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1.  INTRODUCTION 
 

 The Second Alliance Icing Research Study 
(AIRSII) was conducted over southeastern Canada 
from November 2003 to March 2004. One of the 
main objectives of the project was to develop and 
evaluate systems to diagnose and forecast in-flight 
icing conditions over short time periods. Several 
operational in-flight icing products were available 
during the field project for evaluation. They include 
Current Icing Potential (CIP; Bernstein et al. 2005), 
Forecast Icing Potential (FIP), System of Icing 
Geographic identification in Meteorology for 
Aviation (SIGMA; Lebot 2004), the GOES-derived 
Cloud Products (GDCP; Minnis et al. 1995, 2001), 
the Global Environmental Multi-scale (GEM) model 
and the Penn State University/National Center for 
Atmospheric Research (PSU/NCAR) Mesoscale 
Model (MM5).  Also participating in the field project 
were several research aircraft including the NASA 
Glenn Twin Otter, the University of North Dakota 
Citation, and the National Research Council Convair-
580. Each of these aircraft was equipped with 
standard cloud microphysical probes including a 
CSIRO hot wire liquid water probe (King probe) and 
a Rosemount icing detection probe.  

For this particular study a statistical 
verification of several of the in-flight icing 
nowcasting algorithms (CIP, SIGMA, and GDCP) 
was performed using King liquid water content 
(King-LWC) and Rosemount probe heating cycles 
(ROSE) from the NASA Glenn Twin Otter and the 
NRC Convair-580 research aircraft as verifying 
observations.  A verification study based on pilot 
reports (PIREPs) of icing conditions was also 
performed over the continental U.S. (CONUS) for the 
time period bracketing the AIRS-II field campaign 
(01 October 2003 - 31 March 2004). CIP and SIGMA 
1500 and 2100 UTC runs and 1445 and 2045 UTC 
GDCP products were verified against the research 
aircraft and PIREP datasets. 
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2. DATA  
 
2.1 CIP icing potential field 
 CIP is a physically-based, situational 
algorithm that diagnoses icing by combining satellite, 
surface, radar, lightning and PIREP observations with 
fields from the 20-km Rapid Update Cycle (RUC) 
numerical weather prediction model (Benjamin et al. 
2001). The output of CIP is an “ icing potential”  with 
floating point values from zero (no potential for 
icing) to 1.0 (icing very likely) (Fig. 1). 
 
 

 
Fig. 1 Example of CIP Icing Potential for 13 Nov 2003 at 
21Z. 
 
2.2 SIGMA index field 
 SIGMA is an operational, diagnostic, in-
flight icing algorithm developed at Meteo-France. It 
is normally run over Europe and utilizes a 
combination of several different data sources. These 
data include relative humidity (RH), temperature (T), 
and vertical velocity (VV) from the French numerical 
weather prediction model ARPEGE, infrared satellite 
imagery from METEOSAT, and radar imagery from 
ARAMIS.  For the evaluations in this paper, SIGMA 
was modified to run over the CONUS and the AIRSII 
field project area. In particular, for this evaluation 
SIGMA used forecasts of RH, T, and VV from the 
20-km RUC as well as the cloud mask from CIP to 
generate its icing index (Fig. 2). This index, much 
like CIP, is defined as a potential of icing with values 



ranging from 0.0 (No Icing likely) to 10.0 (Icing 
likely). 
 

 
Fig. 2 Example of SIGMA from the same time period 
as Fig 1. 
 
 
2.3 NASA Langley Research Center (LaRC) GDCPs 
 The NASA LaRC GDCPs  are generated by 
combining the GOES-10 and GOES-12 satellite data 
and using the Visible Infrared Solar-Infrared Split-
window Technique (VISST) during daylight hours 
(Minnis et al. 1995, 1998). A complex cloud 
identification method (Trepte et al. 1999) is initially 
used to identify whether a specific pixel is to be 
classified as cloudy or clear. When a pixel is 
classified as cloudy, the VISST is used to ascertain 
characteristics such as cloud phase, liquid or ice 
water path, effective temperature, effective height, 
optical depth, and particle size. For this study the 
cloud phase (PHASE) will be evaluated (Fig. 3). 
 
 

 
Fig. 3 An example of the NASA LaRC GDCP cloud 
phase product from the same date  as in Figs 1 and 2 
but valid for 2045Z. 
 

