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ABSTRACT 

There is an increasing interest in the question of what 
might be the appropriate future role for the human in 
the forecast process. It is asserted that computer-
generated forecasts are unable (by themselves) to 
fully replicate the decision-making processes of 
human forecasters. Similarly, it is also asserted that 
human forecasters are unable (by themselves) to 
optimally integrate into the forecasting process, 
guidance from computer-generated predictions. 
However, there is the accepted mathematical concept 
that two or more inaccurate but independent 
predictions of the same future events may be 
combined to yield predictions that are, on the 
average, more accurate than either of them taken 
individually. Automated and human forecasts might be 
expected to "bring to the table" different knowledge 
sets, and this suggests the development of a weather 
forecasting system that mechanically combines 
human and computer-generated predictions.  
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This paper reports on the evaluation of a knowledge 
based system, modified in order to mechanically 
combine human and computer-generated predictions. 
The system’s output is firstly evaluated over a “real-
time” trial of 100 days duration. The trial reveals that 
forecasts generated by mechanically combining the 
predictions explain 7.7% additional variance of 
weather (rainfall amount, sensible weather, minimum 
temperature, and maximum temperature) over that 
explained by the human (official) forecasts. In the light 
of the results of the 100-day trial, a number of minor 
modifications are made to the system and the trial is 
then continued. After 365 Day-1 to Day-7 forecasts, 
that is, 2555 individual predictions, the average lift in 
percentage variance of weather explained is 7.9% 
over that explained by the current official forecasts.  

With computer-generated forecasts unable to fully 
incorporate human forecasters’ valuable domain and 
contextual knowledge, there should be a need for the 
human forecaster well into the future. That future role 
may be as an input to a system that mechanically 
combines human predictions with computer-
generated forecasts. 

1. INTRODUCTION 

“Consider mechanically integrating judgmental and 
statistical forecasts instead of making judgmental 
adjustments to statistical forecasts …Judgmental 
adjustment (by humans) of (automatically generated 
statistical forecasts) is actually the least effective way 
to combine statistical and judgmental forecasts … 
(because) judgmental adjustment can introduce bias 
(Mathews and Diamantopoulos, 1990) (see also, 
Stern (1996), who documents forecaster over-
compensation for previous temperature errors) …The 
most effective way to use (human) judgment is as an 
input to the statistical process … Cleman (1989) 
reviewed over 200 empirical studies on combining 
and found that mechanical combining helps eliminate 
biases and enables full disclosure of the forecasting 
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process. The resulting record keeping, feedback, and 
enhanced learning can improve forecast quality” 
(Sanders and Ritzman, 2001).  

Some 30 years ago, Snellman (1977) lamented that 
whereas the initial impact of guidance material was to 
increase the accuracy of predictions on account of a 
healthy human/machine 'mix', operational 
meteorologists were losing interest and that the gains 
would eventually be eroded by what he termed the 
'meteorological cancer'. Snellman suggested that 
producing automated guidance and feeding it to the 
forecaster who 'modifies it or passes it on', 
encourages forecasters 'to follow guidance blindly' 
and concluded by predicting an erosion of recent 
gains. Hindsight informs us from forecast verification 
statistics that the erosion of gains did not take place. 
In fact, the accuracy of forecasts continued to 
increase - see, for example, Stern (2005a, 2005b). 
Nevertheless, evidence is emerging that the 
increasing skill displayed by the guidance material is 
rendering it increasingly difficult for human forecasters 
to improve upon that guidance (Baars and Mass, 
2005; Ryan, 2005). 

Stern (1980a) outlines a possible approach to the 
determination of an optimal human-machine mix. He 
refers to Sanders (1973), who investigated the skill 
displayed by daily temperature and precipitation 
forecasts made in the Department of Meteorology at 
the Massachusetts Institute of Technology. Sanders 
found that “few if any individuals who made a 
substantial number of forecasts outperformed 
consensus on the average.” Stern also refers to 
Thompson (1977), who, noting Sanders’ work, 
suggested that “an objective and quantitative method” 
be used to reach a consensus (bearing in mind) … 
the incontrovertible fact that two or more inaccurate 
but independent predictions of the same future events 
may be combined in a very specific way to yield 
predictions that are, on the average, more accurate 
than either of them taken individually.” Danard (1977) 
comments on Thompson’s method, whilst Danard et 
al. (1968) discusses the subject of optimally 
combining independent estimates from a numerical 
analysis perspective. 

