
 1

P9.2          SUPERCOOLED CLOUD SCALE LENGTH AND CORRELATIVE RELATIONSHIPS 
 
 

Charles C. Ryerson*, George G. Koenig, Constance L. Scott, Eric V. Phetteplace 
Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire 

 

1. INTRODUCTION 
 

The spatial variability of cloud microphysical 
properties is critical to understanding cloud 
properties and their interaction with the 
environment. Understanding the spatial variability 
of cloud microphysical properties is especially 
important in supercooled clouds that cause 
airframe icing. The utility of aircraft icing forecasts, 
as suggested by Politovich (1999), is dependent 
upon the ability to analyze and depict the 
expected variability of cloud properties in a 
forecast area. That is, highly variable icing 
conditions are more difficult to predict and have 
less predictable effects on aircraft performance 
than less variable conditions. Forecasts that 
cannot predict or convey the potential variability of 
conditions are less useful to pilots. 

In this paper we characterize the spatial 
properties of supercooled cloud liquid water 
content (LWC) using variations of cluster analysis 
and thresholding methods for clouds measured in 
the NASA Supercooled Large Drop Research 
Program (SLDRP) conducted in the late 1990s  
(Miller et al., 1998). We also briefly assess 
correlative relationships between liquid water 
content and other cloud properties that may be 
used to indicate the variability of LWC. Our 
analyses are intended to indicate how much cloud 
LWC varies spatially in supercooled clouds. Since 
all measurements in a flight are not made 
simultaneously, we are actually assessing 
spatial/temporal variations. We do not attempt to 
create a climatology of LWC variability because 
we have analyzed only one winter of 
measurements in a small region. Our intent is to 
demonstrate several methods of assessing LWC 
variability with the intent of using at least one of 
the methods for later, more extensive, 
climatological analyses.  
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2. BACKGROUND 
 

The accuracy of icing forcasts and the impact 
of icing on aircraft performance are related to the 
spatial fluctuation of microphysical properties 
within the clouds. Fluctuation of LWC can 
seriously affect aircraft performance by driving 
icing conditions above and below the Ludlam limit. 
Though a forecast may have indicated moderate 
icing conditions, for example, actual cloud 
conditions may consist of overall supercooled 
LWC in the moderate icing range punctuated by 
peaks of high LWC – perhaps above the Ludlam 
limit. These spikes could drive icing from dry 
growth, rime, to wet growth, or clear icing, that 
has a different and potentially more dangerous 
impact on aircraft performance (Koenig, et al., 
2003). An ability to probabilistically characterize 
fluctuations of LWC within forecasts could have a 
significant impact on the prediction of icing 
forecast severity. 

In attempts to develop methods for 
characterizing the fluctuation of icing cloud 
microphysical conditions, Jameson and Kostinski 
(2000) and Ryerson et al., (2001, 2002) 
investigated various methods. Jameson and 
Kostinski (2000), for example, have developed a 
cluster analysis technique that relies on 
characterizing the changes of elements of the 
drop size spectra with time. They have also 
applied this method to hypothetical icing cloud 
LWC series with varying magnitudes of clustering. 
Ryerson et al. (2001) addressed characterization 
of clustering in NASA flight data, some of which is 
used in this report, for assessing the fluctuation of 
LWC within clouds, especially with regard to 
potential influence on remotely sensed LWC. 
Koenig et al. (2003) have also simulated the effect 
of fluctuating icing conditions on actual ice shapes 
formed in an icing wind tunnel. 
 
3. CLOUD MICROPHYSICS 
 

LWC measurements were made by the NASA 
Glenn Research Center’s (NASA-GRC) Twin 
Otter research aircraft during the SLDRP 
conducted from the Fall of 1996 to December 
1999 (Miller et al., 1998). SLDRP was a joint 
NASA, National Center for Atmospheric Research 
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(NCAR), and FAA program with an objective to 
acquire a supercooled large drop (SLD) database 
for characterization of the SLD environment, 
freezing drizzle and freezing rain, aloft. 

Based on specilaized forecasts and real-time 
inflight guidance provided by NCAR, the NASA-
GRC Otter was flown from Cleveland, Ohio to 
locations where conditions were believed to be 
conducive to finding SLD aloft. Flights were 
conducted over regions adjacent to Lake Erie and 
Lake Michigan extending as far south as 
Parkersburg, West Virginia. Though SLD were 
often located, large portions of most flights 
encountered no SLD, especially when in transit to 
or from an area with forecasted SLD. 