In order to accurately evaluate PHASE, the 
data were mapped from a 5km grid over the RUC 
domain to a 20 km grid. This re-mapping resulted in 

16 satellite pixels being mapped to each 20-km grid 
box and allowed for a direct comparison with the 20-
km CIP and SIGMA output. The 20-km PHASE 
product was generated simply by counting the 
number of pixels that were characterized as 
representing SLW. If 3 pixels out of a possible 16 
were listed as SLW, the 20-km point would have a 
“3”  recorded for the SLW category.  

 
 

2.4 Research Aircraft data 
 The data from the NASA Glenn Twin Otter 
and the NRC Convair-580 were available for the 
evaluations. In order to directly compare the research 
aircraft data to the 20-km gridded algorithms, the 
data were smoothed over 20-km segments by 
calculating the amount of time it took for the aircraft 
to traverse 20km using the average airspeed. Upon 
completion of a 20km segment, the individual 
latitudes and longitudes were averaged. Fig. 4 is a 
map of the research aircraft locations. Also recorded 
for each segment were median temperature; average, 
minimum, and maximum altitude; average airspeed; 
average, median, minimum, and maximum King-
LWC; and maximum ROSE.  A total of 680 20-km 
segments  were generated by the research aircraft. 
 
 

 
Fig. 4 Locations of 20km research aircraft segments 
for the AIRSII field project. 
 
 
2.5 Pilot repots (PIREPs) 
 PIREPs, which signify an observation of 
icing or lack thereof, are vital because they are the 
primary “ground truth”  observations available to 
verify the presence or absence of icing at a specific 
location and time. However, standard PIREPs have 
several drawbacks.  They are subjective in nature, 
typically do not provide high resolution information, 
and underreport the absence of icing. Table 1 lists the 



counts of the numbers of PIREPs available over the 
evaluation period for each icing intensity. Intensities 
equal to 5 or more are considered moderate or greater 
(MOG) PIREPs.  
 
 
Table 1.  Numbers of PIREPs available over  the 
CONUS from 01 October  2003 – 31 March 2004 
for  the 15Z and 21Z time per iods.  

Intensity Description Counts 
8 Severe 33 
7 Heavy 5 
6 Moderate-Heavy 187 
5 Moderate 1596 
4 Light-Moderate 3952 
3 Light 4538 
2 Trace-Light 3112 
1 Trace 628 
0 No Icing 8574 

 
 
3. VERIFICATION METHODS 
 
3.1 PIREP evaluations 

Evaluations were accomplished by 
comparing the CIP algorithm icing potential, SIGMA 
icing index, and PHASE product to PIREPs of 
positive and negative icing. Because the PHASE 
product is two dimensional [i.e., the individual pixels 
are only valid at or near cloud top height (CTH), a 
field included in the GDCP suite] , the simultaneous 
evaluation of the three products required that the 
algorithms only be evaluated with observations that 
were located within 305m (1,000ft) or 915m (3,000ft) 
below the median CTH. The purpose of the “buffer”  
below the median CTH was to enable the PHASE 
product to be evaluated in three dimensions and over 
the same volume as CIP and SIGMA. The average 
CTH was calculated either by averaging the CTH 
values of pixels that were considered to represent 
clouds or by averaging the CTH of pixels that were 
only considered to have supercooled liquid water 
(SLW), depending on which cloud phase was being 
evaluated. In order to better compare the PHASE 
product to the CIP and SIGMA icing products, the 
SLW product is used throughout these evaluations. 
The algorithm values at the four grid boxes 
surrounding the PIREP were then examined. Since 
CIP incorporates information from PIREPs in the 
hour prior to the analysis time, only PIREPs from the 
hour following the valid time were included in the 
analysis. Statistics were then computed and analyzed. 

A separate evaluation of CIP and SIGMA 
was also performed using all of the available PIREPs 
and all available levels. 

3.2 Research aircraft evaluations 
 Evaluations were accomplished by using an 
approach much like that used for the PIREP 
evaluations. The two types of research aircraft 
observations used were the 20-km average King 
LWC at T < 0˚C and the number of Rosemount 
heating cycles over 20 km. They were used 
separately in evaluation of the algorithms, except in 
cases where the King LWC was in the 0.001-0.025 
g/m3 range. When this occurred, the Rosemount 
probe data was used to determine the presence of 
icing. 
 