Both Thompson (1977) and Danard (1977) discuss 
how one may optimally combine two forecasts if the 
assumption that they are independent is made. If this 
assumption is made, it is implied that ρ, the 
correlation coefficient between errors produced by the 
two forecasting methods, is equal to zero. Methods of 
forecasting a particular weather element are usually 
based on similar physical principles and therefore the 
sets of errors produced by the methods tend to be 
quite highly correlated. Indeed, Danard (1977) 

acknowledges “that ρ=0 is likely to be more valid for 
two measurements than for two predictions.”  
Therefore, the validity of the approaches of Thompson 
(1977) and Danard (1977) is limited by their 
assumption that ρ=0.  

With this in mind, Stern (1980a) suggests that the 
approach maybe applied under the assumption that ρ 
is not equal to zero by applying multiple linear 
regression to forecast verification data, in order to 
minimise forecasts errors. Stern (1980a&b) and Stern 
and Dahni (1981 & 1982) (refer also to Dahni et al. 
(1984)) subsequently demonstrated that forecasts 
would be improved were one to simply average 
predictions from different sources. In the context of 
the foregoing, this assumes that the predictions from 
the different sources are equally skilful. This is not an 
unreasonable assumption - to justify unequal weights 
there needs to be  'strong evidence to support 
unequal weighting' (Armstrong, 2001b).    Indeed, a 
common method for combining individual forecasts is 
to calculate an equal weighted average of individual 
forecasts' (Stewart, 2001). Combining forecasts by 
mathematically aggregating a number of individual 
forecasts increases the reliability of forecasts (Kelley, 
1925; Stroop, 1932) and averages out unsystematic 
errors (but not systematic biases) in cue utilization. 
Nevertheless, Krishnamurti et al. (1999) found that 
weather forecasts based on a combined forecast 
using weights based on regression were more 
accurate than combined forecasts with equal weights.  

In recent years, there has been considerable effort 
directed towards how to optimally combine forecasts 
from different sources (for example, refer to Aksu and 
Gunter (1992), Vislocky and Fritsch (1995), Brown 
and Murphy (1996), Ebert (2001), Etherton (2004), 
Ryan (2005), Woodcock and Engel (2005), and Stern 
(2006a)).  

Sanders and Ritzman (2001) highlight the difficulty 
associated with utilising (human) judgment as an input 
to the statistical process 'when the (human) forecaster 
gets information at the last minute'. The purpose of 
the present paper is to describe the development of a 
system that mechanically combines judgmental 
(human) forecasts (derived with the benefit of 
knowledge of all available computer generated 
forecast guidance) and computer generated forecasts 
guidance and to evaluate the accuracy of the new set 
of forecasts and to compare it with the accuracy 
achieved by the judgmental (human) forecasts.  
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2. A KNOWLEDGE-BASED SYSTEM 

The present author has recently been involved in the 
development of a knowledge based weather 
forecasting system (Stern, 2002a, 2003, 2004a, 
2004b, 2005a, 2005b, 2005c, 2005d, 2006a). The 
system, in its various guises, has variously been 
utilised to automatically generate worded weather 
forecasts for the general public, terminal aerodrome 
forecasts (TAFs) for aviation interests, and marine 
forecasts for the boating fraternity1.  

The knowledge based system generates these 
products by using a range of forecasting aids to 
interpret Numerical Weather Prediction (NWP) model 
output in terms of such weather parameters as 
precipitation amount and probability, maximum and 
minimum temperature, fog and low cloud probability 
(Stern and Parkyn, 1998, 1999, 2000, 2001), 
thunderstorm probability (Stern, 2004b), wind 
direction and speed, and swell (Dawkins, 2002). 

For example, Stern's (2005c) forecasts in weather 
graphic format are generated from an algorithm that 
has a logical process to yield HTML code by 
combining predictions of temperature, precipitation, 
wind, morning and afternoon sensible weather, and 
special phenomena (thunderstorm, fog), with features 
of the forecast synoptic type (strength, direction, and 
cyclonicity of the surface flow).  

The system was recently utilised to establish the limits 
of predictability, in a paper published in a previous 
edition of the Australian Meteorological Magazine 
(Stern, 2005b).  

