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ABSTRACT

The rapid identification of contaminant plume sources
and their characteristics in urban environments can
greatly enhance emergency response efforts. Source
identification based on downwind concentration mea-
surements is complicated by the presence of building
obstacles that can cause flow diversion and entrain-
ment. While high-resolution computational fluid dynam-
ics (CFD) simulations are available for predicting plume
evolution in complex urban geometries, such simulations
require large computational effort. We make use of an ur-
ban puff model, the Defence Science Technology Labo-
ratory’s (Dstl) Urban Dispersion Model (UDM), which em-
ploys empirically based puff splitting techniques. UDM
enables rapid urban dispersion simulations by combin-
ing traditional Gaussian puff modeling with empirically
deduced mixing and entrainment approximations. Here
we demonstrate the preliminary reconstruction of an at-
mospheric release event using stochastic sampling al-
gorithms and Bayesian inference together with the rapid
UDM urban puff model based on point measurements of
concentration. We consider source inversions for both a
prototype isolated building and for observations and flow
conditions taken during the Joint URBAN 2003 field cam-
paign at Oklahoma City.

The Markov Chain Monte Carlo (MCMC) stochastic
sampling method is used to determine likely source term
parameters and considers both measurement and for-
ward model errors. It should be noted that the stochastic
methodology is general and can be used for time-varying
release rates and flow conditions as well as nonlinear dis-
persion problems. The results of inversion indicate the
probability of a source being at a particular location with
a particular release rate. Uncertainty in observed data, or
lack of sufficient data, is inherently reflected in the shape
and size of the probability distribution of source term pa-
rameters. Although developed and used independently,
source inversion with both UDM and a finite-element CFD
code can be complementary in determining proper emer-
gency response to an urban release. Ideally, the urban
puff model is used to approximate the source location
and strength. The more accurate CFD model can then
be used to refine the solution.

1. INTRODUCTION AND BACKGROUND

In the event of an atmospheric release, effective con-
sequence management depends on how much is known
about the release event and how quickly the problem
can be analyzed to an operationally required degree of
certainty. Accurate quantification of specific details of a
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release can greatly assist relief efforts and subsequent
forensic analysis. Such quantification, rarely a straight-
forward task, becomes particularly complicated when the
release occurs in the presence of building obstacles that
can cause flow and dispersion complications. To assist
the rapid analysis of atmospheric releases, the ‘event re-
construction’ (ER) methodology was developed to pro-
vide answers to the questions surrounding a release
event: (1) what was released, (2) how much was re-
leased, and (3) when and where it occurred (Aines et al.
2002; Kosovic et al. 2005). The ER approach developed
at Lawrence Livermore National Laboratory is a Bayesian
inference methodology combining observed data with for-
ward predictive models to determine unknown source
characteristics. This capability can leverage from a large
computational framework that supports multiple stochas-
tic algorithms, forward models, and runs on a wide range
of computational platforms. To analyze urban dispersion
rapidly, the ER methodology was linked to the rapid urban
puff splitting model, the UDM Version 2.2, developed by
Dstl, a United Kingdom Ministry of Defence Lab located
in Porton Down. For this study, the stochastic algorithm
used in the Bayesian inference scheme is a Markov Chain
Monte Carlo (MCMC) algorithm. All UDM and ER runs
were processed for this effort using a single processor on
an MS Windows operating system.

The Urban Dispersion Model (UDM) is an empirical
puff model that estimates atmospheric dispersion in an
urban environment by differentiating three different puff
splitting regimes (open, urban, and long-range) based on
empirical evidence. Different dispersion modeling proce-
dures are applied for each regime in such a way to ac-
count for the effect of single building, building clusters, or
an entire urban environment on the dispersion of Gaus-
sian puffs (Hall et al. 2003).

In the open regime, the overall proportion of the sur-
face covered by obstacles is less than five percent. The
puffs arising in this regime travel across a largely open
terrain over which single obstacles or groups of obstacles
are distributed. Interaction with these obstacles changes
the size and rate of travel of the puff. If the obstacle is
of sufficient size in comparison to the puff, the puff will
split: a portion of the material will become entrained in the
wake of the building while the remainder proceeds largely
unaffected. The fraction of the puff that is entrained will
spread uniformly across the entrainment region and be
delayed by a characteristic wake residence time. After
interaction with the obstacle, puff spreading of both the
unentrained puff and the entrained puff is increased due
to turbulence in the recovery region.

