
ensemble sufficiently large, we have chosen to add 
random perturbations to the global vectors after the 
data assimilation step. In particular, using an 
approach similar to the one described in section 
2.3.i, in order to simulate the contribution 
introduced by observational errors, random noise is 
generated in the observational space and then 
transferred to the model space by applying the 

global operator 
TH . Even though the relative 

amplitude of the perturbations respect to the 
original vectors is small (of the order of 5% of the 
field variability), this method provides much better 
results than simple inflation, at least for this 
implementation.  
 
3 RESULTS 
 
In the following results, we have 64 rawinsonde 
observations randomly distributed in the domain 



and the analysis cycle is 12-hour. The observation 
covariance is constructed in the same fashion as 
Dey and Morone (1985), where the observation 
errors are assumed to be uncorrelated between 
different observations and between wind and 
temperature. Error correlations are included in the 
vertical and only for the same variable. In our 
experiments, the magnitude of the observation 
errors is doubled respect to that used in Morss 
(1998) and Corazza et al (2002). 
 
3.1 3D-Var vs. the hybrid schemes 

Corazza (2002) obtained that augmenting the 
background error covariance with an ensemble of 
20 global bred vectors reduced by 22% the 3D-Var 
mean squared error of the potential vorticity at level 
3. As a benchmark, we also tested the algorithm 
replacing the bred vectors with random vectors that 
do not provide any information about the errors of 
the day, since no forward integration is involved in 
random vectors. Figure 1 shows the results in terms 
of the rms error of the enstrophy norm using 20 
bred (or random) vectors with different weighting 
ranging from 0.1 to 0.8. The hybrid system with 
bred vectors blew up if the weighting coefficient 
was 0.9 or larger.  

 

 
Figure 1 Mean rms error of enstrophy norm for global 
hybrid 3DVAR system with 20 bred vectors (blue line) 
and 20 random noise vectors (red line). The dashed 
line denotes the rms error level of standard 3D-Var 
and the solid line denotes the 4D-Var error level using 
12-hour assimilation window. Results are averaged 
from day 45 to day 200. The hybrid scheme returns to 
regular 3D-Var as α equals to 0. 

 
It is clear that the reason for the improvement 

obtained by the hybrid scheme is that it captures 
the shapes of the background error covariance 
dominated by flow dependent properties. In 
Corazza et al (2003), it was demonstrated that the 
forecast error strongly projects on the subspace 
spanned by bred vectors. This allows us to correct 
the background state by moving it closer to the 
observations along the unstable subspace. As 
indicated in (9), the analysis corrections associated 
with flow-dependent property are computed in the 

bred vectors subspace ( bbT ). On the other hand, 
the random vectors, which do not provide useful 
information, worsen the correction and degrade the 
rms error, as could be expected. We also notice 
that the hybrid system with random vectors tends to 
worsen the large spikes that occur in the results of 
the 3D-Var system. Large error spikes occur when 
the flow undergoes a rapid growth of the dynamic 
instability, which is not expected in a time-
independent background error covariance matrix, 
such the one used in 3D-Var. In contrast, such 
large analysis error growth can be avoided in the 
ensemble-based data assimilation schemes, since 
they are able to detect the “errors of the day”. 

We note that the optimal weighting coefficient 
is higher (α=0.7) than the one (α=0.4) found in 
Corazza et al. (2002). This is due to the increase of 
the observation error in our experiments, which 
encourages the system to trust the background 
error covariance more and give more weights to the 
BV’s structures. In addition, adding a random 
perturbation of constant size is not optimal. Instead, 
it is preferable to make the amplitude adaptive 
depending on the observational increment that 
indicates if larger random perturbations are 
required because the background flow is more 
unstable and uncertain. It is notable in Figure 1 that 
the results of hybrid scheme with weighting 
coefficients larger than 0.5 are competitive with 
those obtained by 4D-Var with a 12-hour window 
time. However, there is huge difference in the 
computational cost between these two schemes. 
The 3D-Var used about 1 hour and the hybrid 
scheme about 1.4 hour, but the 4D-Var needed 36 
hours to compute 400 analysis cycles under the 
same computational configuration. 

