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1. INTRODUCTION

Weather variability can have a significant economic
impact, especially in weather sensitive industries. The
dependence of economic quantities of interest on the
weather is generally nonlinear. This nonlinear
dependence makes probabilistic forecasts more
valuable for rational decision making. Ensemble
Prediction Systems (EPS) provide a set of numerical
forecasts, which attempt to describe the range of
possible outcomes. They can be used as a tool for
making probabilistic forecasts. Recent studies have
revealed that probabilistic forecasts based on
ensemble prediction system provide more information
about forecast uncertainty to those making decisions
than deterministic forecasts from single model (Wilson
et al., 1999; Zhu et al., 2002).

Most studies that use ensemble forecasts to make
rational decisions have focused on the cost-loss binary
decision making model (Richardson, 2001; Zhu et al.,
2002). Smith et al. (2001) described an application of
what they called the ‘end-to-end approach’ in
forecasting weather dependent economic variables.
The end-to-end ensemble forecast converts each
ensemble member directly into a variable relevant to
the end user to estimate the future uncertainty in the
end user variable. The economic value of ensemble
forecasts depends on the quality of the forecasts, and
on the sensitivity of the business activity to the weather
conditions. Good probabilistic forecasts may lead to
better decisions and increased economic returns.
However a forecast system, which generally scores
well in traditional verifications, may not necessarily
lead to better economic returns over time. In some
cases, even a small number of inaccurate forecasts
may lead to poor economic returns. Therefore, the
calibration of ensemble-based probabilistic forecasts is
a significant issue.

2. BUSINESS MODEL

Temperature is the most significant weather
variable correlated with electricity demand. Following
the method of Smith et al. (2001), This study
investigated the potential value of ensemble-based
probabilistic temperature forecasts to electricity
retailers who purchase power from generators and
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supply it to consumers. We assumed an ‘ideal’
electricity market, in which the supplier was contracting
generation 4 days ahead of delivery. We also assumed
that the temperature alone determined the demand for
electricity. A deterministic-linear relationship between
temperature and demand, modelling the load due to

heating in cooler climate, was used to convert
ensemble temperature forecasts into electricity
demand forecasts:

D =5000 -100T )

Where D is electricity demand in megawatts and T is
temperature in degrees Celsius.

In the electricity market, the supplier has to decide
in advance the amount of electricity (X) to contract
from generators, at a cost price (CP). Then the supplier
sells electricity to consumers at a sell price (SP).
However, if, during the contract period, demand (Y)
exceeds the amount of pre-purchased power, the
supplier must pay an imbalance settlement price (ISP)
on the generation shortfall. Loss of generation
capacity, for example due to unexpected plant
maintenance, may lead to the imbalance settlement
price greatly exceeding the cost price. Let U (X, Y)
represent the user’s utility function, the income of the
electricity supplier:

(y<Xx) (2
Y>Xx) 3

U(X,Y) = -CPx X + PxY
U(X,Y) =—CPx X = ISPx (Y = X) + PxY

Given a probabilistic forecast P(Y), then the user’s
expected utility for a given decision:

E[U](X) = [U(X,Y)P(Y)dY @)

Thus, the supplier can make an optimum pre-
purchase choice, which maximizes the user’s expected
utility:

E[U](x) = max (E[U](X)) ®)

3. INTERPRETING ENSEMBLE FORECASTS

Two years of ensemble forecasts of midday
surface temperature for locations around New Zealand
and Australia were extracted from the National Centers
for Environmental Prediction (NCEP) ensemble
forecast system. A continuous probability function was
derived from the individual ensemble members by



fitting them with a normal distribution. The fitting of the
distribution enables an improvement in ensemble
probability estimates (Wilson et al.,1999). Bias in the
ensemble forecasts was corrected by removing the
bias found in the ensemble mean forecast from each
individual member. This correction approach is more
efficient than a mere subtraction from every ensemble
member of the mean error averaged over all ensemble
forecasts (Atger, 2003). We found that the ensemble
spread among members was too narrow on average
compared with that expected from model error in the
study region..

We simulated the performance of an electricity
supplier using different forecasts. In all simulations, the
cost price (CP) was 1.0 per unit, the sell price (SP) was
1.5 per unit, and the imbalance settlement price (ISP)
ranged from 1 to 40 times the cost price. The different
forecasts used to produce electricity demand forecasts
were as follows:

(1) Climatology: This study used a 14-day moving
average as our climatology. The active forecast
strategies were compared against this baseline.
Since the climatology was calculated directly from
the observations used in this study, the
benchmark is higher than a traditional 30-year
historical climatology.