LWC measurements used in this study were 
obtained from a King hot wire probe mounted on 
the Otter’s nose. The probe has a measurement 
range of 0-1.0 gm-3, and liquid water is supplied 
as 1-s measurements. Probe zero offset was 
adjusted by comparing King probe mean LWC 
during a flight segment against a Forward 
Scattering Spectrometer Probe (FSSP) mean 
LWC for the same period. The King probe zero-
offset was adjusted to allow King and FSSP mean 
LWCs to match as closely as possible while 
maintaining non-negative LWC values from the 
King probe.  

This report uses SLDRP data from 17 flight 
segments extracted from 14 flights during the 
winter of 1997-1998. Dependence of LWC 
variability on height above cloud base (or below 
cloud top), temperature, and turbulence led us to 
seek flight segments that, as much as possible, 
occurred at a nearly constant altitude. We used 
flight segments with varying heading to lengthen 
our flight segments for better statistics with the 
assumption that cloud conditions were generally 
isotropic directionally. Cloud particle images were 
inspected using a 2-D gray Optical Array Probe to 
characterize flights as pure liquid, mixed phase, or 
fully glaciated. Insufficient information was 
available to exclude turbulence effects. Flights 
selected for analysis had no breaks in cloud.   
 
4. CLUSTERING AND STATISTICAL 
SIMILARITY  
 

Clustering of supercooled LWC values 
associated with patchy clouds (Jameson and 
Kostinski, 2000) can increase the potential for 
dangerous in flight icing conditions relative to 
clouds that do not exhibit patchiness but have the 
same total LWC. Clustering of supercooled LWC 
increases the probability of exceeding the 
Schumann-Ludlam limit, thus increasing the 

probability that a high value of LWC will be 
followed by another high value of LWC rather than 
a low value. To explore clustering of LWC we 
analyzed three flights from the NASA SLDRP 
program in 1998 (Miller et al., 1998) using the 1-s 
LWC measurements and segment lengths of 10, 
30 and 90-s to compute three statistical moments; 
the average (µ ), standard deviation (σ ), and 
skewness(s) of the LWC values associated with 
each segment. Next, we determined if 
consecutive segments were statistically similar 
based on the computed moments. This process 
was repeated and consecutive statistically similar 
segments were grouped together to form a 
cluster. We used different segment lengths to gain 
insight on the impact of scaling on the cluster 
analysis.  

Before analyzing the time series to determine 
clusters, we computed the average, standard 
deviation, variance, skewness, range of values, 
coherence length, and cluster intensity for the 
entire flight series to understand the LWC 
conditions along the flight path. We used a two-
point correlation algorithm (Kostinski and 
Jameson, 1997) to compute the coherence length 
and defined the cluster intensity as being 
proportional to the global standard deviation.  

 
     σℵ∝  (1) 
 
Both the coherence length and the statistical 
moments differ significantly from flight  to flight.  

The deviation of the normalized distribution of 
the measured LWC values from the 
corresponding standard normal distribution 
reflects the potential for clustering. The 
normalized distribution of LWC has a mean of 
zero based on  

     
µ′ = −i ilwc lwc  (2) 

 
Figure 1 compares the distribution of ′ilw c against 
a standard normal distribution with the same 
standard deviation for flight 980224f1b.   

The normalized distribution of the measured 
LWC values differ from the computed standard 
normal distribution for both large (0.28-0.34 g/m3) 
and small (-0.06 to -0.12 g/m3) deviation. As 
noted, deviations from a standard normal 
distribution imply an increased potential for 
clustering. Similar results were found for the other 
two flights analyzed, supporting the concept of 
clustering.  

To explore the clustering of the LWC values 
we divided the time series into segments of equal  
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duration and computed the local average, 
standard deviation, and skewness for each 
segment. The number of segments Ns for a time 
series of N one-second measurements with 
segment lengths of ns  and a moving average of ns 
equals  
 
           = − 2s sN N n                                            (3) 

For each segment we calculated the average, µ i
s , 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the standard deviation, σ i
s , and the skewness, i

ss . 
Next, we calculated the change in each of the 
statistical moments for consecutive segments 
( µ µ+= −1

1
i i i

s sm , σ σ+= −1
2
i i i

s sm , and += −1
3
i i i

s sm s s ). 
If the difference satisfies the following criteria   
 
     ( ) ( )⎡ ⎤≤ −⎣ ⎦0.05 * max mini i i

j j jm m m                 (4) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

-0.
16

-0.
14

-0.
12 -0.