The number of bred vectors needed to 
represent a field of growing errors in a local domain 
is much smaller than the number needed in a global 
domain scheme (Kalnay et al, 2002, Ott et al, 
2004). We can therefore expect the local approach 
to be able to capture the growing instabilities more 
efficiently than the global approach with the same 
number of bred vectors. Although one might expect 
the local hybrid approach to have errors similar to 
the global approach (section 2.3), the fact that the 
local scheme is more flexible and requires fewer 
ensemble members than the global scheme makes 
it more efficient. Figure 2 compares the results 
obtained using the global and local approaches. 
Results from 3D-Var and 4D-Var are also included 
for reference. The experiment for the local 
approach uses a local domain made of 7x7 grid 
points by 7 levels. The obtained local analysis is 
added to the regular 3D-Var analysis using a weight 
equal to 0.4. With 10 BVs, we found that the result 
of the local approach in fact outperforms those 
obtained by the global approach by successfully 
avoiding the large error spikes that characterize the 
3D-Var system. Our results show that the local 
approach with 10 BVs has a better performance 
than the global approach with 20 BVs and even the 



4D-Var with a 12-hour assimilation window time. 
The computational time for the local hybrid system 
is about 12 hours. In operational, this scheme is 
easy to implement and also computed parallelly, so 
that we can reduce the computational time. Our 
results show that this local hybrid approach has 
improved the regular 3D-Var by about 70%, which 
is much more accrurate than the hybrid system with 
10 global bred vectors (table 1). 

 
 

 
Figure 2 Time series of rms error of potential vorticity 
from 3D-Var, global (10 and 20 BVs) and local (10 BVs) 
hybrid schemes and 4D-Var (12 hour window) 
systems. 

 
  

3.2  4D-Var and LEKF  
In this subsection, we focus on the comparison 

of the data assimilation schemes considered to be 
the most advanced.  

 In 4D-Var, B in (2) is usually set equal to B3D-

Var. However, the performance of 4D-Var is 
sensitive to the size of B. When 4D-Var is cycled, it 
provides a better first guess than 3D-Var, and 
therefore B3D-Var is too large. Therefore, we retained 
the structure of B3D-Var but tuned its amplitude, and 
found that for a 12 hr assimilation window, B=0.4 
B3D-Var was optimal. Reducing the amplitude of B 
should also benefit the hybrid scheme using a large 
number of ensemble members (20BVs), but would 
degrade the performance of the regular 3D-Var and 
of the hybrid system using a small ensemble. 
Longer windows are more beneficial (but more 
costly) for 4D-Var (Pires et al, 1996), and for longer 
windows the sensitivity to B decreases. Our results 
show that a 36-hour assimilation window is the 
optimal configuration for our 4D-Var system. For 
assimilation windows longer than 48 hours, the 
results become worse because the minimizer has 
difficulties to distinguish between multiple minima of 
the cost function. 

Figure 3 shows the potential vorticity rms 
errors using LEKF, 36-hour 4D-Var, 3D-Var and the 
local hybrid scheme with 10 BVs. Both 4D-Var and 
LEKF, after an initial spindown, are characterized 
by stable error and they both outperform 3D-Var. 

The local hybrid scheme, though more accurate 
than the 4D-Var with the 12-hour assimilation 
window, is somewhat worse than the 36-hour 4D-
Var. Although the initial spin-down of the error is 
faster for the variational schemes, the LEKF 
converges to the lowest rms error level. The long 
spin-down of LEKF is due to the choice of the initial 
condition (zonal mean state in our experiments), 
which is too far away from the truth, so that the 
shapes of instability captured by ensemble 
members are not representative of the real errors. 
However, in practice, the initial condition is much 
closer to the truth and the transition period should 
not be a serious concern. For example, one can 
use the analysis from 3D-Var as the initial guess to 
start LEKF. Also, our results suggest that adding 
random perturbations to the ensemble members 
reduces the rank deficiency problem of ensemble 
Kalman filter.  

