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1 INTRODUCTION 

In the U.S. National Airspace System (NAS), en 
route Traffic Flow Management (TFM) is the function 
which balances air traffic demand against available 
airspace capacity, to ensure a safe and expeditious flow 
of aircraft.  A variety of flow control actions, such as 
weather avoidance routes, miles -in-trail (MIT) flow 
restrictions, and ground delay programs (GDPs) are 
used to achieve this.  Planning these actions requires 
predictions of both traffic demand and airspace (en 
route sector) capacity.  Since TFM decisions are 
typically made 30 minutes to several hours in advance 
of anticipated congestion, these predictions are subject 
to significant uncertainty.  However, the magnitude of 
this uncertainty is not known, presented, or understood. 

An example of a weather-related congestion 
situation is shown in Figure 1.  A moving line of 
thunderstorms is reducing airspace capacity in the 
Kansas City Air Route Traffic Control Center (denoted 
“ZKC”).  Sectors are labeled by facility and sector 
number (e.g., ZKC32 means ZKC center, sector 32) and 

altitude range in flight levels (e.g., 240-319 indicates 
24,000 to 31,900 feet above ground level.)  Due to 
uncertainties in predicting the storm motion and 
intensity, the future capacity of the impacted sectors is 
uncertain.  In addition, predicted traffic demand is 
subject to several uncertainties, which will be discussed 
below.  Several flights in this example have filed flight 
plans to skirt the southern edge of the storm, and these 
sectors are now heavily congested, as indicated by the 
red and yellow alert overlays.  

Such congestion problems typically involve 
hundreds of flights, and affect multiple en route ATC 
facilities and airspace users (e.g., airlines).  It is difficult 
for human decision-makers to develop effective, 
coordinated solutions to such problems in real time, 
even if predictions are good.  Thus, predefined large-
scale strategies, such as “National Playbook” routes 
[FAA 2005], have become standard means of 
addressing congestion. 

 

Uncertain weather forecasts 
indicate current and future 
loss of airspace capacity…

Uncertain traffic forecasts
provide airspace demand…

If demand exceeds capacity, 
delays will occur and safety 

may be compromised.

Given the uncertainty: 
When should air traffic be restricted?
Which flights should be affected?

Air traffic control sectorCongestion Alerts  
Figure 1.  Weather-Related Airspace Congestion 
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The combination of prediction uncertainty and 
large-scale solution strategies leads to highly 
conservative decision-making.  Such decisions may 
produce unnecessary delays, and may be taken at 
inappropriate times based on the actual accuracy of 
prediction data.  Automation support is needed to help 
identify congestion problems and appropriate, efficient 
resolution strategies in the presence of prediction 
uncertainty. 

2 BACKGROUND: CONGESTION PREDICTION 
UNCERTAINTY 

2.1 Present-Day En Route Congestion Alerting 

In the NAS, the Enhanced Traffic Management 
System (ETMS) [Volpe 2002] provides demand 
predictions for most NAS sectors in 15-minute bins, for 
prediction look-ahead times (LAT) of several hours.  
This information is available for particular sectors by 
user request, or collected on a Center Monitor (CM) 
display as illustrated in Figure 2.  The CM is a user-
configurable display showing alerts for some or all of the 
sectors in a single Air Route Traffic Control Center 
(ARTCC). 

 

Figure 2.  ETMS Sector Count Monitor Display 

Each cell in the CM matrix represents a 15-minute 
period, and the number in the cell represents the 
maximum predicted traffic count for any single minute 
within that 15-minute span.  This value is often referred 
to as maximum instantaneous aircraft count (IAC) or 
simply “peak count” for the interval. The horizontal axis 
indicates increasing LAT (corresponding to 2015 to 
2300 Coordinated Universal Time (UTC), in this case).  
Each matrix row represents predictions for a single 
sector (e.g. ZDC50).  Next to the sector name are two 
sector alert thresholds (e.g. “18/18”), although currently, 
only one is used.  This threshold is called the 
Monitor/Alert Parameter (MAP) and is compared to the 
peak count to determine whether a sector should be 

alerted. When the peak count is predicted to exceed the 
MAP for a sector, the corresponding box is colored 
yellow or red. Red alerts indicate that, of the aircraft 
involved in the peak count, enough are already airborne 
to exceed the MAP even if pre-departure flights are not 
counted. Otherwise, the alert will be yellow.   