In the urban regime, the plan area density of the ob-
stacles is greater than five percent. The single obstacle
interactions utilized in the open regime are no longer valid
due to interference with multiple entrainment regions from
densely distributed obstacles. Puffs quickly become large



enough to encompass obstacles resulting in a lateral dis-
persion that is effectively higher than the value given by
traditional puff models due to puff interaction with surface
obstacles. Atmospheric stratification is assumed neutral
in this regime for UDM 2.2, a reasonable assumption as
mechanically generated turbulence in the urban environ-
ment is likely to dominate dispersion near the ground. For
the long-range regime the puff is large compared to any
surface obstacles, and puffs are treated with conventional
Gaussian dispersion modeling techniques.

The UDM was implemented into the existing ER frame-
work to provide rapid results taking urban obstacles into
consideration. The UDM implementation complements
efforts employing the FEM3MP CFD model (see Chan
et al. (2001); Chow et al. (2006)). The UDM is compu-
tationally expedient enough to run on a single proces-
sor, as a typical forward simulation with over 100 build-
ings requires less than a minute to complete for the most
complicated case (a similar CFD run requires on the or-
der of 100 CPU hours). Other advantages of using the
UDM for rapid analysis are its relative ease-of-use with
customizable buildings, source strength and location, and
easily described sensor locations. Disadvantages of us-
ing a simple empirical model with ER include the fact that
empirically based building-wake entrainment and detrain-
ment methods inherent to such a model create inversion
difficulties due to discontinuities. Also, the simple wind
field and puff splitting techniques which allow for rapid dis-
persion calculations tend to lead to reduced accuracy in
comparison to CFD modeling. As an example of lost de-
tail, the UDM does not directly model channeling effects
between buildings, a phenomenon typically observed in
urban experiments, including the URBAN 2003 field cam-
paign (Allwine 2004). However, depending on source lo-
cation relative to important building obstacles, puff en-
trainment and detrainment can provide some compensa-
tion for the lack of channeling effects (Figure 1). The Ok-
lahoma City example discussed below demonstrates the
problems that this can cause in the final source charac-
terization.

Two example ER scenarios using the UDM are dis-
cussed below. The first scenario is for simple flow around
a cubic building; the second scenario is a release in
downtown Oklahoma City for observations and flow con-
ditions during the Joint URBAN 2003 field campaign.
In both simulations, the event reconstruction code si-
multaneously samples both source location and source
strength. In the UDM 2.2, source strength is represented
by total mass released, and results of probable source
strength are presented in this way.

2. RECONSTRUCTION METHODOLOGY

The ER framework for this study performs stochastic
inversion using MCMC techniques (see, for example, Gel-
man et al. (2003)). The procedure is as follows: 1. es-
timates of source location and source strength are ob-
tained from a defined prior distribution or proposal distri-
bution of source term parameters; 2. the forward model
(UDM) is run using these input values; 3. the output sen-
sor data from the forward model is compared to the ob-
served data using Bayes theorem; 4. the sampled source
term configuration is either accepted or rejected follow-
ing a Metropolis-Hastings algorithm; 5a. if accepted, the
likelihood function is updated and the values used in the
next iteration are sampled from the proposal distribution

Figure 1: Given a highly complex domain, with
buildings of various shapes and sizes, and concen-
tration measurements at a few locations, is it possi-
ble to find the source of a contaminant plume with a
fast urban puff model?

centered on the accepted value; 5b. if rejected, the next
point is selected based on the last accepted value; 6. this
process is repeated for a large number of iterations until
the convergence to a posterior probability distribution of
source term parameters (representing the solution to the
inverse problem) is achieved. Effective reconstruction us-
ing Bayesian inference via stochastic sampling requires
model and data error quantification. A single log-normal
standard deviation distribution characterized by a single
input parameter is used to represent both uncertainty in
the sensor measurements and uncertainty in the forward
model. The higher the input value of error, the broader
the resulting probability distribution will be. More details
on this methodology can be found in Johannesson et al.
(2004) and in proceedings paper J4.4 (Chow et al. 2006).

3. ISOLATED BUILDING

The first test of integrating UDM with the ER method-
ology is a simple cubic building, 10m to a side and is a
follow-on study to the ‘Isolated Building’ of paper J4.4 in
these proceedings (Chow et al. 2006). Figure 2 shows
a forward simulation using the UDM. The entrainment re-
gion is clearly visible in the figure. Also, the intentional
slight asymmetry of the source location can be seen in
the resulting plume. The ER was performed in compari-
son to synthetic data generated by the UDM for an ‘actual’
source location.

