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1 INTRODUCTION* 
For the seasonal to interannual prediction (SIP), 
the forecast skill is strongly influenced by the 
model’s ability to describe the SST variations. 
Ensemble prediction systems should be designed 
to capture such SST uncertainties and the 
consequent variations. Therefore, the evolution of 
the ensemble perturbations should carry the 
coupled characteristics associated with low 
frequency variations since the climate system is 
dominated by the slow, ocean-atmosphere 
coupled processes (i.e. ENSO). Methods of 
generating ensemble perturbations for ENSO 
prediction aim to determine how to create the 
initial perturbations wisely in order to capture the 
growth of such slowly varying, coupled instability 
so that the perturbations project onto the 
seasonal-to-interannual related uncertainties.  
The breeding technique (Toth and Kalnay 1993, 
1997) has been applied in simple coupled models 
(Cai et al., 2003, Peña and Kalnay 2004, Yang, 
2005), showing that slowly varying coupled 
instabilities can be identified in the coupled bred 
vector when choosing physically meaningful 
breeding parameters. The breeding experiments 
of NASA CGCM under perfect model scenario 
have demonstrated that bred vectors have 
coupled properties related to the background 
ENSO variations and may have potential impact 
on ENSO prediction (Yang et al. 2005). They also 
showed that the bred vectors obtained with the 
NASA and the NCEP coupled GCMs have very 
similar characteristics. 
In the present study, we perform breeding 
experiments with a much more challenging 
system: the operational CGCM with real 
observations involved. As the first step to explore 
the applications in ensemble forecasting, we 
examine the relationship between bred vector, 
one-month forecast error and the background 
anomalies in a realistic system. We find that the 
bred vectors are strongly related to the monthly 
forecast errors, so that their relationship can be 
used in ocean data assimilation by providing the 
system with the flow-dependent “errors of the 
month”.  
 
2 Breeding in the NSIPP operational CGCM 
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The NSIPP coupled model is a fully coupled 
global ocean-atmosphere-land system developed 
at NASA Goddard Space Flight Center (GSFC) 
(http://nsipp.gsfc.nasa.gov). It is comprised of the 
NSIPP-atmospheric general circulation model 
(AGCM) the Poseidon Ocean model (OGCM), 
and the Mosaic land surface model. The initial 
state of the OGCM uses the analysis fields from 
the univariate optimal interpolation (OI) 
assimilation scheme. The AGCM is initialized with 
AMIP-style atmospheric states. The procedure of 
a breeding cycle is done as in Yang et al. (2005). 
The bred vector is the differences between the 
perturbed and unperturbed runs. In our 
experiments, the oceanic-bred perturbations are 
added to oceanic analysis fields, and atmospheric 
bred perturbations are added to AMIP restart 
fields. The bred perturbation is measured by the 
rms of the BV SST in the Niño3 region and 
rescaled to the magnitude of 0.085°C. Also, the 
rescaling period is chosen to be one month, which 
is important to capture the slow coupled instability. 
The experiments are performed from January 
1993 to November 1998. The one-month forecast 
error is defined as the difference between the 
analysis field and its first month forecast.  
 
3 RESULTS  
3.1 Bred vector, one-month forecast error and 

background temperature anomalies  
Our results indicate that bred vectors show a 
structure similar to the one-month forecast errors 
in many aspects. For example, both the forecast 
error and the bred vector (BV) growth rate are 
very sensitive to the ENSO phases (Niño3 index), 
showing low frequency variations, and their 
temporal evolutions agree with each other very 
well. Similarly, the SST forecast error is also very 
sensitive to the background ENSO phases and 
particularly small during strong El Niño. We 
analyze the relationship among BV, forecast error 
and background SST anomalies in a statistical 
sense. The result (Fig. 1) suggests that the 
pattern correlation between the bred vector and 
the forecast errors is particularly good when the 
bred vector growth rate is large; indicating that the 
dynamical processes dominate the one-month 
forecast error will also strongly influence the 
shapes of bred vectors. In addition, the 
subsurface temperature of bred vector and the 
one-month forecast error also show a strong 
sensitivity to the phase of an ENSO event as 
shown in Fig. 2. For the 1997 warm event, the 
forecast error appeared in the subsurface of the 
western Pacific at the early stages, then 



propagated to the eastern Pacific and amplified. 
Bred vectors capture well where the large forecast 
error is located, including its dynamical eastward 
propagation. We applied EOF analysis to 
represent the dominant structures (Fig. 4 and Fig. 
5) of the bred vector and forecast error and 
compared with the ENSO modes of the 
background subsurface temperature anomaly 
along the equator (Fig. 3). Our results show that 
the dominant structures in the bred vector and 
forecast error are very similar. The structure is 
large-scale and largely projects on the variability 
associated with the ENSO variability. We also 
found that such property remains even with 
different rescaling norms**. This is reasonable 
since the dynamic errors lie in an attractor whose 
dimensionality is much lower than the system 
dimension. As shown in Fig. 3, the first two EOF 
modes of background temperature variability, 
involved mainly with ENSO evolutions, already 
explain about 70% of the total variability. 
Therefore, this constrains the error structure in 
space. Based on the three set of BV SSTs with 
different rescaling norms, we calculate locally 
(~300km by 300km) how much they can explain 
the forecast error. We found that the local 
projection of the forecast error on the subspace 
spanned by three bred vectors is larger than the 
projection on the subspace spanned by three 
operational perturbations, which are represented 
by the differences between two randomly selected 
analysis states. The result is valid for both tropics 
and extra-tropics.  
 
