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ABSTRACT 
 
Kernel principal component analysis (KPCA) is 
an efficient generalization of traditional 
principal component analysis (PCA) that 
allows for the detection and characterization of 
low-dimensional nonlinear structure in 
multivariate datasets.  As with the PCA 
algorithm KPCA maximizes the variance of the 
data points, but in a new coordinate system 
nonlinearly related to the original input space.  
Several well known algorithms for 
dimensionality reduction such as Isomap, 
graph Laplacian eigenmap, and locally linear 
embedding (LLE) can be recast as KPCA by 
using an appropriate kernel.  The kernel itself 
can also be optimized or chosen to facilitate 
dimension reduction.  This study presents the 
application of KPCA for dimension reduction 
on datasets with inherent non-linear structure, 
such as the Lorenz attractor.  The potential of 
performing KPCA analysis on earth science 
data will also be discussed. 
 
1. INTRODUCTION 
 
 Subspace methods such as Principal 
Component Analysis (PCA; aka empirical 
orthogonal function (EOF) analysis) and 
Kernel Principal Component Analysis (KPCA) 
are a family of algorithms that perform feature 
extraction and pattern recognition on 
potentially high dimensional data sets.  
Additional related applications involve 
dimension reduction and denoising of data 
sets.  PCA and its nonlinear extension KPCA 
are subspace algorithms that define a new 
coordinate system to describe the data, in the 
expectation that it represents the features of 
interest.  However, linear classifiers such as 
PCA do not deal well with data that is 
nonlinearly separable, or data that is noisy.  

One solution is to map the dataset into a richer 
feature space, one that may include nonlinear 
features; KPCA is an example of such a 
method.  
 
 KPCA is related to modern 
dimensionality reduction techniques that 
attempt to discover nonlinear sub-manifolds by 
utilizing a similarity measure between data 
points (Burges 2004).  Isomap, graph 
Laplacian eigenmap, and locally linear 
embedding (LLE) are well known dimension 
reduction algorithms that can be described as 
KPCA by using or calculating the proper kernel 
(Ham et al. 2003).  In addition to these 
relationships, specifying a proper kernel for 
particular data sets will allow KPCA to be used 
for dimensionality reduction (Weinberger, Sha, 
& Saul 2004). 
 
2. KERNEL PRINCIPAL COMPONENT 

ANALYSIS 
 

 
Figure 1. Demonstration of KPCA (reproduced 

based on Figure 1 in Schölkopf et al. 1999). 
 
 KPCA is simply the PCA algorithm 
applied to data points that are first mapped into 
another feature space F from the original input 
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space X, as demonstrated in Figure 1.  This is 
performed through a mapping function Φ, 

FX →Φ : . 
The subspace of this feature space F is found 
using PCA and that is the feature space that we 
refer to when transforming from input space to 
feature space and back.  This feature space is 
a finite subspace of the space F which can be 
infinite dimensional. 
 
Schölkopf, Smola, and Muller (1998) introduced 
kernel PCA as a nonlinear generalization of 
PCA.  The KPCA algorithm is the same as 
standard PCA but in the mapped space F.  This 
mapping can be to a large even infinite 
dimensional space where the calculations can 
be computationally prohibitive or even 
impossible.  To obtain the advantages of a rich 
high dimensional feature space without the 
cost, the substitution known as the kernel “trick” 
is applied.  This is the replacement of all dot 
products in the algorithm with a kernel function: 

),())()((:),( yxfyxyxK =Φ⋅Φ=          (1) 
The substitution of the kernel function removes 
the explicit use of the map Φ  and along with it 
the need to perform calculations in the mapped 
space.  The kernel can be any function that 
satisfy Mercer’s theorem; it must be a 
(semi)positive definite, symmetric function. 
 
Two examples of a Mercer’s kernel are given in 
the following equations: 
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Equation 4 is the first order polynomial kernel, 
and when used the KPCA algorithm reduces to 
standard PCA. The other is the Gaussian 
Radial Basis Function (RBF) kernel.  This RBF 
kernel is a mapping to infinite dimensions, 
which has been used successfully in denoising 
and classification applications.  Both kernels 
are utilized in the examples below. 
 
The transformation of points in the subspace 
of F back to the original input space is 
performed by calculating the preimage.  For 
the linear case of PCA, this only requires a 
matrix transpose and multiplication.  However 
this is a nontrivial problem for KPCA with 
nonlinear kernels.  The solutions to this 
nonlinear problem are not guaranteed to be 
unique.  Schölkopf et al. (1999) deals with the 
preimage problem for a general class of 
kernels by solving an optimization problem.  
This can be expressed as a point iteration 
formula for many kernels and is quite efficient. 
 
3. DATA SETS 
 
 The first application of KPCA is to a 
three dimensional data set of 300 points.  The 
structure of the data is generated by adding 
uniform random noise to a parabola. 

            
Figure 2. The preimage of principal components 1, 2, 3 of standard PCA (left) and the resulting 
preimage from projections onto principal components 1, 2, 3 of the RBF kernel (right). 
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Standard PCA (via the first order polynomial 
kernel) applied to the data set generates three 
principal components, each capturing a 
fraction of the total variance.  The preimages 
of the first principal component capture the 
most variance of the three as seen in Figure 2 
(on left, red line).  However the curve 
generated from the preimages using the 
Gaussian RBF kernel (Figure 2 on right) is 

nonlinear and so can follow the trend of the 
data more closely 
 
The next data set analyzed is the Lorenz 
attractor.  The 600 point data set is generated 
by sampling the solutions of the nonlinear 
ordinary differential equations describing the 
attractor: 
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                                      (6) 

s=10, r=28, and b=8/3.  