3. COMBINING FORECASTS 

Stern (2005c) showed that human and automated 
forecasts are poorly correlated (the overall percentage 
variance of human forecasts explained2 by the 

                                                           
1 The system’s components have been extensively 
documented in a series of recent papers presented to 
American Meteorology Society (AMS) Conferences 
over the past few years (those without access to hard 
copy or CDs of AMS Conference Proceedings may 
download these papers from the AMS Website) 
2 The verification statistic, ‘percentage variance 
explained’ is most easily understood in the context of 
regression. For example, “… the smaller the variability 
of the residual values around the regression line 
relative to the overall variability, the better is our 
prediction … if there is no relationship between the X 
and Y variables, then the ratio of the residual 
variability of the Y variable to the original variance is 
equal to 1.0. If X and Y are perfectly related then 

automated forecasts being only 45.9%).  This poor 
correlation indicates, that, on a day-to-day basis, 
there are significant aspects of the processes 
employed in deriving the official forecasts that are not 
taken into account by the system's forecasts (in all 
likelihood what Sanders and Ritzman (2001) refer to 
as 'domain knowledge'), and vice versa. Sanders and 
Ritzman (2001) define 'domain knowledge' as 
'knowledge practitioners gain through experience as 
part of their jobs' and make particular reference to that 
component of domain knowledge named 'contextual 
knowledge, which is the type of knowledge one 
develops by working in a particular environment.' 'The 
quality of domain knowledge is affected by the 
forecaster's ability to derive the appropriate meaning 
from the contextual (or environmental) information' 
(Webby et al., 2001). 

Sanders and Ritzman (2001), in their discussion of 
how best to combine forecasts, suggest that  
'Combining is most effective when the forecasts 
combined are not correlated and bring different kinds 
of information to the forecasting process' (Sanders 
and Ritzman, 2001) and that although 'both (human) 
intuitive and (computer) analytic processes can be 
unreliable … different kinds of errors will produce that 
unreliability' (Stewart, 2001). It may be asserted that 
an automated system is unable (by itself) to fully 
replicate the decision-making processes of human 
forecasters and, similarly, human forecasters (by 
themselves) are unable to optimally integrate into the 
forecasting process automated forecasting guidance. 
The only way to preserve forecasters’ valuable 
domain and contextual knowledge as an integral 
component of the forecasting process, while 
simultaneously incorporating automated forecasting 
guidance into that process, may therefore be to utilise 
                                                                                       
there is no residual variance and the ratio of variance 
would be 0.0. In most cases, the ratio would fall 
somewhere between these extremes, that is, between 
0.0 and 1.0. 1.0 minus this ratio is referred to as R-
square … if we have an R-square of 0.4 then … we 
have explained 40% of the original variability, and are 
left with 60% residual variability. Ideally, we would like 
to explain most if not all of the original variability. The 
R-square value is an indicator of how well the model 
fits the data (e.g., an R-square close to 1.0 indicates 
that we have accounted for almost all of the variability 
with the variables specified in the model)” (StatSoft, 
Inc., 2006). Where the verification statistic, 
‘percentage variance explained’ is quoted in the 
present paper in the context of evaluating ‘overall’ 
performance of the forecasting system across a 
number of different weather parameters, the statistic 
refers to the arithmetic average ‘percentage variance 
explained’ by predictions of these parameters.  
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a system that mechanically combines the automated 
and human predictions. 

4. MODIFYING THE SYSTEM 

Stern’s (2005c) paper "Defining cognitive decision 
making processes in forecasting: a knowledge based 
system to generate weather graphics", delivered to 
the American Meteorology Society’s 21st Conference 
on Weather Analysis and Forecasting and 17th 
Conference on Numerical Weather Prediction, 
presented an analysis of Day 1 to Day 7 rainfall and 
temperature forecasts during a 100-day real-time trial 
conducted from February to May 2005. The human 
(official) forecasts explained 42.3% of the variance of 
the observed weather, whilst (by itself) the automated 
(knowledge based) system explained only a slightly 
greater 43.2% of the variance (that is, only an 
additional 0.9%) of the observed weather. 

Post-analysis suggested that were one to adopt a 
strategy of combining human and computer-
generated predictions one has the potential to lift the 
percentage variance explained by human predictions 
(the current official forecasts) of weather to a much 
greater 50.2%, that is, by 7.9% (Figure 1). This 
suggestion from the post-analysis was encouraging 
but needed to be validated by a fresh real-time trial 
conducted on a new set of independent data3. 