(2) Deterministic forecasts: The ensemble high-
resolution control member forecasts from 0000
UTC were taken as an example of a single model
forecast.

(3) Raw ensemble probabilistic forecasts: All
members of the NCEP ensemble forecasts of
temperature were converted into a probability
distribution function by fitting them with a normal
distribution.

(4) Bias-corrected ensemble probabilistic forecasts:
The bias corrected ensemble members were
converted into a probability distribution function by
fitting them with a normal distribution.

(5) Calibrated ensemble probabilistic forecasts: Three
methods were tried for correcting ensemble mean
and adjusting ensemble spread in order to
produce a calibrated probability distribution
function.

4. RESULTS AND DISCUSSION

To illustrate the profit calculated of the different
forecasts, firstly the results for a supplier in Wellington
(Figure 1) were considered. Each line shows the ratio
of the average profit using the different forecasts
relative to the value based on climatology.

4.1 Deterministic forecasts

Treating the ensemble high-resolution control
forecasts as deterministic forecasts, shown as a dotted
line in Figure 1la, resulted in smaller profits in our
idealized model than raw ensemble probabilistic
forecasts. This happened particularly at small and
large imbalance settlement prices. This is because the

single valued forecasting did not allow consideration of
alternative scenarios, some of which may greatly affect
profit. Dressing the single forecasts with historical
errors to produce probabilistic forecasts (not shown)
helped somewhat, but results were no better than the
raw ensemble probabilistic forecasts or calibrated
ensemble probabilistic forecasts.
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Figure 1: The profits calculated for an electricity
supplier with different demand forecasts, relative to
climatological demand forecasts for Wellington. This
evaluation of electricity demand forecasts was based
on NCEP Day 4 different ensemble forecasts for the
period July 2002 to February 2004. (a) is the
comparison of types of forecasts. (b) is the
comparison of calibration techniques.

4.2 Raw ensemble-based probabilistic forecasts

Raw ensemble probabilistic forecasts from NCEP,
shown by a solid line in Figure 1l1a, provided a
significant improvement over climatology, particularly
at high imbalance settlement prices. This is believed to
be partly due to the information about the probability
distribution, which allows the supplier to optimize
decision making by pre-purchasing an appropriate
amount of power. However the cold bias of forecasts at
Wellington was a more important factor. In terms of the
business model a forecast that is consistently a little
too cold equates to ‘playing it safe’. By erring on the
cold side the chance of not pre-purchasing enough
power, and therefore incurring a large penalty, is



reduced. The higher the imbalance settlement prices
the more advantage from a cold bias.

In the real electricity market, the very high
imbalance settlement price happens rarely. The
imbalance settlement price in general is about two
times the cost price. In this situation, the absolute
penalty is small. Pre-purchasing more power in
response to the cold bias would lead to a loss.
Therefore, raw ensemble probabilistic forecasts slightly
underperformed climatology at low imbalance
settlement prices.

4.3 Bias correction of ensemble probabilistic
forecasts

The use of bias-corrected ensemble forecasts,
shown by a dashed line in Figures 1a and 1b, was
problematic. Bias-corrected ensemble forecasts could
only provide an improvement where the ratio of
imbalance settlement price to cost price was less than
two. However, as the imbalance settlement price
increased, bias correction became the worst
performing of all forecasts. Since the penalty function
is not symmetric, a conservative approach is to err on
the side of a cooler forecast. However, at Wellington,
bias correction acted to produce warmer forecasts and
ensemble spread underestimates the uncertainty.
Therefore, the penalty overrode the benefits of the bias
correction when a colder than expected temperature
was observed. The absolute penalty was small at a
small imbalance settlement price. However, the more
the imbalance settlement price increased, the greater
the penalty became. In this situation, even a small
number of inaccurate forecasts may lead to heavy
losses. This means that electricity demand forecasts
are sensitive to the cold temperature forecasts in cold
bias locations. It is clear that simply bias correcting the
ensemble mean but not adjusting ensemble spread
can lead to significant problems.

4.4 Calibration of ensemble-based temperature
probabilistic forecasts

We used the following three methods to calibrate
ensemble probabilistic forecasts by adjusting for
insufficient ensemble spread:

(1) Adjusting ensemble spread by a constant: Using
the standard deviation of ensemble forecast error
to replace ensemble spread.