1
-0.

08
-0.

06
-0.

04
-0.

02 0
0.0

2
0.0

4
0.0

6
0.0

8 0.1 0.1
2

0.1
4

0.1
6

0.1
8 0.2 0.2

2
0.2

4
0.2

6
0.2

8 0.3 0.3
2

0.3
4

0.3
6

Bin Center (g/m3)

PD
F(

N
or

m
al

iz
ed

 L
W

C
)

Measured LWC
Computed LWC

Moment/Derived 
Parameter 

Flight 980302f1 Flight 980224f1b Flight 980212f1 

Flight duration 
(seconds) 

1462 793 1702 

Average (g/m3) 0.045 0.141 0.202 
Maximum LWC (g/m3) 0.343 0.497 0.379 
Minimum LWC (g/m3) 0.001 0.001 0.003 
Standard Deviation 
(g/m3) 

0.060 0.129 0.085 

Variance (g/m3) 0.003 0.017 0.007 
Coherence length 
(seconds) 

9 105 584 

Cluster Intensity ∝ 0.06 ∝ 0.129 ∝ 0.085 
 

Table 1. Statistical moments and derived parameters for three LWC flight series.

Figure 1. Comparison of the normalized measured LWC distribution and the computed standard
normal distribution with the same standard deviation as the measured values for flight segment 
980224f1b. 
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Figure 2b. Ten second moving average of the LWC values for flight segment 980302f1. 

Figure 2a. Clusters determined using segment lengths of 10, 30, and 90-s for flight segment 
980224f1b. 
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the segments i+1 and i were flagged as being 
statistically similar for statistical moment j. The 
process continues until the entire time series is 
processed. In the final step, we combine 
consecutive segments to form clusters by 
requiring that each statistical moment for the 
segment meets the criteria given in Equation 4. 
We used segment lengths of 10, 30, and 90-s to 
explore the impact of the segment size on 
clustering. As the segment length increases larger 
gaps or regions occur where one or all of the 
statistical moments fail the inequality in Equation 
4. Both the standard deviation and the skewness 
associated with the 90-s segments in flight 
980224f1b are less than the values for the 30 and 
10-s segments. The larger gaps, as seen in 
Figure 2a,  associated  with  the   90-s   segments 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
result from the failure of the changes in the 
average LWC of consecutive segments to meet 
the criteria set forth in Equation 4. A close 
inspection of Figure 2a in the region from 250 and 
600 seconds reveals why. The average of the 90 
second segments in this region are either 
increasing or decreasing monotonically. Thus, the 
change in the average for consecutive segments 
fails Equation 4. Clustering determined in this 
fashion depends on the size of the segment used 
in the analysis. This is a common theme in 
dealing with the determination of clusters 
associated with a time/space series of 
measurements    of    LWC     or   cloud   drop   
concentrations.   What    is    the appropriate scale 
to use  to analyze a  time  series  of  LWC values? 
 
 

Figure 2c. Ten second moving average of the LWC values for flight segment 980212f1. 

Table 2. Cluster/gap characteristic as a function of Cluster Intensity (CI) and coherence length 
(CL). 
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CL=105 
STDEV=0.129 

0.543 9 20 
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CL=9 
STDEV=0.060 

0.949 14 23 
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Figure 3. The ratio of the number of cluster segments to the number of gap segments as a function of the 
global standard deviation. 

Figure 4. The frequency of occurrence of cluster lengths with the indicated number of segments. Blue 
bars are flight segment 980302f1, maroon bars are flight segment 980224f1b, and green bars flight
segment 980212f1. 
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As indicated in Table 1 the coherence length 
and standard deviation differ from flight to flight. 
We explored the relationship of clustering for the 
different flights using a segment length of 10-s, 
dictated in part by the short coherence length 
associated with flight 980302f1. In general, we 
want to use a segment length less than or equal 
to the coherence length determined from the two 
point correlation algorithm.           