The MAP value is set to represent a traffic level 
high enough to be of concern to the traffic manager.  
The nominal value can be manually changed to reflect 
the impact of weather or other adverse conditions, 
though it can only have a single value; it cannot have 
different values at different LAT.  It is not strictly 
accurate to refer to the MAP as a sector capacity, since 
there are many factors involved in sector workload 
beyond the number of aircraft present [Kopardekar, 
2002][Masalonis, 2003].  However, it is an easily-
understood abstraction of workload for alerting 
purposes.  Thus, a simple definition of congestion is 
when demand exceeds the MAP. 

2.2 Prediction Uncertainty 

These sector traffic predictions are key TFM 
decision aids. Traffic managers use the alerts to identify 
areas of potential en route congestion, and by studying 
the flights and traffic flows involved, to identify candidate 
solutions such as reroute initiatives or MIT restrictions. 
Also, proposed TFM decision support systems [Wanke, 
2004] make direct use of these predictions when, for 
example, predicting the impact of a proposed reroute 
initiative. However, the usefulness of these predictions 
is a function of their accuracy. At the long prediction 
timeframes associated with strategic TFM decision-
making, the predictions may not be very accurate. 

Traffic demand uncertainties arise from many 
sources.  Flight schedules undergo constant changes in 
response to daily events, and such changes often occur 
between the time of demand prediction and the time for 
which demand is predicted.  These include flight 
cancellations, departure time changes, and initiation of 
previously unscheduled flights.  This latter category is 
increasing in the U.S., as air taxi and “executive jet” 
operations become more prevalent.  There are 
uncertainties in wind forecasting and aircraft 
performance modeling, and unforeseen changes in flight 
route and cruising altitude due to weather and air traffic 
control (ATC) intervention.  The magnitude and 
characteristics of these uncertainties have been 
measured for several months of NAS operations 
[Wanke, 2003], and a computational model has been 
developed [Wanke, 2005]. 

While traffic managers know that sector demand 
predictions are uncertain, they have very little 
information to use in quantifying that uncertainty and 
taking account for it when making decisions.  ETMS 
sector load predictions include a crude estimate of 
uncertainty, in that alerts are differentiated into “red” and 
“yellow” based on whether or not all the aircraft involved 
are airborne.  This is based on the assumption that 
departure time uncertainty is the largest source of 
uncertainty in the predictions.  While this is useful for 
prioritizing traffic situations, in that the traffic manager 
would be justified in looking at red alerts before yellow 
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alerts, it says little about the actual magnitude of 
uncertainty.  For example, does a yellow alert of 
3 aircraft over the MAP mean that there is an 80 percent 
chance that demand will exceed the MAP, or a 
20 percent chance?  Clearly, the answer to this question 
should influence the traffic management decision. 

Airspace capacity itself is harder to quantify.  As 
noted earlier, the MAP is not intended to represent 
capacity directly. The actual capacity of a sector is 
dependent on the complexity of the traffic flows within, 
as well as the presence or absence of hazardous 
weather.  Thus, predicting sector capacity is also 
subject to uncertainty, particularly in the presence of 
convective weather. 

2.3 Applying Uncertainty to Decision-Making 

One way to factor in prediction uncertainty is to 
present probabilities directly or indirectly on traffic 
management decision support displays, relying on the 
skill of the traffic manager (and some procedural 
guidance) to use such information appropriately.  
Research is underway to understand the human factors 
issues in this area.  Masalonis , et al. have developed 
candidate visualization methods for probabilistic sector 
demand information, in research that is directly linked to 
the work presented here.  A simple application is to 
replace the current point estimates (as used in Figure 2) 
with an estimate of known statistical properties, such as 
the median of the probability distribution.  This would 
automatically compensate for biases in the predictions, 
without requiring the traffic manager to absorb any new 
information.  For example, ETMS predictions at longer 
LAT are more frequently too low than too high, since 
they cannot include flights that have not yet filed plans.  
An example of such a display will be shown later. 

Probabilistic predictions can also be used by 
decision support automation.  Given detailed knowledge 
of demand and capacity prediction error distributions, 
standard decision analysis techniques can be applied to 
improve decis ion-making.  This will be discussed further 
below. 

3 Overview of Probabilistic Congestion 
Management 

A notional probabilistic forecast of congestion is 
shown in Figure 3.  If the uncertainties in traffic demand 
and capacity predictions are known and quantifiable, 
then a probability of congestion can be calculated from 
the demand and capacity uncertainty distributions.  
“Congestion”, in this case, is simply defined as when 
demand exceeds capacity.  The red and yellow codes 
indicate the probability of congestion for the three 
sectors shown. 