3.2 Implications for oceanic error structures 

in the tropical Pacific 
The spatial correlation between the bred vector 
and forecast error suggests bred vectors can be 
used to identify the shapes of the fast growing 
instabilities that dominate the forecast error. Such 
implication can be quantified by examining the 
zonal and meridional error correlation lengths 
estimated from bred vector and forecast error. For 
this purpose, we first estimate the correlation 
lengths by fitting the error covariance of bred 
vector and forecast error with a Gaussian function. 
Note that in the OI scheme, a simple 
time-independent Gaussian function is used to 
update the analysis field (Troccoli and Haines, 
1999). Our results suggest that for the meridional 
direction, the correlation scales estimated from 
forecast error and bred vector are similar to the 
value used in the OI (~400km). However, for the 
zonal direction, their correlation lengths near the 
equator are much shorter than the value used in 
the OI (~1500km). Generally, the zonal correlation 
length from monthly bred vector has similar trend 
compared to the forecast error and exhibits similar 
scales. The results of Gaussian fitting are 
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summarized in Table 1. The last two columns (the 
fitted variance) reflect the fact that the largest 
variabilities take place near the equator, 
associated with the shallower (and more unstable) 
thermocline.  
 
4. SUMMARY 
In this study, we examined the characteristic and 
relationship between bred vector and the 
one-month forecast error in order to explore 
potential applications to use the bred vector as 
initial coupled ensemble perturbations for 
ensemble forecasting. Our results indicate that 
the one-month forecast error and the bred vectors 
share many common characteristics in the SST 
and subsurface temperature structure in both 
space and time. Our results indicate that the 
one-month forecast error in NSIPP CGCM is 
dominated by dynamical errors whose shape can 
be captured by bred vectors. Such agreement is 
especially good when the BV growth rate is large. 
At the peak of ENSO episodes the growth rate 
and error growth are low, in agreement with Cai et 
al (2003). 
Our results suggest the potential impact from 
using the bred vector to represent the features of 
forecast error, such as initial ensemble 
perturbations for capturing the uncertainties 
related with seasonal-to-interannual variability. 
Due to the heavy computational cost of CGCM, 
the operational ensemble size is limited. 
Therefore, using bred perturbations should allow 
small ensembles to perform efficiently by 
projecting the perturbation evolution on the 
seasonal-to-interannual associated features.  
In addition, the ability of bred vectors to detect the 
month to month forecast error variability should 
allow the oceanic data assimilation scheme with 
simple covariance having monthly flow-dependent 
variations in the SST and subsurface. Our 
preliminary results show that the mean correlation 
length estimated from bred vector and one-month 
forecast error have much shorter zonal scales 
than what has been prescribed in the OI scheme. 
If these shorter scales are used within the OI 
system, it may cause the analysis corrections to 
over-emphasize small scale structures. In stead, it 
is possible to use a hybrid background error 
covariance that combines the standard OI 
background error correlation with information on 
the “errors of the month” provided by the bred 
vectors. Experiments with a Quasi-Geostrophic 
model suggest that this approach can attain a 
level of accuracy comparable to 4D-Var, at a very 
low computational cost (Yang et al, 2005). 
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Fig. 1: Mean value of the pattern correlation (bar) and the Niño3 index (red line) in bins defined by the BV 
growth rate. Pattern correlations and the Niño 3 index are also grouped based on their corresponding 
growth rate. Pattern correlation is defined as the absolute value of the spatial correlation between the 
bred vector and analysis increment in the Niño3 region. The figure shows that large SSTA are associated 
with low BV growth rate (i.e., that errors don’t grow much at the peak of the ENSO episodes), and that 
large correlations between bred vectors and forecast errors occur when there is large BV growth rate.   



 
Fig. 2: (a) Background Niño3 index (°C) and vertical cross-section of temperature analysis increment (°C, 
color) and BV temperature (°C , contour) corresponding to (a) October 1996, before warming developed 
(b) April 1997, warming started (c) November 1997, warming is strongest, and (d) April 1998, warming 
diminished. Contours are plotted only when |BV temperature| is larger than 0.5 °C. This figure shows that 
the BV and the one-month forecast error (analysis increment) are strongly related. 
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Fig. 3 First two EOF modes of the equatorial temperature anomaly representing 44% and 25% of the 

variance. The thick dashed line is the depth of the mean thermocline. EOF modes are normalized. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 First three EOF modes of equatorial temperature of analysis increment. 
 
 

 
 
 
 
 
 
 
 
 
 
Fig. 5 First three EOF modes of equatorial temperature of the unrescaled bred vector, in reverse order. 

 
 
Table 1 The error zonal correlation lengths and mean error variance of SST, obtained by fitting the bred 
vector and forecast error with a Gaussian function                . The operational OI system 
assumes a zonal error correlation length of about 1500 Km. 

 
L (Km) STD of L (Km) C0 

Latitude forecast 
error bred vector

Forecast 
error bred vector

forecast 
error 

bred vector

2.5°~7.5° 514 540 272 269 0.63 0.05 
-2.5°~2.5° 575 505 251 226 0.99 0.14 
-7.5°~-2.5° 445 416 217 199 0.83 0.07 

 

(a) EOF1 (19%) (b) EOF2 (11%) (c) EOF3 (6%) 

(a) EOF3 (7%) (b) EOF2 (8%) (c) EOF1 (9%) 

(a) EOF1 (44%) (b) EOF2 (25%) 