 Using a segment length of 10-s, we explored 
the clustering/gap characteristics of three flights 
with different LWC characteristics as evident in 
Table 1. Clusters represent regions of statistical 
continuity as defined by Equation 4, while gaps 
are regions where consecutive segments fail the 
inequality. The ratio in column 2, Table 2 
represents the number of segments flagged as 
clusters based on the inequality in Equation 4 
divided by the number of segments that failed 
(gap segments) the inequality. While the data set 
used in the analysis consists of only three flights, 
Figure 3 indicates a relationship exists between 
the cluster/gap ratio and the global standard 
deviation. We plan to analyze the rest of the flight 
information we have in a similar manner. Figure 4 
presents the distribution of cluster lengths as a  

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Flight 980224f1b, with the highest value of the 

standard deviation, also has the highest frequency 
of occurrences of clusters with segment lengths of  
2, 3, and 4 segments, while flight 980212f1 with a 
long coherence length has the lowest frequency of  
clusters. While there is little change in the 
accumulative frequency for flight 980224f1b and 
flight 980302f1 for clusters consisting of more 
than eight segments, the accumulative frequency 
continues to change for flight 980212f1 reflecting 
the fact that flight 980212f1 has clusters with 
larger segment counts consistent with the larger 
coherence length. Defining clusters based on 
statistical continuity between consecutive 
segments depends on the segment size and each 
of the statistical moments.  

Additional data analysis of flight data needs to 
be accomplished to fully explore the utility of this 
approach. However, since the focus is on aircraft 
icing we also explored the use of threshold 
techniques to determine the duration and 
frequency an aircraft would be in LWC conditions 
that exceed a specified threshold. Rather than use 
values like the Schumann-Ludlam limit or the 
values for trace, light, moderate, and severe icing 
(Politovich, 1999), we set our threshold relative to 
the global average for the flight data being 
analyzed.  

 
 
 
 

 flight Average 
LWC (µ) 
(g/m3) 

Skewness 
(g/m3) 

Standard 
Deviation 
(g/m3) 

Number of 
1-second 
data points  

Coherence 
Length 
(1-sec pts) 

Maximum 
LWC 
(g/m3) 

980112f1 0.105 0.7606 0.0723 985 41 0.3242
980126f2 0.124 0.9073 0.0917 2584 82 0.4845
980126f3 0.164 1.7963 0.15570 1560 109 0.6846
980130f1 0.086 0.3145 0.05706 1362 49 0.2256
980204f1a 0.030 1.1364 0.00759 2536 9 0.0723
980204f1b 0.195 2.6225 0.08977 2668 12 1.4135
980204f2 0.218 1.6539 0.46704 5165 232 1.4018
980204f3 0.054 0.3316 0.03103 726 242 0.1418
980205f1 0.092 2.2077 0.05993 1791 71 0.6355
980205f2 0.018 1.7165 0.00936 909 12 0.0702
980212f1 0.201 -0.6269 0.08543 1703 12 0.3793
980224f1b 0.140 1.0693 0.12916 704 104 0.497
980224f1bb 0.095 1.0264 0.08797 1873 44 0.4248
980227f1 0.271 1.8164 0.20784 2401 26 1.3154
980302f1 0.045 2.4641 0.06034 1462 9 0.3433
980318f1a 0.042 5.3522 0.03991 1186 23 0.4589
980318f1b 0.095 1.02649 0.08797 1873 44 0.4248
 

 Table 3. Flight LWC characteristics based on the entire data series.  
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Flight 

Percent of    
1-s pts 
LWC≥  T 

(%) 

Percent of  
1-s pts 
LWC< T 

(%) 

 
LWC T
LWC T

≥
<

 

 
ALWC≥T 

(g/m3) 

ALWC T
TLWC

≥
 

(%) 
980112f1 30.0 69.9 0.430 58.6 56.29 
980126f2 29.5 70.4 0.419 187.0 58.19 
980126f3 24.2 75.7 0.320 256.2 32.22 
980130f1 35.5 64.4 0.551 73.2 62.26 
980204f1a 13.0 86.9 0.150 14.6 19.22 
980204f1b 20.8 79.2 0.263 178.9 34.37 
980204f2 27.7 72.2 0.384 547.7 48.62 
980204f3 32.7 67.2 0.488 21.6 55.00 
980205f1 23.5 76.4 0.308 75.3 45.27 
980205f2 21.0 78.9 0.266 6.1 36.95 
980212f1 29.3 70.7 0.414 143.8 42.00 
980224f1b 30.2 69.7 0.433 73.2 65.56 
980224f1bb 32.7 67.2 0.488 123.7 69.51 
980227f1 28.6 71.3 0.401 366.5 56.16 
980302f1 22.5 77.5 0.290 44.3 66.88 
980318f1a 18.5 81.4 0.228 20.4 40.36 
980318f1b 32.7 67.2 0.488 123.7 69.51 
 

Table 4a. Computed characteristics for each flight based on a threshold (T) defined as 1.25*average 
LWC. ALWC= Accumulative LWC and TLWC = total LWC for the flight. 