Sector 02

Time (Future)16:40

p(severe weather) > 75%
p(severe weather) > 50%
p(congestion) > 75%

p(congestion) > 50%

Sector 02

Time (Future)16:40

p(severe weather) > 75%
p(severe weather) > 50%
p(congestion) > 75%

p(congestion) > 50%

 

Figure 3.  Probabilistic Congestion Forecast. 

In addition, the probability of severe weather 
coverage is shown, based on a probabilistic severe 
weather forecast.  Such products are now becoming 
available [Megenhardt, 2004] [Wolfson, 2004]. 

Figure 4 represents the same situation in a time-
series plot.  In this case, the demand and capacity 
prediction distributions for Sector 02 are broken out and 
shown as ranges for a series of 15 minute intervals.  
The blue line represents the 50 th percentile prediction of 
airspace capacity.  The capacity is well-known at short 
LAT, since weather is not predicted to impact the area 
until, at earliest, 30 minutes into the future (1500).  At 
greater LAT, the weather is expected to reduce 
capacity, and the spread in possible values of that 
capacity reflects the uncertainty in the future position, 
size, and intensity of the weather. 

The green, red, and yellow boxes reflect 
probabilistic demand predictions.  The heights of the 
boxes reflect the uncertainty, increasing in size with 
increasing LAT.  The bottom, midline, and top of the 
boxes represent the 30th, 50th, and 80 th percentile of the 
predicted demand distribution, in this example.  The 
boxes are color-coded to reflect the probability that the 
actual demand exceeds the actual capacity. 
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Probability of congestion > 50%
Probability of congestion < 50%
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Figure 4.  Detailed Congestion Predictions for a 

Singel Sector 
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30%
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Time

Probability of congestion > 75%
Probability of congestion > 50%
Probability of congestion < 50%  

Figure 5.  Reducing Congestion risk to an 
Acceptable Level 

Given this representation, the congestion 
management goal can be expressed as a target level of 
probability, or “congestion risk.”  The traffic manager 
may, for example, decide that action should be taken to 
reduce the congestion risk below 50 percent for the next 
three hours.  This is shown in Figure 5.  The resolution 
problem, then, is to determine a set of actions that 
achieves this risk reduction while minimizing impact on 
airspace users.  Ideally, this would be done by flight-
specific adjustments, such as individual reroutes or 
ground delays, rather than actions on entire traffic flows. 

In this concept, not all possible congestion is 
resolved at once.  Congestion probabilities are 
continuously monitored, and incremental actions are 
taken to keep congestion risk at a tolerable level, 
affecting only a few flights at a time.  This helps to avoid 
unnecessary or premature actions. 

Another advantage of the probabilistic 
representation is that developing problem areas (those 
approaching the risk threshold) can be identified easily, 
and airspace users can be alerted before actions are 
taken.  This allows users to proactively re-plan critical 
flights, or to provide preferred alternative routes should 
action be required. 

Several new techniques and technologies are 
required to provide probabilistic TFM decision support.  
First, prediction uncertainty must be known and 
quantifiable.  Second, a metric is needed for rating the 
goodness of candidate solutions.  Third, decision-
making algorithms are needed to develop congestion 
solutions, given the prediction uncertainty and goodness 
metric.  And finally, there are significant human factors 
issues to be resolved due to the combination of 
information uncertainty and complex automated 
processes.  This paper describes research into thes e 
topics, including a scenario in which a prototype system 
has been used to develop a congestion solution. 

4 INITIAL PROBABALISTIC CONGESTION 
MANAGEMENT:  AN EXAMPLE 

The operational concept described here is 
significantly different from today’s congestion 
management procedures.  Therefore, a two-phase 
approach has been defined.  In the first phase, traffic 
demand is computed probabilistically, but the sector 
alerting criterion (MAP) remains as defined today.  The 
traffic manager identifies when congestion mus t be 

addressed, chooses which options are available to 
resolve it, and initiates the computation which generates 
the resolution maneuvers.  This concept has been 
implemented in a real-time decision support prototype 
for testing and evaluation.  An example of congestion 
management using this concept is given below, using 
illustrations from the prototype.  The second phase 
capabilities will be described in Section 5. 