3.3 Verification Technique 
 The methods utilized in the evaluation of the 
icing algorithms are based on standard techniques of 
forecast verification, as described by Brown et al. 
(1997). The icing forecast verification methodology 
treats icing forecasts and observations as Yes/No 
values. Brown et al. (1999) outlines how this method 
can be extended to verify continuous, rather than 
binary fields. Icing diagnoses produced by 
CIP/SIGMA can be converted into a set of Yes/No 
values by applying a variety of thresholds. For 
example, applying a threshold of 0.20/2.0 to 
CIP/SIGMA diagnoses would lead to a Yes value for 
all grid boxes with an icing potential greater than or 
equal to 0.20/2.0 while each grid box with a value 
less than 0.20/2.0 would be assigned a No value. The 
CIP and SIGMA values are chosen as the maximum 
of those available from the four 20-km grid boxes 
surrounding the aircraft location.  

For the PHASE product, the four 
surrounding 20-km boxes contain 64 satellite pixels.  
These data can be thresholded at 8 pixel intervals.  
For example, one threshold would test whether more 
than 8 pixels indicating SLW were present.  If this 
condition was met, it would be counted as a "Yes" 
icing diagnosis.  

The verification methods are based on a 
two-by-two contingency table (Table 2). Each cell in 
this table contains a count of the number of times a 
particular forecast/observation pair was observed at a 
specific threshold. 

  
Table 2. Contingency table for  YES/NO forecasts. 
Elements in cells are counts of forecast-observation 
pairs. 

Observation  
Forecast YES NO 

 
Total 

YES YY YN YY+YN 

NO NY NN NY+NN 

Total YY+NY YN+NN YY+YN+ 
NN+NY 

  



Table 3 presents a list of the thresholds 
used in the evaluation of the three algorithms. The 
PHASE thresholds are in numbers of SLW pixels 
contained in the four surrounding 20-km grid spaces 
surrounding an observation. 
 
Table 3.  Thresholds used for  ver ification of CIP, 
SIGMA, and PHASE. 

Thresholds 
CIP SIGMA PHASE 
>0 >0 >0 

0.05 0.5 8 
0.15 1.5 16 
0.25 2.5 24 
0.35 3.5 32 
0.45 4.5 40 
0.55 5.5 48 
0.65 6.5 56 
0.75 7.5 64 
0.85 8.5 - 
0.95 9.5 - 

 
PODy and PODn are the primary 

verification statistics that are included in this 
evaluation. They are estimates of the proportions of 
Yes and No observations that are correctly 
diagnosed. Together, PODy and PODn measure the 
ability of the forecasts to discriminate between Yes 
and No icing observations. Other common 
verification scores (e.g., false alarm ratio, critical 
success index) cannot be computed due to the nature 
of the verification data (Brown and Young 2000). 
Table 4 gives the definition and description of these 
statistics. 

 
Table 4. Verification Statistics used for  the evaluation of 
CIP, SIGMA, and PHASE. 

Statistic Definition Description 
PODy YY/(YY+NY) Probability of 

detection of YES 
observations 

PODn NN/(NN+YN) Probability of 
detection of NO 
observations 

TSS PODy+PODn-1 True Skill Statistic 
Area under 
ROC curve 

(AUC) 

Area under the 
curve relating 
PODy and 1-

PODn 

Area under curve 
relating PODy and 
1-PODn (ROC 
curve) 

 
The relationship between PODy and 1-

PODn for different thresholds is the basis for the 
verification approach known as “Signal Detection 
Theory”  (SDT). This relationship can be represented 
for a given algorithm with the curve joining the (1-
PODn, PODy) points for different thresholds. The 

resulting curve is known as the “Relative Operating 
Characteristic”  (ROC) curve in SDT. When PODy is 
plotted on the y-axis, the closer a given curve comes 
to the upper left corner, the better the forecast. The 
area under the curve (AUC) is a measure of overall 
forecast skill and provides another measure that can 
be compared among products. This measure is not 
dependent on the threshold used. A forecast with zero 
skill would have an ROC area of 0.5. 
 
 
4. RESULTS 
 Because GDCP is essentially two-
dimensional, it is not considered in all evaluations. In 
the following subsections, full volume comparisons 
of CIP and SIGMA are considered first for each type 
of evaluation, followed by limited-volume 
comparisons of all three algorithms. PIREP-based 
results are presented first, followed by comparisons 
with research aircraft data. 
 