Table 4b. Additional characteristics of flights based upon threshold T. 

Table 4b  
 
Flight 

 
ALWC<T 

(g/m3) 

ALWC T
TLWC

<
 

(%) 

ALWC T
ALWC T

≥
<

 

980112f1 45.5 43.71 1.288 
980126f2 134.9 41.81 1.392 
980126f3 539.0 67.78 0.475 
980130f1 44.4 37.74 1.650 
980204f1a 61.6 80.78 0.238 
980204f1b 341.7 65.63 0.524 
980204f2 578.9 51.38 0.946 
980204f3 17.6 45.00 1.222 
980205f1 91.0 54.73 0.827 
980205f2 10.4 63.05 0.586 
980212f1 198. 58.00 0.724 
980224f1b 38.4 34.44 1.904 
980224f1bb 54.2 30.49 2.280 
980227f1 286.2 43.84 1.281 
980302f1 21.9 33.12 2.019 
980318f1a 30.2 59.64 0.677 
980318f1b 123.7 30.49 2.280 
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Figure 5. Scatter diagram of the average LWC vs. the LWC standard deviation for each flight. 
 

 
Figure 6. Scatter diagram of the standard deviation vs. /LWC T LWC T≥ <  
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5. LWC ANALYSIS BASED ON RELATIVE 
THRESHOLD 
 

In this section, we explore horizontal 
variability of LWC for a number of flight series by 
defining a threshold relative to the average LWC 
for the flight. The selected threshold used was 
1.25 times the average value. For each flight, we 
determine the points that satisfied the following 
criteria; 
 
     1.25* 1.25*pts    and ptsµ µ≥ <             (5) 
 
We also determine a number of parameters 
(Table 3) based on the data series.  

The coherence length, based on a two-point 
correlation algorithm, represents the ‘average’ 
distance in terms of 1-s data points where the 
value of the correlation first drops to a value of 
1/e. Columns 2 and 3 in Table 4a represent the 
percent of LWC measurements meeting the 
criteria given in the header row of the column. The 
total number of points associated with each flight 
can be found in Table 3 column 5. The rest of the 
columns are self-explanatory.  

Some interesting results appear in the 
information contained in Tables 4a and 4b. For 
example, for  flight 980112f1,  while  only 30%  of 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the points meet the criteria LWC≥T these points 
account for 56.29% of the TLWC. The ratio of 
LWC T LWC T≥ < never even comes close to 
approaching one, in fact the largest value is 0.55, 
while the ratio ALWC T ALWC T≥ < ranges 
from a low of 0.238 to a high of 2.280. Ratios 
greater than one indicate there are more points or 
more ALWC associated with points meeting the 
LWC≥T criteria than points meeting the LWC<T 
criteria. To explore the information contained in 
this dataset we plotted a number of scatter 
diagrams looking for relationships, or clustering of 
information, for the various parameters in Tables 
4a and 4b. For all of the 17 flight segments the 
average LWC increases as the standard deviation 
increases. A power law provided the best fit to the 
data (Figure 5). If we know the average LWC or 
can predict the average LWC, we can use the 
relationship given in Figure 5 to provide an 
estimate of the standard deviation. However, this 
relationship applies only to the flights we 
analyzed.  

In Figure 6, the scatter diagram relates the 
standard deviation to the ratio of the points 
computed using the 
criteria /LWC T LWC T≥ < . While the 
correlation coefficient is relatively low, as the 
standard deviation increases the ratio increases 
and none of the ratios fall below the red line in 

Figure 7. Scatter diagram of  /LWC T LWC T≥ < vs. /ALWC T ALWC T≥ <  
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Figure 6. Figure 7 is a scatter diagram of 
/LWC T LWC T≥ < vs.

/ALWC T ALWC T≥ < . The r2 for this 
relationship is 0.63, the correlation coefficient is 
0.79, and a power law provides the best fit.  