4.1 Congestion Problem Identification 

This example centers on a relatively small-scale 
congestion problem, illustrated in Figure 6.  Slow-
moving, intense thunderstorms with high cloud tops are 
impacting a high-altitude sector, reducing its effective 
capacity.  Selected routes through this sector are 
highlighted in blue.  Two things are apparent from the 
situation geometry.  First, the traffic pattern includes 
several jet airways (J35, J80, J105/J181) and several 
crossing points.  Second, at least one of these airways 
(J80) is obstructed by the storms.  Based on this 
situation, the traffic manager decides to reduce the MAP 
value for this sector, normally 16, to 10.*  The traffic 
manager then observes the predicted traffic situation on 
the Center Monitor (Figure 7). 

The CM in Figure 7 is a probabilistic version of that 
shown in Figure 2.  In this version, the median predicted 
peak count for each sector is shown, thus compensating 
for prediction biases.  Also, the red and yellow alert 
colors are based directly on probabilities of congestion.  
On the probabilistic CM, a red alert indicates a higher 
than 75 percent probability that the actual peak traffic 
demand will exceed the MAP.  A yellow alert indicates  
a 50 percent to 75 percent probability.  These 
probabilities are user-selectable parameters. 

In Figure 7, it is clear that congestion is highly likely 
in sector 84, and for a period of 90 minutes (1415Z to 
1545Z), the median predicted peak values exceed the 
adjusted MAP by between 3 and 8 aircraft.  Based on 
this prediction, in combination with other factors (such 
as the operational importance of sector 84’s location) 
the traffic managers decide to initiate congestion 
management planning. 

4.2 Resolution Strategy Definition 

The traffic managers begin by defining sector 84 as 
a Congestion Resolution Area (CRA).  This is the area 
in which flights are eligible for congestion management 
actions.  The automation identifies 97 flights which will 
enter the CRA during the 1415-1600Z time period.  
Next, the traffic managers define a surrounding region  
as the Congestion Management Area (CMA).  As the 
automation develops a resolution strategy for the CRA, 
it will also avoid producing any new congestion in the 
CMA.  Also, there is an active military operations area 
(Red Hills) within the CMA, and the traffic managers 
identify this as an area to be completely avoided when 
resolution maneuvers are developed.  The result of this 
process is shown in Figure 8. 
                                                                 
* This is a contrived example, and does not reflect any real 
operational event.  Nor does it represent the judgment of a qualified 
traffic manager. 
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Figure 6.  Flow – and Weather Induced Complexity in ZKC84 

 

Figure 7.  Predicted Congestion in Kansas City ARTCC (ZKC) Sector 84 

 

Figure 8.  Congestion Problem Definition: Management Area, Resolution Area, and Avoidance Area 
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At this stage, a planning advisory is disseminated to 
NAS facilities and users, noting that a traffic 
management initiative is likely to be implemented.  It 
includes the areas and timeframe of likely action.  This 
enables NAS users to submit preferences as to how 
they would like their flights handled, should an initiative 
be required.  In this example, it is assumed that some 
users would submit desirable alternate routes.  Users 
may also simply file new flight plans to avoid the 
potentially congested area. 

For planning the strategy details, the automation 
presents the list of flights identified as entering the CRA 
during the time period of interest (Figure 9).  Since 
Sector 84 overlays Lambert-St. Louis International 
Airport (STL), the traffic managers modify this list by 
exempting 10 flights departing or arriving at STL.  The 
result is a list of 4 active (airborne) and 83 inactive (pre-
departure) candidate flights for resolution maneuvers.  
This list includes basic plan data for each flight, as well 
as preferences submitted by the flight operator. 

 

Figure 9.  Non-STL Flights Predicted to Enter ZKC84 During the Congested Period 

Once the flight list is established, the details of the 
resolution strategy can be developed.  Figure 10 shows 
the probabilistic congestion resolution planning window 
from the prototype.  The current prototype generates 
resolution maneuvers comprised of ground delays and 
reroutes, though other strategies are possible.  
Parameters governing the possible values of ground 
delay are shown at left; in this case, the traffic manager 
has established a maximum value of 20 minutes of 
delay per flight. 

Reroutes can be generated from a variety of 
sources.  The traffic manager can manually define 

corridors around the weather, or can ask the automation 
to choose routes from databases of predefined or 
historically-flown routes.  The prototype currently uses 
the FAA Coded Departure Route (CDR) database as a 
source of predefined routes; an operational capability 
could have these and many other route options 
available.  These route databases are keyed by origin-
destination pair.  In this case, the traffic manager has 
selected the predefined route database, and that only 
inactive flights will be rerouted.  Also, any user-
submitted alternate routes are automatically considered 
in the resolution process. 