The resulting Markov chains for the source inversion
are shown in Figure 3. The asterisks mark the initial loca-
tion of each of the four chains. The diamonds represent
the four sensors, and the actual source is shown as a
magenta square. After some exploration of the domain
space, the chains quickly converge to the area immedi-
ately surrounding the actual source location. Note that
two of the Markov chains explored the entrainment re-
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Figure 2: Horizontal concentration contours at the
first vertical level generated by a UDM forward sim-
ulation for flow around an isolated cubic building.
Four sensors are placed in the lee of the building.

gion. This result reflects how puffs arising in a building
entrainment region are automatically fully entrained and
how the detrainment process simulates a source. How-
ever, the resulting probability distribution, Figure 4, shows
that the number of samples that the Markov chains sam-
pled from the entrainment region is negligible compared
to the number of samples in the vicinity of the actual
source. Note the peak of the probability distribution is
close to the actual source location.

In addition to the source location, release strength was
stochastically sampled during this simulation. The result-
ing release strengths are displayed in a histogram in Fig-
ure 5. The distribution of total mass has a single, signif-
icant peak in very good agreement with the actual value,
shown as a solid vertical line. When model predictions
are compared to synthetic data, as in this example, the
source inversion calculation is very accurate. However,
to conduct source inversion for actual events, the model
must be able to predict source characteristics using real
data. Due to random and systematic differences between
sensor measurements and model predictions, we expect
that event reconstruction will be less accurate in this case.

4. OKLAHOMA CITY - JOINT URBAN 2003 IOP3

Given a highly complex domain, with buildings of vari-
ous shapes and sizes, and concentration measurements
at a few locations, the possibility of locating the source of
a contaminant plume and determining its characteristics
using a fast Gaussian puff model is of great interest (Fig-
ure 1). Event reconstruction with the UDM was applied to
Oklahoma City in order to compare the model output to
observations from the Joint URBAN 2003 field campaign.
A standard shape file of downtown Oklahoma City was
used to construct the buildings. Actual source and sen-
sor locations were used to recreate the field experiment.
An event reconstruction calculation was conducted using
concentration measurements from the Intensive Obser-
vational Period 3 (IOP3) from the Joint Urban 2003 tracer
field experiment in Oklahoma City with a southerly wind
input. A UDM 3D puff simulation and the downtown of
Oklahoma City is illustrated in Figure 6. During our sim-
ulations, one large building in the south of the modeled
domain was found to play a key role. The entrainment
region of this building will be shown to adjust for some
deficiencies of the forward model, specifically the lack of

Figure 3: Paths of four Markov chains for flow
around an isolated cubic building. Note that the ma-
genta square indicates the source and the black di-
amonds indicate the four sensors.

Figure 4: Probability distribution of source location
for flow around an isolated cubic building.
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Figure 5: Histogram of source strengths for flow
around an isolated cubic building. Vertical blue line
indicates actual release rate.

channeling effects.
Puffs and 2D contours of ground-level concentration

are displayed in Figures 6 and 7, respectively. Wind
speed was 6.5m/s at 50m above ground. The number
of iterations is 1700 and each of those iterations involved
four Markov chains. The complete calculation took less
than 33 hours on a single 857 MHz processor. Scaling lin-
early, if eight Markov chains are distributed to eight sepa-
rate 857 MHz processors, the entire calculation, could be
completed in approximately one hour.

The resulting Markov chains are illustrated in Figure 8.
Note how the chains quickly converge to south of the do-
main. While there is good mixing by three of the chains,
one chain becomes stuck in a local minimum, and re-
mains at the northwest corner of the building. The re-
sulting probability distribution is shown in Figure 9. There
are three distinct peaks visible in the distribution. One
peak is within 20m of the actual source location, which
is shown as a triangle. Another peak is towards the bot-
tom of the domain, and the third near the large building,
part way between the other two locations. Three peaks
are also noted in the release strength histogram, Figure
10. One peak is a very low value of release mass. The
second, smallest, peak corresponds with the actual re-
lease mass, shown as a solid vertical line. The final peak
is a higher value, between 8 kg and 9 kg of total mass
released during the simulation.