Figure 4 shows vertical profiles of the rms 
errors of potential vorticity, indicating that the 
advantage of LEKF over 4D-Var is larger at lower 
levels. The hybrid scheme improves substantially 
over 3D-Var, but the vertical distribution of rms 
error is evidently influenced by the 3D-Var errors. 
For LEKF, the improvement is uniform in the 
vertical. The largest differences between LEKF and 
4D-Var appear in the analysis fields of the bottom 
potential temperature. In our 4D-Var system, the 
adjoint operator includes all physical processes.  
The adjoint of the Ekman pumping forcing, which is 
the dominant physical process at the bottom level, 
may be the origin of the larger bottom temperature 
errors. 

 
Figure 3 Time series of rms errors of potential 
vorticity from 3D-Var, the local hybrid schemes, 4D-
Var systems and LEKF. 
 



 
Figure 4 The Vertical profiles of rms errors of 
potential vorticity from 3D-Var, the local hybrid 
schemes, 36-hour 4D-Var systems and LEKF. Results 
are averaged from day 75 to day 200. 
 

We summarize our experiments in Table 1 by 
the mean rms error for the last 250 analysis cycles. 
In this table, it clearly shows that the schemes 
involved with localizations give the best corrections 
in either the hybrid systems or the advanced data 
assimilation schemes.   

 
4 SUMMARY AND DISCUSSION 
 

In this study, data assimilation schemes 
related to variational and ensemble methods are 
implemented for a quasi-geostrophic model. Four 
different schemes are discussed: 3D-Var, 4D-Var, 
3D-Var hybridized with bred vectors, and LEKF. 
The goal of this study is not only to compare 
individual performances but also to try to 
understand advantages and disadvantages for 
practical implementation in operational systems, as 
we know that 4D-Var has already been 
implemented in several operational centers, and 
Ensemble Kalman Filters are regarded as the 
possible next phase data assimilation systems. 

Our results are discussed in terms of the rms 
error in potential vorticity (which is a model 
variable) for all the data assimilation experiments. 
Given the same rawinsonde observations, the 
LEKF scheme outperformed 4D-Var in both 
accuracy and computational cost. This scheme 
converged to the lowest rms error level, and the 
4D-Var with a long assimilation window of 36 hour 
reached the second lowest error level. However, 
the slow convergence rate of the LEKF suggests 
that that an initial guess sufficiently close to the true 
state of the atmosphere (such as that obtained from 

a 3D-Var assimilation cycle) is a key factor for fast 
convergence. Results from 4D-Var experiments 
suggest that the amplitude of the background error 
covariance and the length of the assimilation 
window greatly influence its performance. However, 
for a high-resolution model with full physics, a long 
assimilation window is too costly. The minimization 
process requires special care with long windows by 
gradually lengthening the window length in order to 
deal with multiple minima (Pires et al., 1996). Also, 
the minimization problem is more difficult if the cost 
function is ill-conditioned and the chosen 
preconditioner cannot effectively reduce the 
condition number, so that the minimizer cannot 
converge, resulting into too many iterations.  

We also found that the hybrid system with 
BVs can effectively improve the regular 3D-Var 
system by suppressing the spurious error spikes. 
With 20 bred vectors (global approach), the hybrid 
system is competitive with 12-hour window 4D-Var, 
and has a very low computational cost. A local 
hybrid system with 10 bred vectors competes even 
with the 4D-Var with an optimal 36-hour window. 
The success of the hybrid scheme using a rather 
small ensemble suggests that including the 
background error covariance from 3D-Var provides 
an important base for the representation of the 
average behavior of background error. This may be 
also helpful for methods using ensemble Kalman 
filters that suffer from rank-deficiency or sampling 
problems (Hamill and Snyder, 2002). Our results 
also indicate that a small amount of random 
perturbations can be helpful for stabilizing the 
scheme and reducing the error level for all 
ensemble-related schemes. Variational schemes, 
including the hybrid one, have larger vertical 
dependence of the error than the LEKF.  