 

Figure 10.  Congestion Resolution Planning Interface 
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The automated resolution algorithm attempts to 
resolve congestion by proposing flight-specific ground 
delays and reroutes for flights. The optimal solution that 
both solves the congestion and assigns the very 
minimum delays to flights is very difficult to calculate in 
a reasonable amount of time. Instead, a faster approach 
is used that prioritizes flights based on earliest time of 
arrival to the congestion area. The automation first 
removes all flights that are eligible to maneuver from the 
traffic and then adds flights back one at a time in this 
priority order. As each flight is added back, the 
automation determines if the flight will increase the 
sector congestion probability beyond the threshold 
value. If the flight does not cause congestion problems, 
it is added back without changes to the flight’s route or 
schedule. If the flight causes congestion problems, then 
the algorithm searches the reroute or ground delay 
options for a maneuver that avoids congestion and also 
causes the smallest arrival delay for the flight. The 
resolution results are proposed flight-specific reroutes 
and ground delays for a select set of flights. 

This is an initial algorithm, and the results are highly 
dependent on the priority order in which flights are 
considered for maneuvering.  Ordering by predicted 
congestion area entry time is one of many possible 
ways to prioritize flights, and further research is needed 
to determine the “best” priority scheme for NAS 
operations.  Also, resolutions are developed without 
explicit consideration for future adjustments.  It may be 
desirable to choose maneuvers such that some level of 
future flexibility is maintained.  For example, avoid 
delaying flights that do not depart until considerably 
later, so that they can be delayed in future if the 
situation worsens. 

4.3 Resolution Impact Assessment 

Once the calculation is complete, the traffic 
manager can examine the structure and predicted 
impact of the resolution.  A summary of the plan is 
shown in Figure 11.  The automation has assigned 
10 reroutes, averaging an increased flight distance of 
88 nautical miles (nmi), and 41 ground delays, 
averaging 11 minutes per flight.  The total number of 
delayed flights is 50, since one of the reroutes actually 
had a shorter flying time than the originally-filed plan for 
that flight.  Overall, the resolution plan would incur 582 
minutes of delay.  This is significant, but probably 
considerably less than if a large scale reroute plan, 
miles -in-trail restrictions, or ground delay programs were 
run to solve this weather problem. 

 

  
* The center monitor in Figure 13 is configured to show only the high-
altitude sectors (i.e. not low- or super-high-altitude sectors) in ZKC, 
but the resolution did not create new alerts in any other sectors either. 

 
Figure 11.  Resolution Plan Summary 

Details of the resolution plan are also available 
(Figure 12).  The assigned ground delay and/or reroute 
for each flight is shown, and if rerouted, the calculated 
increase or decrease in flight distance and flying time is 
shown.  The portion of the list shown here includes two 
ground-delayed flights and three rerouted flights.  Note 
that if a flight is rerouted, and has provided a preferred 
alternate route, that route will be chosen. 

Finally, the traffic managers can determine whether 
the resolution plan is acceptable for managing the 
congestion.  The automation predicts the change in 
sector traffic loads due to the resolution plan and 
presents it on a modified Center Monitor display 
(Figure 13). Given the resolution constraints – a 
maximum ground delay of 20 minutes, and routes from 
the Coded Departure Route database – the system was 
not able to reduce all congestion probabilities below 
50 percent.  However, it left median counts of only one 
or two over the MAP, which is likely to be an acceptable 
solution, and did not create new congestion elsewhere.*  
Note that heavy blue outlines indicate where the median 
peak count increased due to the resolution, and light 
blue outlines indicate a decrease. 

The reroutes generated by this plan are chosen to 
be as short (in flying time) as possible, given the 
congestion and avoidance constraints.  An example is 
shown in Figure 14.  This flight was assigned a CDR 
which took it clear of both ZKC84 and the Red Hills 
operations area, with a relatively small increase in flying 
time. 

At this point, the plan may be deemed acceptable, 
or the parameters can be changed and a new plan 
produced.  Recall that a maximum of 20 minutes of 
ground delay was chosen for this plan.  If this number 
were to be changed to 30, then the results are 
considerably different.  As shown in Figure 15, this plan 
produces fewer and shorter reroutes, with 
correspondingly less airborne delay (28 minutes), but 
considerably more total delay (758 minutes).  If the 
decision makers would like to avoid reroutes and/or 
airborne delay, then this may be a better plan. 