With a view to validating the assertion that 
mechanically combining automated and human 
predictions might lead to an increase in accuracy, the 
knowledge-based system was modified to 
mechanically combine human and computer-
generated predictions so that it now took into account 
forecasters’ valuable domain and contextual 
knowledge. Sanders and Ritzman (2001) refer to their 
1992 study (Sanders and Ritzman, 1992), in which 
they demonstrated that judgmental forecasts based 
on contextual knowledge were significantly more 
accurate than those based on technical knowledge 
(and) … were even superior to (a) … statistical 
model.' 

The process of integrating human and computer-
generated forecasts is illustrated in Figure 2 as it 
applies to forecasts of Probability of Precipitation from 

                                                           
3 In order to establish the validity of the assertions 
made in this paper, it was important to test the system 
“real-time” on a new set of data. As Sharov (2006) 
states: “…models may work well with the data to 
which they were fit, but show no fit to other data sets 
… To solve this problem, the concept of validation 
was developed. Model Validation is testing the model 
on another independent data set.” 

which are derived forecasts of sensible weather. The 
inputs are averaged, which assumes that the 
predictions from the different sources are equally 
skilful. This is not an unreasonable assumption - to 
justify unequal weights there needs to be  'strong 
evidence to support unequal weighting' (Armstrong, 
2001b). It cannot be emphasised too strongly that the 
modified system is not a system of forecast guidance, 
nor can it be used as a system of forecast guidance 
by the human forecasters, because the human 
(official) prediction is now, itself, an input into the 
modified system.  

Note that the system’s sensible weather predictions 
arises from an algorithm that interprets its generated 
probability of precipitation (POP) and synoptic type 
(Treloar and Stern, 1993; Stern and Parkyn, 1999) 
(refer to PANEL 1 below), and, conversely, the 
implied human (official) Probability of Precipitation 
arises from an algorithm that interprets the human 
(official) sensible weather predictions. This approach 
is similar to what Scott and Proton (2004) refer to as 
the creation of “anchor grids” from which to generate 
additional grids. What this entails is for forecasters 
within GFE/IFPS to create an anchor grid such as 
probability of precipitation (POP) and derive other 
forecast grids such as weather from the PoP grid. The 
forecaster thereby leverages a grid of values of one 
weather element to systematically extract grids of 
other weather elements via a set of algorithms.    

 

PANEL 1 
 
… else if (type=="2" && popfinal<70) 
{iconmorningzero="Drizzle."; 
iconafternoonzero="Cloudy.";} 
else if (type=="2" && popfinal<80) 
{iconmorningzero="Shower."; 
iconafternoonzero="Cloudy.";} 
else if (type=="2") 
{iconmorningzero="Shower."; 
iconafternoonzero="Shower.";} 
//TYPE 3 WEAK CYCLONIC NNW 
else if (type=="3" && popfinal<5) 
{iconmorningzero="Sunny."; 
iconafternoonzero="Sunny.";} 
else if (type=="3" && popfinal<20) 
{iconmorningzero="Sunny."; 
iconafternoonzero="Partly Cloudy.";}… 

Stern (1999) published a proposed interpretation of 
words used in forecasts in terms of Probability of 
Precipitation and Amount of Precipitation. The system 
includes an algorithm that interprets the (official) 
worded précis in terms of Probability of Precipitation 
and Amount of Precipitation. This algorithm was 
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derived from Stern’s (1999) proposed interpretation 
and a verification of the official précis that was 
conducted during the trial of February to May 2005. 
By way of illustration, an extract of the probability (%) 
algorithm, and an extract of the amount (mm) 
algorithm, are respectively given in Tables 1 and 2. 
Because the system’s forecast of sensible weather 
arise largely from the system’s generated Probability 
of Precipitation, and, conversely, the human (official) 
Probability of Precipitation, arises from an algorithm 
that interprets the (official) worded précis, any 
verification of the Probability of Precipitation may also 
be regarded as representing a verification of forecast 
sensible weather. 

The system generates forecasts for 56 localities in 
Central Victoria, and therefore potentially caters for 
some 4 million people (or 20% of the Australian 
population). Figure 3 presents an illustration of its 
output by depicting the 3 June 2006 forecast for Mt St 
Leonard, which is in hilly country about 80 km east of 
Melbourne (Map 1). 

5. THE REAL-TIME TRIAL 

Forecast verification data from a new 100-day real-
time trial of the system so modified, conducted from 
20 August to 27 November 2005, on a new set of 
independent data, was then analysed. The analysis 
included verification of forecasts of a range of weather 
elements (rainfall, temperature, wind, thunder and 
fog) and confirmed the assertion that mechanically 
combining automated and human predictions might 
lead to an increase in accuracy, with the percentage 
variance explained by human predictions (the official 
forecasts) being lifted by 7.7% over that explained by 
the current official forecasts. 