 

          
(a)                                                                        (b) 
Figure 3. The preimage of principal components 1, 2, 3 of standard PCA on the Lorenz data set (a). 
Three dimensional view of Figure 4 with principal components 1, 2 resulting from the RBF kernel 
(b).  
 
This data set represents a fractal structure 
with a box-counting dimension near 2.04 
(Monahan 2000).  The butterfly-shaped 
attractor has a symmetry that indicates a U-
shaped curve tracing the symmetry of the 
two lobes will explain much of its structure.  
Figure 3 (a) is the results of the standard 

PCA.  The red line is the preimages for the 
first principal component, and this is the 
linear structure that captures the most 
variance of the attractor.  Unfortunately it 
can only account for linear variation.  Figure 
3 (b) shows the nonlinear curve generated 
from the RBF kernel more closely follows 
the nonlinear structure of the attractor.   

 



 

-15-10 -5 0 5 10 15
0

10

20

30

40

x

z

0 10 20 30 40

-20

-10

0

10

20

z

y

-20 -10 0 10 20
-18
-16
-14
-12
-10

-8
-6
-4
-2
0
2
4
6
8

10
12
14
16

y

x

 
Figure 4. Preimage projections of the Lorenz data set using the first two nonlinear PC’s that resulted 

from the RBF kernel. Black dots represent the data set. Red circles represent the preimage. 
 
The KPCA results for the Lorenz attractor are 
very similar in structure with solutions from 
Nonlinear Principal Component Analysis 
(NLPCA) using feed forward neural networks 
(Monahan 2000).  Additionally, the results from 
NLPCA have been shown empirically to agree 
with Principal Curves and Surfaces (PCS) for 
continuous projection functions (Monahan 
2000).  PCS is the true generalization of PCA 
to nonlinear components with a solid 
theoretical grounding. 
 
4. DISCUSSION 
 
 The advantage of using KPCA over 
other nonlinear feature extraction algorithms 
can be significant computationally.  KPCA 
does not require solving a nonlinear 
optimization problem which is expensive 
computationally and the validity of the solution 
as optimal is typically a concern.  KPCA only 
requires the solution of an eigenvalue 
problem.  This reduces to using linear algebra 
to perform PCA in an arbitrarily large, possibly 
infinite dimensional, feature space.  The kernel 
“trick” greatly simplifies calculations in this 
case.  The preimage calculation, if required for 
the problem being solved, can require an 
optimization routine. However, the preimage 
formula from Schölkopf et al. (1999) provides 
an avenue for developing fast and accurate 
point iteration techniques for various kernels.   
 

An additional advantage of KPCA is that the 
number of components does not have to be 
specified in advance.  Solving the eigenvalue 
problem using algorithms for a symmetric 
matrix such as the Jacobi iteration method will 
return all the components at once.  KPCA 
reduces to PCA in the case of the first order 
polynomial kernel.  Furthermore the capability 
to use various kernels for different data sets 
and/or different goals is compelling.  This 
same advantage does lead to the problem of 
selecting the right parameters and the right 
kernel for the task at hand.   
 
KPCA compared to NLPCA and other neural 
approaches can have a disadvantage if the 
data set used for training is very large.  The 
eigenvalue problem is for a symmetric MxM 
matrix, where M is the size of the training set. 
Typical eigenvalue solvers require O(M3) 
operations and O(M2) storage (Press et al. 
1992).  So it is easy to see how the problem 
can become intractable if M is sufficiently 
large.  However recently, sparse greedy 
methods have become available for 
performing approximate KPCA (Schölkopf & 
Smola 2002).   
 
Another limitation of the KPCA algorithm is 
that it can be hard to interpret results in input 
space.  The eigenvectors are not guaranteed 
to exist in input space for every kernel (though 
a good approximation can always be 
calculated).  Additionally the variance 



measurements in feature space do not 
translate back in the input space.  So 
compared to PCS, KPCA is harder to interpret 
in input space.  Though some kernels are well 
understood, for example, the polynomial 
kernels have a clear interpretation in terms of 
higher-order features. 
 Standard PCA is well established and 
used widely in many diverse fields.  KPCA is a 
useful generalization that can be applied to 
these domains where nonlinear features 
require a nonlinear feature extraction tool. 
 
We plan to use the KPCA algorithm on real 
earth science data such as the sea surface 
temperature (SST) or normalized difference 
vegetation index (NDVI). The resulting 
information from KPCA can be correlated with 
signals such as the Southern Oscillation Index 
(SOI) for determining relationships with the El 
Nino phenomenon. KPCA can be used to 
discover nonlinear correlations in data that 
may otherwise not be found using standard 
PCA.  The information generated about a data 
set using KPCA captures nonlinear features of 
the data.  These features correlated with 
known spatial-temporal signals can discover 
nonlinear relationships.  KPCA offers improved 
analysis of datasets that have nonlinear 
structure. 
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