Note, however, that the congestion results of a 
ground-delay-heavy strategy are quite different 
(Figure 16).  Using larger ground delays, the congestion 
is completely resolved in the timeframe of interest 
(1415-1545), but since more flights are being pushed 
later, there is a bubble of high-probability congestion at 
1545-1615.  This may be acceptable, since it is three 
hours in the future and can be resolved later, but is 
certainly not as satisfactory as the previous solution. 
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Figure 12.  Resolution Plan Details 

Figure 13.  Resolution Plan Impact on Congestion 

 
Figure 14.  Congestion Avoidance Route 

Plan adjustments such as this take less than a 
minute to construct and analyze using the prototype, 
and thus might be done collaboratively (e.g., between 
FAA facilities, or involving NAS users) in an operational 
setting. 

 
Figure 15.  Resolution Plan for Maximum Ground 

Delay of 30 Minutes 
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Figure 16.  Congestion Impact of the Revised Plan 

4.4 Coordination, Execution, and Monitoring 

Once the traffic managers working on the plan 
decide that it is acceptable, it is coordinated with other 
en route facilities and the Air Traffic Control System 
Command Center (ATCSCC).  Further adjustments are 
made, if needed to reach consensus.  At this point an 
advisory is issued, and the plan is executed.  Ground 
delays would be executed in a similar fashion to how 
Ground Delay Programs are executed today, by issuing 
Estimated Departure Clearance Times (EDCTs) for 
involved flights.  Reroutes would also be disseminated 
automatically to the appropriate airspace users and FAA 
facilities.  Such a system does not yet exist, but is 
planned for deployment in the next few years. 

As time passes, traffic managers throughout the 
NAS monitor the execution and impact of the plan, and 
tactical adjustments are made if needed. 

5 Advanced Probabilistic Congestion 
Management 

The process illustrated above represents a major 
step forward in congestion management, and is 
expected to be significantly more effective than current 
procedures in resolving congestion without imposing 
excess delay.  A benefits analysis is underway to 
estimate the size of this improvement.  However, it 
imposes significant workload on traffic managers, and 
relies on manual problem recognition and coordination.  
The resolution plans generated, while expected to be 
smaller than “National Playbook” initiatives, will still 
involve large numbers of flights.  The second phase of 
the probabilistic congestion management concept 
addresses these and other issues. 

5.1 Probabilistic Sector Capacity Prediction 

As previously discussed, complete probabilistic 
congestion predictions require both probabilistic 

demand predictions and probabilistic capacity 
predictions.  Thus, a metric of sector capacity is needed 
that (1) is a good approximation of the amount of traffic 
that can be effectively handled in the sector, (2) can be 
predicted at look-ahead times of 30 minutes to several 
hours, and (3) can include the impact of convective 
weather on available capacity.  This would replace the 
manually-adjusted MAP that was used in the resolution 
example described earlier. 

Considering that the clustered traffic (flow) 
properties are more predictable and perturbation-
resistant than individual flight characteristics, an 
approach is being developed to predict the sector 
capacity as a function of primary traffic flow pattern. 
NAS sectors typically exhibit a small set of common 
traffic flow patterns, and different patterns represent 
different levels of traffic complexity.  In higher complexity 
conditions, it takes fewer flights to generate high 
workload for the controller team, and thus the sector 
capacity is lower. 

Figure 17 shows the relationship between traffic 
flow patterns and sector capacity.  Given a traffic flow 
pattern (for example, P1), as the number of aircraft 
within the sector increase, controller workload increases 
monotonically. And given the same number of aircraft 
within a sector, controller workload is a function of traffic 
complexity, which is represented by different traffic flow 
patterns. For example, in Figure 17, the given sector 
has three normal traffic flow patterns (P1, P2, and P3), 
representing three different levels of traffic complexity. 
When the controller workload reaches the threshold, the 
sector capacity is reached (C1 for P1). As shown in the 
figure, given the threshold of controller workload, the 
capacity is different (C1, C2 and C3) for different traffic 
flow patterns (P1, P2 and P3). Since P3 is the most 
complex traffic flow pattern, the sector has least 
capacity when the traffic has that pattern. 
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Figure 17.  Relationship between Workload, Sector Capacity, Complexity, and Traffic Flow Pattern 

In the initial analysis, directed sector transits were 
used to describe traffic flow patterns.  Flights in a sector 
were grouped into flows based on the sector from which 
they entered and the sector into which they exited (a 
“sector transit triplet”).  Figure 18 shows one observed 
traffic flow pattern for a single en route sector (12)  Each 
flow is labeled by its transit triplet (e.g., flights in the 
purple flow entered sector 12 from sector 04, and exited 
to sector 19). 