More experiments have to be performed, in 
particular in order to take into account more 
sophisticated features in the schemes and, most 
importantly, in order to abandon a perfect model 
approach. As far as the LEKF is concerned, it is 
important to understand the potential improvement 
that can arise from the introduction of observation 
localization (Miyoshi, 2005) and the impact due to a 
vertical localization of the model domain. In fact, for 
the QG-model this latter feature was of minor 
importance; though we expect that for a real model, 
including boundary layer description and more 
sophisticated physics, vertical localization can have 
a major impact on the performance of the LEKF. 

 

Table 1 Mean rms error of the potential vorticity for different data assimilation scheme, averaged from the last 
250 analysis cycles. (GBV: the hybrid system with global bred vector, LBV: the hybrid system with local bred 
vector and W: the assimilation window time used in 4D-Var) 

 3DVar 3DVar 
+20GBV

3DVar 
+10GBV

3DVar 
+10LBV

4DVar 
(w=12hr)

4DVar 
(w=36hr) LEKF 

Rms 
error 0.0468 0.0206 0.0347 0.0137 0.0189 0.0120 0.0068 

 



 
Acknowledgement 
We are deeply grateful to Rebecca Morss for 
providing the QG-model and the 3D-Var system. S.-
C. Yang was supported by a NASA grant 
NNG004GK78A. 
 
REFERENCES 
 
 
Anderson, J. L., 2001: An Ensemble Adjustment 

Kalman Filter for Data Assimilation. Mon. Wea. 
Rev., 129, 2884-2903. 

Courtier, P., J. N. Thépaut, and A. Hollingsworth, 
1994: A strategy for operational 
implementation of 4DVAR, using an 
incremental approach. Quart. J. Roy. Meteor. 
Soc., 120,1367-1387. 

Corazza, M., E. Kalnay, D. J. Patil, E. Ott, J. Yorke, 
I. Szunyogh, M. Cai, 2002: Use of the breeding 
technique in the estimation of the background 
error covariance matrix for a quasigeostrophic 
model. AMS Symposium on Observations, 
Data Assimilation and Probabilistic Prediction, 
Orland, Florida, 154-157. 

------., E. Kalnay, D. J. Patil, S.-C. Yang, R.Morss, 
M. Cai, I. Szunyogh, B. R. Hunt, and J. A. 
Yorke, 2003: Use of the breeding technique to 
estimate the structure of the analysis “error of 
the day”. Nonlinear Processes in Geophysics, 
10, 233-243.  

 ----------------, E. Kalnay, and S.-C. Yang, 2005: An 
implementation of the Local Ensemble Kalman 
Filter for a simple quasi-geostrophic model. 
Results and differences with a 3D-Var data 
assimilation system, to be submitted. 

Dey, C. and L. L. Morone, 1985: Evolution of the 
national meteorological center global data 
assimilation system: January 1982-December 
1983. Mon. Wea. Rev., 113, 304-318. 

Evensen, G., 1994: Sequential data assimilation 
with a nonlinear quasi-geostrophic model 
using Monte Carlo methods to forecast 
error statistics. J. Geophys. Res., 99 (C5), 
10143-10162. 

------, 2003: The ensemble Kalman filter: theoretical 
formulation and pratical implementation. 
Ocean Dynamics. 53, 343-367. 

Hamill, T. M., 2003: Ensemble-based data 
assimilation: a review. University of Colorado 
and NOAA-CIRES Climate Diagnostics Center, 
Boulder, Colorado, USA. 

------, and C. Snyder, 2000: A hybrid Ensemble 
Kalman Filter 3D Variational analysis scheme. 
Mon. Rev. Rev., 128, 2905-2919. 

------, C. Snyder and R. E. Morss. 2000: A 
Comparison of probabilistic forecasts from 
bred, singular-Vector, and perturbed 
observation ensembles. Mon. Wea. Rev., 128, 
1835–1851. 