The lift in accuracy arose because in most 
circumstances, the combining strategy left the 
system’s forecasts almost identical to the human 
(official) forecasts (the percentage variance of the 
official forecasts explained by the combined forecasts 
was 77.2% - a considerable increase over the 45.9% 
achieved previously), whilst in those few 
circumstances when the combining strategy 
substantially changed the human (official) forecasts, 
the system's forecasts usually represented an 
improvement.  

In the light of the results of the 100-day trial, a number 
of minor modifications were made to the system. For 
example, from 27 December 2005, Day-1 wind 
forecasts were generated by a combining procedure – 
previously, they had been solely computer-generated. 
The real-time trial was then continued. After 365 Day-
1 to Day-7 Melbourne forecasts from 20 August 2005 

to 19 August 2006, inclusive, that is, 2555 individual 
predictions, the lift in percentage variance (of rainfall 
amount, sensible weather, minimum temperature, and 
maximum temperature) explained was to 41.3% from 
33.4%, that is, an increase of 7.9% over that 
explained by the current official forecasts, the addition 
of more independent data further affirming the result 
suggested by the earlier work. The percentage 
variance of the official forecasts explained by the 
combined forecasts during the year was 76.8%. 

There was an overall lift shown in the accuracy of 
forecasts (with the performances of all elements taken 
together) for each lead-time (Figure 4). There was 
also an overall lift shown in the accuracy of forecasts 
(with the performances at all lead times taken 
together) of each weather element (Table 3). The 
significance of that lift in accuracy is illustrated, for 
example, in Figure 5 (for Day-1 to Day-7 maximum 
temperature forecasts), which places the 0.33 deg C 
decrease in RMS error achieved by the system in the 
context of the performance of human (official) 
forecasts of that element. 

A feature of the verification data presented is its 
comprehensive nature – covering not just forecasts of 
rainfall and temperature, but also sensible weather, 
fog, thunder and wind, and the results indicate that, 
on a day-to-day basis, what Sanders and Ritzman 
(2001) refer to as 'domain knowledge', is now taken 
into account by the system. 

With regard to the accuracy of forecasts of rare 
weather elements, the combining process was shown 
to lift the Critical Success Index (Wilks, 1995) for 
predictions of fog, from 15.5% to 17.8%, and for 
predictions of thunder, from 17.9% to 21.6%.  

With regard to the accuracy of forecasts of wind, the 
percentage variance of wind speed explained by the 
9am and 3pm Day-1 forecasts from 27 December 
2005, when combined wind forecasts were first 
generated, was lifted from 47.5% to 54.3%, and the 
percentage correct forecasts of wind direction was 
lifted from 68.3% to 71.2%.    

Although a lift did not occur in every single instance 
when the verification data was analysed with all lead 
times taken separately and all weather elements 
taken separately, a lift occurred in most instances. 
One of the very few exceptions, the case of Day-1 
forecasts of fog, where the Critical Success Index for 
the combined forecasts (27.3%) was substantially 
below that of the official forecasts (35.3%), is worthy 
of comment. The inability (of the combining process) 
to improve on the Day-1 official forecasts of fog may 
very well be a consequence of the effort that the 
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forecasting personnel of the Victorian Regional Office 
(and others) have invested over the years into short 
term fog and low cloud forecasting at Melbourne 
Airport (Goodhead, 1978; Keith, 1978; Stern and 
Parkyn, 1998, 1999, 2000, 2001; Newham, 2004). 
This effort may have resulted in such a high level of 
pre-existing human forecast skill at short-term 
predicting of fog, that mechanically combining human 
fog forecasts with automated fog forecasts actually 
caused a decline in accuracy. 