16-12-17
16-12-18

32-12-10

04-12-19

32-12-18

16-12-17
16-12-18

32-12-10

04-12-19

32-12-18

 

Figure 18.  Sector Flow Pattern Example 

Two activities are required to characterize sector 
capacity according to the flow pattern hypothesis.  First, 
a set of primary flow patterns for each sector of interest 
must be identified. Second, the sector capacity for each 
pattern must be established. 

As far back as the 1970’s, techniques were 
developed to relate the traffic variables, route and sector 
geometry, and control procedures to an index that 
quantifies the workload required on the part of the air 
traffic control team [Schmidt, 1975]. This study asserts 
that workload or control difficulty is related to the 
frequency of occurrence of events that require the 
controller team to make decisions and take action, as 
well as to the time required to accomplish the tasks 
associated with those events.  This study has been 
applied to assess sector capacities through setting the 
controller workload threshold (e.g., 70 percent of hourly 
task time) [Eurocontrol, 2003].  But what is the real 
operational workload threshold? A new methodology is 
proposed to assess sector capacity based on observed 
system performance transition behavior. 

In an earlier study, a preliminary analysis was 
conducted to model transition in system behavior. Three 
regimes of system behavior were found: opportunity, 
route structure, and congestion. If such system behavior 
can be measured for a sector with a particular flow 
pattern, the transition point between the route structure 
and congestion regimes can be considered as an 
indicator that the controller team has reached the 
workload threshold.  Thus, the corresponding number of 
aircraft within the sector would be the historical sector 
capacity for that flow pattern.  Sector behavior curves as 
shown schematically in Figure 19 have been detected 
through observations of sector throughput.  These 
curves support the theory that sector behavior is a 
function of sector count and traffic flow pattern.  In these 
observations, the performance index was the average 
distance traversed by flights on the heaviest flow within 
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Figure 19.  Sector Behavior Curves to Identify Sector Capacity 

the sector, though many other measures are possible.  
Figure 19 also shows that for more complex traffic flow 
patterns (P3 > P1), fewer flights need to be present for 
congestion behavior to be observed, and thus the sector 
capacity is smaller (C3 < C1).  Systematic sector 
studies, using this methodology, are underway 

After the primary set of traffic flow patterns and the 
corresponding sector capacities are identified for each 
sector, future sector capacity for a given LAT can be 
predicted through pattern recognition, by comparing the 
predicted traffic flow pattern with the primary set of 
traffic flow patterns. 

This idea is consistent with current NAS operations, 
in that traffic managers use flow pattern recognition, in 
addition to the predicted aircraft count, in evaluating the 
potential for sector congestion.  Also, quantifying sector 
capacity as a function of traffic flow pattern provides a 
basis for capturing weather impact on sector capacity. 

When severe weather impacts the sector, 
probabilistic weather forecasts can be used to 
determine the probability of blockage for each flow 

within the sector, and the capacity of blocked flows is 
subtracted from the overall sector capacity.  In this way, 
sector capacity in the presence of severe weather can 
be predicted probabilistically.  Figure 20 shows an 
example of sector capacity distribution given the 
predicted traffic flow pattern and probabilistic severe 
weather forecast. 

The key to building the mapping function between 
the probabilistic weather forecast and the sector 
capacity distribution is to identify the flow blockage 
distribution.  Flow blockage distribution will be calculated 
based on probability of pilot rejection, given the location 
of the flow and the probabilistic weather distribution 
around the flow. 

Numerous research areas remain open in this work. 
To identify the basic set of traffic flow patterns for each 
sector, more data analysis, field observations and 
interviews are necessary. More study is necessary to 
find the best performance index for identifying sector 
behaviors as shown in Figure 19. Finally, more research 
is needed to implement and validate the weather impact 
method described in Figure 20. 
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Figure 20.  Example of Sector Capacity Distribution under Weather Impact 
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5.2 Automated Problem Identification 

Given operationally-acceptable, probabilistic 
predictions of demand and capacity, then the probability 
of future congestion can be reliably used for automated 
problem identification.  When congestion risk exceeds a 
certain threshold, then traffic managers and NAS users 
can be alerted that a potential problem exists.  For NAS 
users, this would provide an early indicator of possible 
TFM action, and allow them to take action consistent 
with their business needs.  If a flight is of critical 
importance, perhaps due to having many connecting 
passengers on board, then it might make sense to re-
plan the flight and avoid a potential congestion problem.   