4.1 PIREP evaluation results (CIP & SIGMA) 
 The time period for this evaluation was 01 
October 2003 to 31 March 2004. The 1500 UTC and 
2100 UTC valid times were considered. Fig. 5 shows 
ROC curves for this evaluation, which indicate the 
capabilities of both algorithms at capturing MOG and 
negative icing PIREPs. Both CIP and SIGMA have 
approximately the same scores for the higher 
thresholds (0.35-0.95 for CIP and 3.5-9.5 for 
SIGMA) which are evident by the near overlap of the 
bottom part of both curves. CIP continues to detect 
the YES PIREPs at lower thresholds (>0-0.25) while 
SIGMA only captures a few at its lower thresholds 
(>0 – 2.5). This is evident by the separation of the 
curves at the top of the plot. Because of this 
separation, CIP (AUC=0.75) showed slightly more 
skill than SIGMA (AUC=0.69) for this evaluation. 
 
 
 

 
Fig. 5 ROC plot  for CIP v. SIGMA PIREP 
evaluation for 01 Oct 2003 – 31 March 2004. 
 



4.2 PIREP evaluation results (CIP, SIGMA, and 
PHASE) 
 
 The time period evaluated in this part of the 
study is the same as in section 4.1 (i.e., 1 October 
2003 to 31 March 2004). PHASE was included in the 
comparison, along with SIGMA and CIP. In order to 
directly compare the three products, observations and 
diagnostic levels from CIP and SIGMA were limited 
to an area 305m (1,000ft) below the average GDCP’s 
CTH for the pixels diagnosed as containing SLW in 
the PHASE product. The ROC curves in Fig 6 show 
similar results for CIP and SIGMA as those shown in 
Fig. 5, with a slight reduction in the PODn statistics. 
The skill of the PHASE product is positive (AUC = 
0.56) but less than the skill of CIP (AUC = 0.71) and 
SIGMA (AUC = 0.66).    
 

 
Fig. 6 ROC plot for CIP, SIGMA, and PHASE PIREP 
evaluation for 01 Oct 2003 – 31 March 2004. 
 
4.3 Research aircraft evaluation (CIP & SIGMA) 
 For this part of the evaluation the two 
algorithms were evaluated over the AIRSII time 
period wherever Twin Otter or Convair-580 research 
aircraft data were available and could be expanded to 
20-km segments. For Figure 7, icing conditions were 
defined by KingLWC > 0 g/m3 and Temp < 0 °C). 
The ROC curve for CIP in Fig. 7 is similar to the CIP 
curves in Figs. 5 and 6 (AUC = 0.71). An increase in 
both algorithms’  ability to detect YES reports at 
lower thresholds is apparent, but the lower PODn 
values result in overall similar skill to that found in 
previous test. SIGMA's AUC fell slightly, though, to 
0.61.  
 

 
Fig. 7 ROC plot for CIP v. SIGMA AIRSII Research 
Aircraft evaluation using KingLWC as the 
observation for 01 Oct 2003 – 31 March 2004. 
 
 Figure 8 shows verification results when 
icing conditions are defined by ROSE>0. Using this 
test, CIP and SIGMA performance is virtually 
equivalent at higher thresholds, with the ability of 
SIGMA to detect YES reports at lower thresholds 
again, not as strong as CIP's. This equated to larger 
skill for CIP (AUC=0.66) than with SIGMA 
(AUC=0.61). 
 

 
Fig.  8 ROC plot for CIP v. SIGMA AIRSII Research 
Aircraft evaluation using Rosemount heating cycles 
as the observations for 01 Oct 2003 – 31 March 2004 
. 
4.4 Research aircraft evaluation (CIP, SIGMA and 
PHASE) 
 This evaluation was accomplished much like 
the evaluation in section 4.2, with King LWC 
measurements from the research aircraft used as 
observations as opposed to PIREPs. Due to the lack 
of matching observation/diagnoses pairs, the ROC 
curves that were used in the previous results sections 
could not be reliably generated.  Table 5 is a list of 
PODy and PODn statistics for each algorithm at a 
single threshold (CIP=0.35, SIGMA=3.5, and 
PHASE=24); these particular thresholds were 
selected to produce similar values of PODy.  Thus, 
for each algorithm, the detection of King LWC > 0 



g/m3 was relatively close [PODy = 0.76 (CIP), 0.74 
(SIGMA), and 0.76 (PHASE)] while the ability to 
detect NO observations was different [PODn = 0.67 
(CIP), 0.59 (SIGMA), and 0.33 (PHASE)]. When 
comparing the PODy and PODn results together, CIP 
(TSS = 0.43) and SIGMA (TSS=0.33) seem to have 
more skill than PHASE (TSS-0.09).  
 