6. PLACING A VALUE ON THE FORECASTS  

What is particularly interesting about the verification 
data is that the combined forecasts are more 
consistent than the official forecasts. In a 1992 paper 
presented to the 5th International Meeting on 
Statistical Climatology (Stern, 1992; refer also to 
Stern, 2005e; Stern, 2006b), the author introduced a 
methodology for calculating the cost of protecting 
against the onset of global warming. The paper, “The 
likelihood of climate change: A methodology to assess 
the risk and the appropriate defence”, was presented 
to the meeting held in Toronto, Canada, under the 
auspices of the American Meteorology Society (AMS). 
In this first application of what later was to become 
known as 'weather derivatives' (Stern, 2001a,b,c,&d; 
Stern, 2002b&c; Dawkins & Stern, 2003&2004; Stern 
and Dawkins, 2004), the methodology used options 
pricing theory from the financial markets to evaluate 
hedging and speculative instruments that may be 
applied to climate fluctuations. In a related paper, 
Stern and Dawkins (2003) applied forecast verification 
data in a weather risk management context to price a 
financial instrument to guarantee the accuracy of a 
short-term weather forecast. What now follows is an 
application of options pricing theory where one uses 
the theory in a weather risk management context. 

The theory shows that the more consistent forecasts 
are from one day to the next, between Day-7 (when 
they are first issued) and Day-1 (the final issue), the 
cheaper are the prices of option contracts that one 
may wish to purchase to protect against the 
eventuality that the forecasts might be incorrect. The 
implication from this is that, the more consistent 
forecasts are from one day to the next, the more 
valuable are the forecasts (Appendix A.1). 

The American Marketing Association (2006) notes 
that "a “competitive advantage” exists when there is a 
match between the distinctive competences of a firm 
and the factors critical for success within the industry 
that permits the firm to outperform its competitors. 
Advantages can be gained by having the lowest 
delivered costs and/or differentiation in terms of 

providing superior or unique performance on 
attributes that are important to customers." 

From the foregoing, it may be said that the value of a 
series of weather forecasts with a low volatility, that is, 
a series of forecasts that display a high level of 
consistency from one day to the next, is greater than 
the value of a series of forecasts with a high volatility. 
This is because the cost of protecting against the 
possibility of such weather forecasts being incorrect 
by adopting a strategy of purchasing weather 
derivatives is lower. This means that sellers of 
weather derivatives, who utilise low volatility forecasts 
to price their call and put options, are provided with a 
competitive advantage over sellers of weather 
derivatives who utilise high volatility forecasts. This 
arises because sellers of weather derivatives who 
utilise low volatility forecasts being able to charge 
lower, and, therefore, more competitive, prices to 
purchasers of weather derivatives who wish to use 
those weather derivatives to protect against the 
possibility of the weather forecasts being incorrect. 

Hence, the data presented in Table 3, in showing the 
combined forecasts are more consistent than the 
official forecasts, are also showing that the combined 
forecasts are more valuable than the official forecasts 
with: 

o The consistency (RMS inter-diurnal change 
from Day-7 to Day6 to … to Day-1 forecast) 
associated with combined forecasts of 
rainfall amount being to 0.44mm0.5 (this RMS 
inter-diurnal change being well below the 
0.65mm0.5 associated with the official 
forecasts). 

o The consistency associated with combined 
forecasts of sensible weather being 11.6% 
(this RMS inter-diurnal change being well 
below the 18.9% associated with the official 
forecasts); 

o The consistency associated with combined 
forecasts of minimum temperature being 
1.17ºC (this RMS inter-diurnal change being 
well below the 1.36ºC associated with the 
official forecasts); and, 

o The consistency associated with combined 
forecasts of maximum temperature being 
1.36ºC (this RMS inter-diurnal change being 
well below the 1.86ºC associated with the 
official forecasts).   

Furthermore, that the combined forecasts are more 
accurate than individual currently available predictions 
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taken separately, also provides the small to medium 
sized companies involved in weather broadcasting 
with a potential competitive advantage (O’Donnell et 
al., 2002) over their peers should they choose to 
adopt a strategy of mechanically combining these 
existing predictions.   

And, there is a multiplicity of existing predictions to 
choose from. For example, one may choose, as in the 
case of the present work, to combine computer 
generated forecasts from a statistical interpretation of 
the output of the NOAA Global Forecasting System 
(GFS) (NOAA, 2006), with human forecasts for 
Melbourne from the Australian Bureau of Meteorology 
(Bureau of Meteorology, 2006). Alternatively, in order 
to provide a purely Australian context, one may 
replace the NOAA output as the computer generated 
component with the Australian Bureau of 
Meteorology’s Optimal Consensus Forecasts 
(Australian Weather News, 2006).  