The next series of figures represent the LWC 
series for three flights along the curve in Figure 7. 
Figure 8a represents flight 980204f1a with a 

/LWC T LWC T≥ < =0.15 and 
/ALWC T ALWC T≥ < =0.238. This point is 

located at the lower end of the curve in Figure 7. 
The magenta line at the top of the figure 
represents the points meeting the criteria 
LWC T≥ , while the magenta line at the bottom 
represents points meeting the criteria LWC<T. 
The black horizontal line represents 
T=1.25*average LWC for the series. 

The histogram in Figure 8b gives the 
percentage of intervals with lengths defined in 
terms of 1-s points indicated by the x-axis values 
and the percentage ALWC falling in the indicated 
bin lengths. That is, the percentage of intervals for 
bin length i equals 
 
     
 
 
While the percentage of the accumulative LWC for 
bin i equals 
 

 
 
 
In Figure 8b 76% of all the points meeting the 
criteria of LWC T≥ fall in a bin length of one and 
account for 40% of the accumulated LWC.  

Figure 9a represents flight 980204f2 with a 
/LWC T LWC T≥ < =0.384 and 

/ALWC T ALWC T≥ < =0.946. This point is 
located in the middle of the curve in Figure 7. For 
flight 980204f2 we have a decrease of 
approximately 15% of single point bin lengths 
(72% to 58%) and a decrease of the ALWC from 
approximately 40% to 16% for the single point bin 
lengths relative to the values for flight 980204f1a. 
However, flight 980204f2 has bin lengths as large 
as 42 consecutive 1-s points, while flight 
980204f1a’s longest bin length is 14.  

Figure 10a represents flight 980130f1 with 
/LWC T LWC T≥ < =0.551 and 

/ALWC T ALWC T≥ < =1.65. This point is 
located at the upper end of the curve in Figure 7. 
For flight 980130f1, we have intervals as long as  

116 consecutive 1-second points and 
approximately 27% of the ALWC for points 
meeting the criteria of LWC T≥ fall in this 
interval.  

We can make some general statements 
relative to the dataset from the above analyses. 
As the average LWC increases the standard 
deviation increases. In addition, as the ratio of 

/LWC T LWC T≥ <  increases then 
/ALWC T ALWC T≥ <  increases and we 

encounter longer intervals with the LWC greater 
than or equal to 1.25*average LWC. 
 
6. CORRELATIVE RELATIONSHIPS 
 

The seventeen flight segments described 
above were used to assess correlative 
relationships among cloud variables. The intent, 
as indicated earlier, was to allow estimation of 
LWC variance based upon other cloud 
characteristics as suggested  by Politovich (1999).  

 
 
 
                                                                     (6) 
 
 
 
 
 
                                                                     (7) 
 
 
Correlations between LWC and other cloud 

variables were made using measurements at 1-s 
intervals. However, a 5-s running mean was 
applied to all measurements to reduce rapid 
fluctuations that could, in part, be instrument 
induced and that might hinder identification of 
relationships because of the different response 
times of instruments and cloud microphysics. 
Typical aircraft speed was about 70 m s-1 making 
the spatial averaging about 350 m. We related the 
following variables to LWC; median volume drop 
diameter (MVD: microns), total temperature (TT: 
ºC), static temperature (ST: ºC), dew point 
temperature (DP: ºC), altitude (ALT: m above 
msl), and FSSP particle concentration 
(particles/m3).  

Overall, relationships between LWC and the 
other variables are weak, with r2 being typically 
less than 0.7 (Table 5). In general, r2 varied 
considerably among flight segments for LWC  
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number of intervals of length iPercentage of intervals for bin i=
total number of intervals for LWC T

 
≥

ALWC for all bins of length iPercentage of ALWC for bin length i=
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Figure 8a. Magenta lines represent LWC greater or equal to the threshold or less than the 
threshold for flight segment 980204f1a. See text for additional explanation. 

Figure 8b. Percentages of intervals and accumulated LWC by bin length for flight segment
980204f1a.  
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Figure 9a. Magenta lines represent LWC greater or equal to the threshold or less than the
threshold for flight segment 980204f2. See text for additional explanation. 

Figure 9b. Percentages of intervals and accumulated LWC by bin length for flight segment 
980204f2.  
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Figure 10a. Magenta lines represent LWC greater or equal to the threshold or less than the 
threshold for flight segment 980130f1. See text for additional explanation. 