Table 5.  Statistics for  CIP, SIGMA, and PHASE 
for  AIRSII  research aircraft evaluation. 

Algorithm 
(Thresh) 

PODy PODn TSS 

CIP(0.35) 0.76 0.67 0.43 
SIGMA(3.5) 0.74 0.59 0.33 
PHASE (24) 0.76 0.33 0.09 

 
 
5. CONCLUSIONS 
 
5.1 PIREP evaluations 
 For each PIREP evaluation, CIP and 
SIGMA showed similar results. The two algorithms 
had approximately equivalent skill at discriminating 
between the YES and NO icing reports at higher 
thresholds (0.35-0.95 for CIP and 3.5-9.5 for 
SIGMA). For the lower thresholds, SIGMA was 
unable to match CIP’s ability to detect YES reports. 
A possible reason for this discrepancy is that CIP's 
fuzzy logic scheme allows for diagnoses of icing at 
lower values of temperature and relative humidity 
than SIGMA's scheme does. The algorithmic 
difference may be partially attributable to the 
development of SIGMA on a different model 
(ARPEGE) that may have different moisture 
characteristics.  
 PHASE showed positive skill in 
discriminating between YES and NO PIREPs. 
Haggerty et al. (2005) showed that the GDCP over-
predicts CTH. Bernstein et al (2005) noted that under 
some circumstances CIP has a similar problem.  This 
problem would have also cascaded into the SIGMA 
dataset. CTH over-prediction would keep all three 
products from detecting negative icing conditions 
between the product estimated CTHs and the actual 
CTH.  The result would be smaller PODn statistics. 
In addition, it was assumed for this evaluation that 
PHASE was predicting positive icing wherever SLW 
was indicated. This assumption is not always the case 
and would also result in a smaller PODn. The SLW-
only PHASE test did show similar skill to a prior 
study (Politovich et al. 2004) where pilot reports that 
were located both above and below the CTH 
measured by the algorithm were included in the 
evaluation, regardless of phase ("all-cloudy" in Fig. 
11). In contrast, the skill of PHASE was evaluated 
using only the SLW pixels for the evaluation done 

here. As a result, the algorithm showed the same 
amount of skill as the all-cloudy (liquid, ice, and 
SLW) evaluation from Politovich et al. (2004). 
 

 
Fig. 11 ROC plot of PHASE [(All-cloudy) +/-3,000ft 
(915m) CTH] versus PHASE [(SLW) – 1,000ft 
(305m) CTH]. 
 
5.2 Research aircraft evaluations 
 The results of the CIP and SIGMA 
evaluations were different for the higher thresholds 
depending on which observation (KingLWC or 
ROSE) was used. While the statistics for SIGMA 
were consistent for the two types of observations, the 
statistics for CIP were somewhat dependent on the 
observation type. A possible explanation for this 
difference may be from ram-air temperature rise on 
the Rosemount probe, which can inhibit the accretion 
of ice on the the probe at higher temperatures (e.g. 0 
to about -2C for the Twin Otter).  This could result in 
simultaneous observations of positive KingLWC and 
ROSE=0 when very warm icing conditions are 
present.  
 Another difference between the PIREP and 
research aircraft results was a reduction in the PODn 
statistics for both algorithms. This could be an 
artifact of the research aircraft data. Specifically, 
when the Twin Otter has a substantial amount of ice 
build-up, the aircraft generally will exit the icing 
conditions just above CTH in order to evaluate 
aircraft performance. Since the aircraft is just above 
the cloud top, the observation is recorded as a No 
while the 25-mb vertical resolution of the RUC and 
CIP's approach of allowing icing to be diagnosed at 
the first model level above its diagnosed CTH may 
result in a yes diagnosis there. The lower PODn for 
the PHASE product (0.33) in section 4.3 might also 
be attributed to its overestimation of CTH.    
 
6. FUTURE WORK 
 
 Expansion of the previous verification to 
include forecast (FIP, GEM, and MM5) as well as the 
liquid water path product from NASA LaRC is in the 



process of being completed. Results will be 
summarized during time of presentation. A more 
comprehensive verification will also be completed 
and summarized in a journal paper in the future. 
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