7. CONCLUDING REMARKS  

There is an increasing interest in the question of what 
might be the appropriate future role for the human in 
the forecast process (Stewart, 2005). Computer-
generated forecasts are unable (by themselves) to 
fully replicate the decision-making processes of 
human forecasters. Similarly, human forecasters (by 
themselves) are unable to optimally integrate into the 
forecasting process, guidance from computer-
generated predictions. However, the work presented 
here demonstrates that mechanically combining 
human and computer-generated predictions (in order 
to “bring to the table” the two different knowledge 
sets) results in a set of forecasts that are more 
accurate than those currently issued officially.  

With automated systems unable (by themselves) to 
fully incorporate forecasters’ valuable domain and 
contextual knowledge, there should be a need for the 
human forecaster well into the future. This role may 
be to provide input to a system that mechanically 
combines human predictions with computer generated 
forecasts.  

8. PROPOSED FUTURE WORK 

Stern’s (2005b) Australian Meteorological Magazine 
paper, “Establishing the limits of predictability at 
Melbourne, Australia, using a knowledge based 
forecasting system and NOAA's long-range NWP 
model”, suggested that, for the first time, we have 
emerging evidence that there may now be some 
forecast skill out to Lorenz’s suggested 15-day limit 
(to day-to-day predictability of the atmosphere), 
particularly for temperature. With this background, for 

future work, it is proposed to extend the system to 
Day-10, utilising forecasts based upon “climatology” 
for generating Day-8 to Day-10 predictions, in lieu of 
the human (official) forecasts (because these human 
forecasts are not currently prepared for those lead 
times).  
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Map1. The system generates forecasts for 56 localities in Central Victoria, including all of the localities shown on the 
map, except for Fawkner Beacon and St Kilda Harbour Royal Melbourne Yacht Squadron (RMYS). Mt St Leonard, a 
sample forecast for which is depicted in Figure 3, is shown located in hilly country, some 80 km to the east of 
Melbourne.  

 

 

 

 

 

 

 

 

Figure 1. Stern (2005c) showed that the process of combining human (official) and automated forecasts had the 
potential to yield a set of predictions that is far more accurate than current official forecasts. The human (official) 
forecasts explained 42.3% of the variance of the observed weather (rainfall amount, sensible weather, minimum 
temperature, and maximum temperature), whilst (by itself) the automated (knowledge based) system explained only a 
slightly greater 43.2% of the variance of the observed weather. However, adopting a combining strategy has the 
potential to lift the overall percentage variance explained to a much greater 50.2%.  

 

Mt St Leonard. 

Human 
Forecasts 
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Combined 
Forecasts 
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Figure 2 The process of combining human (official) and computer generated (statistical) forecasts of Probability of 
Precipitation: 

• Firstly, the estimate from a statistical model (of 62%) is averaged with the implied estimate from the NOAA 
Global Forecasting System (GFS) (of 100%) to yield 81% (note that the “implied estimate” from the NOAA GFS is 
taken to be 100%, where a rainfall amount of at least 0.2 mm is indicated by the NOAA System, 50%, where a rainfall 
amount of 0.1 mm is indicated, and 0%, where no rainfall is indicated);  

• Secondly, this 81% outcome is then averaged with the previous estimate (generated ‘yesterday’) by the 
knowledge based system (of 65%) to yield 73% (the benefit of this step lies in it preserving some “memory” of the 
previous forecast, and hence results in a more consistent series of forecasts between Day-7 and Day-1; note that, for 
the “previous forecast” for Day-7, the “previous forecast” is taken to be the climatological normal); and, 

•  Finally, this 73% is then averaged with the implied estimate from the human (official) forecast (of 47%) to 
yield 60%. 
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Figure 3 An illustration of the output of the system - the 3 June 2006 forecast for Mt St Leonard, which is in hilly 
country some 80 km east of Melbourne (refer to Map 1). 
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Figure 4 Overall percentage variance of observed weather explained for each lead time (the weather elements 
rainfall amount, sensible weather, minimum temperature, and maximum temperature, taken together) explained by 
forecasts between 1 and 7 days ahead. The graph shows that the combined forecasts displayed a lift in the accuracy 
of forecasts for each lead time. 
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Figure 5 Placing the 0.33 deg C decrease in RMS error of Day-1 to Day-7 maximum temperature forecasts achieved 
by the system (orange arrow) in the context of the historical performance of human (official) forecasts of that element 
(blue line: RMS Error during the preceding 365 days; red line: linear trend). 
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Table 1 An extract of the probability (%) algorithm. To illustrate the application of the probability algorithm by 
example, note that a précis of "showers" by the human (official) forecast is, at Day-1, interpreted as a Probability of 
Precipitation (PoP) of 93%. That interpretation reduces to 82% at Day-4, and reduces further to 75% at Day-7, due to 
increasing uncertainty as the lead time lengthens. 