Figure 10b. Percentages of intervals and accumulated LWC by bin length for flight segment
980301f1. 
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relationships with MVD, static temperature, dew 
point,   and   altitude.   All  but  one  r2  (with MVD) 
were less than 0.6 and typically were less than 
0.4. Only relationships with FSSP particle 
concentration were generally high, with all but four 
being larger than 0.3. A composite correlation for  
all of the 17 flight  segments   between  LWC and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
FSSP concentrations yielded an r2 0.45. 

Politovich (1999) demonstrated that there was 
a relationship between LWC mean and standard 
deviation in a 106 flight segment database. Our 
17 cases from the SLDRP flight segments show a 
very strong relationship (Figure 11). 
 

 MVD TT ST DP ALT FSSP 
980318f1a 0.087 0.085 0.061 0.430 0.193 0.498 
980318f1b 0.023 0.011 0.072 0.124 0.082 0.398 
980302f1 0.221 0.073 0.070 0.427 0.122 0.669 
980227f1 0.507 0.294 0.148 0.019 0.030 0.460 
980224f1b 0.021 0.013 0.090 0.470 0.019 0.600 
980212f1 0.842 0.159 0.373 0.021 0.007 0,.369 
980205f2 0.003 0.027 0.085 0.052 0.198 0.232 
980205f1 0.087 0.157 0.145 0.079 0.083 0.164 
980204f3 0.312 0.070 0.041 0.061 0.028 0.407 
980205f2 0.012 0.514 0.525 0.027 0.051 0.151 
980204f1a 0.138 0.255 0.087 0.003 na 0.302 
980204f1b 0.050 0.057 0.067 0.081 0.148 0.099 
980130f1 0.432 0.168 0.105 0.172 0.275 0.797 
980122f1 0.178 0.581 0.069 na 0.020 0.178 
 

Figure 11. Relationship between average LWC and standard deviation for the 17 flight 
segements. 
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 Table 5. Relationships between LWC and MVD, TT, ST, DP, ALT, and FSSP 5-s running means as 
expressed by r2 values. 
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6. DISCUSSION 
 

The safety of aircraft in icing conditions is 
dependent upon the ability of the aircraft to deice 
or anti-ice in the encountered conditions, which is 
dependent upon the ability of forecasters to 
accurately depict the conditions prior to 
encounter. Aircraft must not fly into conditions 
predicted to be more severe than the aircraft ice 
protection systems can tolerate. Two elements 
are required for prediction; icing intensity (trace, 
light, etc) and the variability of the supercooled 
LWC along the path. The second predicted 
information provides insight on the icing type 
(rime, clear, etc) when the Ludlum limit is 
considered. 

Our analyses suggest that typical measures of 
cloud LWC made at 1-s intervals may be used to 
characterize and predict the variability of LWC. 
Utilizing clustering techniques, we found that a 
relationship exists, at least for LWC in three flight 
segments analyzed, between flight segment 
global standard deviation and the ratio of cluster 
segments versus gap segments.  

Another approach, based upon threshold 
techniques indicates that, for our 17 flight 
segments, there is a general power law 
relationship between average LWC and flight 
segment global standard deviation. That is, if 
average LWC can be measured or predicted then 
an estimate of LWC standard deviation can be 
predicted. Such a relationship, if it holds for large 
geographic regions, or for specific cloud types or 
synoptic conditions, could be used to create 
climatologies to improve regional icing forecasts 
and provide pilots with an indication of hazard 
potential. 

The correlative analysis for the 17 flight 
segments suggests that relationships between 
LWC and total temperature, static temperature, 
dew point, and altitude are quite weak. Only 
measured or predicted particle concentrations, 
whether liquid or ice, have any ability to predict 
cloud liquid water content or vice versa. Politovich 
(1999) indicates that the variability of LWC may 
be related to mean LWC, and our SLDRP 
measurements provide similar results. 

 
7. CONCLUSIONS 
 

The techniques presented in this paper 
indicate that the ability to predict the variability of 
LWC from predicted average or cumulative values 
is promising. In general, variability increases as 
the mean increases. If acceptable, these 
techniques could be used to create climatologies 

of LWC variability with predicted mean LWC 
based upon region, cloud type, or synoptic 
environment. All that is necessary is appropriate 
inflight LWC measurements. 
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