To help accomplish this, the automation system 
should be capable of providing real-time feedback on 
potential congestion problems that a flight might face.  
Figure 21 illustrates this idea.  The originally-filed 

route for this flight penetrates high-probability 
congestion areas, and passes near a convective 
weather system.  The alternate route is slightly longer, 
but travels through less congested airspace, and is thus 
unlikely to incur future delay.  A flight planning system 
could use this feedback to support dispatchers in 
deciding when and how to re-plan flights. 

If congestion risk becomes sufficiently high, the 
system will suggest that action be taken to manage the 
risk.  This suggestion would be in the form of a small set 
of resolution maneuvers, based on pre-established 
criteria for congestion risk, delay cost, and acceptable 
maneuver types.  The set would be small, s ince unless 
there is a radical change in NAS conditions (e.g., a 
sudden loss of capacity due to equipment failure), the 
predicted congestion should increase slowly, and can 
therefore be managed by moving a few flights at a time. 

 

Alternate routing option, 13 minutes of 
additional flying time.

System predicts 20% chance of TFM actions 
to affect flight on this route, with minor delays 

expected.

Initial planned route intersects predicted 
congestion and severe weather.

System predicts 50% chance of TFM 
actions on this flight, with significant 

delays expected.

 
Figure 21.  Flight Planning with Probabilistic Congestion Management 

5.3 Automated Resolution Development 

In the advanced concept, a more sophisticated 
approach is suggested for generating resolution 
maneuvers.  First, we would like the incremental 
congestion management maneuvers to make 
operational sense.  For example, it is inappropriate to 
repeatedly change the same flight from step to step.  
Also, we would like to execute the right number of 
incremental maneuvers at appropriate times to get the 
best long-term result. This is related to the “future 
flexibility” issue raised earlier.  Second, the 
maneuvers should be chosen to reduce congestion 
risk while minimizing (or nearly so) a pre-defined and 
agreed-upon cost criterion.  This criterion would set 
the relative value of airborne vs. ground delay, for 
example, and might be sensitive to fuel costs.  It could 
also include measures of equity across air carriers or 
classes of flight operator, such that delays do not 
unduly impact a particular NAS user.  Third, the 

resolution development process must work in real-
time, so that resolutions can be quickly computed, 
reviewed, and executed. 

The algorithm used in the current prototype 
provides feasible solutions in real time, but does not 
quite achieve the first and second of these goals.  
Research is underway to develop an algorithm that 
does, while maintaining computational feasibility in 
the probable deployment timeframe (projected to be 
2010-2015). 

6 Probabilistic Decision-Making for Humans 

The concept of probabilistic congestion manage-
ment involves a higher level of automation than any 
existing TFM decision support system.  Probabilistic 
estimation and decision making are mathematically 
complex, and it is impractical for traffic managers to 
make detailed, probabilis tic decisions in real time 
without automation support. In the concepts 
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presented here, the traffic manager has controls to 
affect the general form and magnitude of the 
recommended congestion solution, but the 
automation is responsible for determining the detailed 
resolution actions. This raises a host of human factors 
issues, such as the ability of human decision-makers 
to maintain situation awareness.  Also, can humans 
maintain a high level of trust in a complex, 
probabilistic system, when the decisions made may 
not be entirely consistent with their intuition and 
experience?  These issues will have to be addressed 
through creative interface design and human-in-the-
loop evaluations. 

7 Conclusion 

A concept for managing en route congestion in 
the presence of uncertainty has been presented.  The 
proposed system can improve the quality of en route 
congestion management procedures in two primary 
ways.  First, uncertainty is estimated and explicitly 
considered in problem identification and solution 
development.  Second, flight-specific, rather than 
flow-oriented, congestion resolution maneuvers are 
generated.  The expected effect of these 
improvements is to reduce the number of 
unnecessary flight restrictions while maintaining safe 
traffic levels more effectively and with less controller 
workload.  An initial prototype has been developed, 
thus demonstrating the feasibility of the first phase of 
the concept, and is being used to do an initial benefits 
analysis. 
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