In order to determine the probable locations that corre-
sponded to each of the three most likely release rates,
conditional probability for each was computed. Figure
11 illustrates the conditional probability of source loca-
tion depending on release mass (low, mid and high) and
Figure 12 illustrates the relatively rapid convergence on
source location as opposed to source strength. The low
peak, less than 1 kg, corresponded to the location very
near the actual source location. The resulting probabil-
ities for both location and strength are about 25%, indi-
cating that one of the four chains spent much of its time
in that location without being able to further explore the
domain. This is confirmed by examining the details of
the Markov chains: one chain spends the simulation in
that location. The release strength is low because of the
close proximity to the sensors.

The conditional probability corresponding to the actual
mass, 3.1 kg < q < 4.1 kg, peaks toward the bottom of
the domain, almost 200m south of the actual source lo-
cation. When the source material is released in the model
from the actual source location, the puffs are too nar-
row to hit the sensors channeling northeast of the source.
When the source is located at the peak of the middle plot
of Figure 11, the increased distance to the sensors and
the interaction with the large building sufficiently enlarge
the puff to better agree with the actual concentrations.
The conditional probability corresponding to the highest
release strength, 8.25kg < q < 9.25kg, is shown in the
far-right plot of Figure 11. Due to its proximity to the large
building, material released from this point is automatically
entrained in the building’s wake. Here, the entrainment
region acts as a source, releasing material from the en-
trainment region over time. The entrainment creates a
large, diffuse puff in the wake of the building, resulting in
predicted source strengths for this location that are higher
than the actual value.

5. DISCUSSION AND CONCLUSIONS

Event reconstruction calculations using the Urban Dis-
persion Model, UDM, can be performed very rapidly to
provide a valid initial approximation for source location
and release strength even in a complex urban environ-
ment. As an emergency response tool, event reconstruc-
tion with the UDM is more applicable than a CFD equiva-
lent because of the speed at which a complete calculation
can be completed. Ideally, results obtained from recon-
struction with UDM can be used to significantly decrease
the sampling domain needed to perform more accurate
CFD calculations. That is, using independent data, poste-
rior distributions obtained using ER with the UDM can be
used as a prior distribution for ER with a CFD code. With
a smaller domain, those subsequent calculations can be
conducted much more expediently.

When conducting a source inversion calculation using
the UDM as a forward model, it is important to have all
Markov chains exploring the domain space in order to
predict accurate source probability distributions. In or-
der to obtain sufficient mixing, input parameters such as
step size in x and y, step size in q, and quantified er-
ror should be specified carefully with attention to appro-
priate values relevant to the scale of the problem. De-
termining the correct input values for these parameters
can take some trial and error. As illustrated in the Okla-
homa City example, one of the main sources of error in
the posterior probability distributions for complicated city
examples is the lack of channeling effects in the forward
model UDM. The wind field applied by UDM is very sim-
plified and cannot reproduce complex urban flows beyond
building entrainment. Channeling effects are somewhat
compensated for by building entrainment effects, but the
results of the reconstruction consequently may not reflect
the actual source location.

The next step in this research is to test the UDM with a
larger domain space and with more sensor data. Sensor
data for the Oklahoma City example exists up to 4 km
from the source. It is anticipated that with an extended
domain, the lack of channeling producing error over the
short range will have less impact on the results. Also,
stochastic sampling of wind direction as well as source
location and strength may give better results.
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Figure 6: Three-dimensional puffs generated by a forward simulation with the UDM 2.2 for flow in and
around the downtown business district of Oklahoma City. Note how the puffs expand and entrain behind
the larger buildings.

Figure 7: Horizontal concentration contours at the first vertical level generated by a single forward simulation
with the UDM 2.2 for flow in and around the downtown business district of Oklahoma City.
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Figure 8: Paths of four Markov chains for flow in and around the downtown business district of Oklahoma
City.

Figure 9: Probability distribution of source location for flow in and around the downtown business district of
Oklahoma City. The magenta delta indicates actual release location.
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Figure 10: Histogram of source strengths, q, and the conditional probabilities for flow in and around the
downtown business district of Oklahoma City. Vertical blue line indicates actual release rate.

Figure 11: Conditional probability distribution of source location for flow in and around the downtown busi-
ness district of Oklahoma City. The magenta delta indicates actual release location.
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Figure 12: Convergence of x and y location, and slower conversion of strength q for the Oklahoma City
example.

Figure 13: The building wake entrainment acts as a flow channeling effect within the UDM. Horizontal
concentration contours at the first vertical level generated by forward simulation with UDM for flow in and
around the downtown of Oklahoma City for the location associated with actual source strength.
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