(2) Adjusting ensemble spread by a single scaling
factor: Multiplying by a seasonal average ratio of
ensemble forecast errors to ensemble spread.

(3) Adjusting ensemble spread by regression: Using a
linear regression to adjust ensemble spread by
taking into account the correlation between
ensemble spread and the standard deviation of
previous ensemble forecast errors.

Comparing their performance with the electricity
demand forecasts, the results for Wellington are shown

in Figure 1b. Our findings supported Jewson et al.’s
(2003) study, which showed that the regression
method did indeed outperform the other two simple
methods, although using historical errors to adjust the
ensemble spread gave virtually the same results (see
Figure 1b). The regression method calibrated both the
mean level of uncertainty and the amplitude of the
variability of uncertainty. Even though the ensemble
spread does contain some information about the
uncertainty, we found that the variations of the
uncertainty were so small that the amount of
information did not make a major difference compared
to adjusting spread by a constant historic error. In other
words, the commonly assumed relationship between
spread and skill was extremely weak.

Probabilistic forecasts for Wellington, based on
corrected ensemble mean and adjusted ensemble
spread, shown by a long dashed line in Figure 1a, led
to a marginal improvement over bias-corrected
ensemble probabilistic forecasts at lower imbalance
settlement prices, and became increasingly valuable
as the imbalance settlement price increased. This
method outperformed or came close to raw ensemble
probabilistic forecasts at large imbalance settlement
prices. This is because the entire distribution of future
temperatures is estimated as an optimal combination
of information from the ensemble and previous errors.

4.5 Results for New Zealand and Australia

Results for six other cities in New Zealand and
Australia are shown in Figure 2. NCEP ensemble

probabilistic  forecasts performed better than
deterministic forecasts from single model at all
locations. However, raw ensemble probabilistic

forecasts slightly underperformed climatology where
the ratio of imbalance settlement price to cost price
was less than about three. In this situation, calibrated
ensemble  probabilistic  forecasts provided an
improvement, and bias correction was also useful.

As the imbalance settlement price increased, using
raw ensemble probabilistic forecasts gave the best, or
close to the best results at most locations. Taupo was
a notable exception. Significantly, the bias at Taupo
was warm, while at all the others it was near zero or
negative. Uncorrected warm forecasts at Taupo led to
the need to buy extra electricity at the higher

imbalance settlement prices more often. Bias
correction helped significantly at all imbalance
settlement  prices, and calibrating ensemble

probabilistic forecasts added real value at higher
imbalance settlement prices.

The single most useful method, taken across all
stations and recognising the increased likelihood of low
valued imbalance settlement price, was ensemble
probabilistic  forecasts calibrated with a linear
regression between ensemble spread and the standard
deviation of previous ensemble forecast errors.
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Figure 2: The profits calculated for an electricity supplier based on NCEP Day 4 different electricity demand forecasts,
relative to climatological demand forecasts for six locations in New Zealand and Australia. The results were averaged over
the period July 2002 to February 2004. The legends are the same as Figure 1a.

5. CONCLUSION

Ensemble-based probabilistic forecasts have been
shown to be useful in an idealized electricity market
model. Bias correction, while helpful to traditional
verification of weather forecasts, does not guarantee a
significant improvement in economic returns if the profits
are non-linearly related to the weather variables. In the
model we considered, the penalty for over-estimating
the temperature was greater than for under-estimating.
The skill of business demand forecasts is sensitive to
the ensemble spread. Calibration of ensemble-based
probabilistic forecasts is a significant issue and needs to
consider both correction of ensemble mean and
adjustment of ensemble spread. Calibrated ensemble
probabilistic forecasts were the best of all forecasts by a
small margin, and improved business demand forecasts
in our simple model. However, the improvement was not
as large as expected at high imbalance settlement
prices. The quality of the weather dependent economic
variable forecasts depends on the quality of the weather
forecasts, the business model relating weather to the
relevant economic variables, and the user's utility
function.

In the study, the business models relating
temperature to electricity demand were idealized. In
practice the relationship between temperature and
electricity demand would be more complicated. It is
necessary in further study to develop methods to
address the uncertainties in both the ensemble forecast
system and the business model to improve the

economic variable forecasts. In addition, future studies
could consider employing ensemble multi-models to
increase the ensemble size in order to produce further
improvements, particularly in boosting the spread skill
relationship.
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