Houtekamer, P. L. and H.L. Mitchell, 1998: Data 
assimilation using ensemble Kalman filter 
technique. Mon. Rev. Rev., 126, 796-811. 

Kalnay, E., Corazza, M., and Cai, M.: Are bred 
vectors the same as Lyapunov vectors?, in 
AMS Symposium on Observations, Data 
Assimilation and Probabilistic Prediction, pp. 
173–177, Orlando, Florida, 2002. 

Kalnay, E., H. Li, T. Miyoshi, S.-C. Yang and J. 
Ballabrer, 2005: 4D-Var or Ensemble Kalman 
Filter? Submitted to Physica D. 

Lorenc, A. C., 2003: The potential of the Ensemble 
Kalman filter for NWP – a comparison with 4D-
Var. Quart. J. Roy. Meteor. Soc., 129, 3183-
3203 

Miyoshi, T., 2005: Ensemble Kalman filter 
experiments with a Primitive-Equation global 
model. Doctoral dissertation, University of 
Maryland, College Park, 197pp. Available at 
http://www.atmos.umd.edu/ ~ekalnay. 

Morss, R. E. 1998: Adaptive observations: Idealized 
sampling strategies for improving numerical 
weather prediction. PhD thesis, Massachusetts 
Institute of Technology. 225 pp. 

------, K. A. Emanuel and C. Snyder, 2001: Idealized 
adaptive observation strategies for improving 
numerical weather prediction. J. Atmos. Sci., 
58, 210–232. 

Ott, E., B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. 
Kostelich, M. Corazza, E. Kalnay, D. J. Patil, 
and J. A. Yorke, 2004: A local ensemble 
Kalman filter for atmospheric data assimilation. 
Tellus, 56A, 415-428. 

Pam, D. T., Verron, J. and Roubaud, M.-C., 1998: 
Singular Evolutive Extended Kalman filter with 
EOF initialization for data assimilation in 
oceanography. J. Marine Systems, 16, 323-
340. 

Parrish, D. and J. Derber, 1992: The National 
Meteorology Center’s spectral statistical-
interpolation analysis system. Mon. Wea. Rev., 
120, 1747-1763.  

Pires, C., R. Vautard and O. Talagrand, 1996: On 
extending the limits of variational 
assimilation in chaotic systems. Tellus, 
48A, 96-121. 

Rabier, H. Järvinen, E. Klinker, J.-F. Mahfouf, and 
A. Simmons, 2000: The ECMWF operational 
impletation of four-dimensional variational 
assimilation. I: experimental results with 
simplified physics. Quart. J. Roy. Meteor. Soc., 
126,1143-1170. 

Talagrand, O. and P. Courtier, 1987: Variational 
assimilation of meterological observations with 
the adjoint vorticity equation. I: Theory. Quart. 
J. Roy. Meteor. Soc., 113,1311-1328. 

Wang, X. and C. H. Bishop. 2003: A Comparison of 
Breeding and Ensemble Transform Kalman 
Filter Ensemble Forecast Schemes. J. Atmos. 
Sci. 60, 1140–1158. 

Whitaker, J. S. and T. M. Hamill, 2002: Ensemble 
Data Assimilation without Perturbed 



Observations. Mon. Wea. Rev., 130, 1913-
1924. 

Yang, S.-C., D. Baker, H. Li, M. Huff, G. Nagpal, E. 
Okereke, J. Villafane, E. Kalnay and G. Duane, 
2005: Data assimilation as synchronization of 
truth and model: experiments with the 3-
variable Lorenz system. Submitted to J. Atmos. 
Sci.  

Yang, S.-C., 2005: Bred Vectors In The NASA 
NSIPP Global Coupled Model and Their 
Application To Coupled Ensemble Predictions 
And Data Assimilation. PhD thesis. Appendix 
B: Errors of the day, bred vectors and singular 
vectors in a QG atmospheric model: 
implications for ensemble forecasting and data 
assimilation. University of Maryland, 174 
pages. Available at http:// 
www.atmos.umd.edu/~ekalnay 

 
 
 
 
 
 