Day: 

Précis: 

1 2 3 4 5 6 7 

Sunny 1% 1% 1% 1% 3% 6% 9% 

Partly Cloudy 4% 6% 9% 11% 14% 16% 19% 

Cloudy 19% 20% 21% 23% 25% 26% 28% 

Becoming Fine 34% 33% 34% 35% 36% 36% 37% 

Few Showers 49% 47% 47% 47% 46% 47% 47% 

Drizzle Clearing 63% 61% 59% 58% 57% 57% 56% 

Showers Clearing 78% 74% 72% 70% 68% 67% 65% 

Showers 93% 88% 85% 82% 79% 77% 75% 

Rain 99% 99% 97% 94% 90% 87% 84% 

Heavy Rain 99% 99% 97% 94% 90% 87% 84% 
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Table 2 An extract of the amount (mm) algorithm. To illustrate the application of the amount algorithm by example, 
note that a précis of "rain" by the human (official) forecast is, at Day-1, interpreted as an Amount of Precipitation of 10 
mm. That interpretation reduces to 5 mm at Day-4, and reduces further to 1 mm at Day-7, due to increasing 
uncertainty as the lead time lengthens.  

Day: 

Précis: 

1 2 3 4 5 6 7 

Sunny 0 0 0 0 0 0 0 

Partly Cloudy 0 0 0 0 0 0 0 

Cloudy 0 0 0 0 0 0 0 

Becoming Fine 0 0 0 0 0 0 0 

Few Showers 2 1 1 1 1 1 1 

Drizzle Clearing 2 1 1 1 1 1 1 

Showers Clearing 2 1 1 1 1 1 1 

Showers 5 4 3 2 2 1 1 

Rain 10 8 6 5 4 2 1 

Heavy Rain 20 16 13 10 7 4 1 
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Table 3 Details of the overall lift in forecast accuracy achieved by combining forecasts, demonstrating that there is a 
lift in the overall performance of the predictions for each individual weather element (lead times Day-1, Day-2, …  
Day-7 taken together).  

Weather 
Element 

Verification 
Parameter 

Official 
Forecasts 

Combined 
Forecasts Comment 

All Elements % Variance Explained 33.4 41.3 Combined forecasts are, overall, more accurate 
Rain4 or No Rain % Correct 70.1 76.8 Combining yields more correct forecasts of rain occurrence 
√(Rainfall Amount) % Variance Explained 18.4 23.5 Combined rainfall forecasts are more accurate 

... RMS Error (mm0.5) 1.05 0.97 Combined rainfall forecasts are more accurate 

... Forecast Consistency5 (mm0.5) 0.65 0.44 Combined rainfall forecasts are more consistent 
Sensible Weather6 % Variance Explained 23.7 34.2 Combined forecasts of sensible weather are more accurate 

... Forecast Consistency (%) 18.9 11.6 Combined forecasts of sensible weather are more consistent 
Min Temp % Variance Explained 41.5 47.7 Combined minimum temperature forecasts are more accurate 

... RMS Error (ºC) 2.39 2.27 Combined minimum temperature forecasts are more accurate 

... Forecast Consistency (ºC) 1.36 1.17 Combined minimum temperature forecasts are more consistent 
Max Temp7 % Variance Explained 50.0 59.7 Combined maximum temperature forecasts are more accurate 

... RMS Error (ºC) 2.82 2.49 Combined maximum temperature forecasts are more accurate 

... Forecast Consistency (ºC) 1.86 1.36 Combined maximum temperature forecasts are more consistent 
Thunder8 Critical Success Index (%) 17.9 21.6 Combined thunderstorm forecasts are (overall) superior … 

… Probability of Detection  (%) 20.6 34.1 With more “hits” … 
… False Alarm Ratio (%) 42.9 62.9 But, at a price of more “false alarms” 

Fog9 Critical Success Index (%) 15.5 17.8 Combined fog forecasts are (overall) superior … 
… Probability of Detection  (%) 19.9 27.3 With more “hits” … 
… False Alarm Ratio (%) 58.9 66.1 But, at a price of more “false alarms” 

Wind Speed10 % Variance Explained 47.5 54.3 Combined forecasts of wind speed are more accurate 
Wind Direction % Correct Within Half-Octant 68.3 71.2 Combined forecasts of wind direction are more accurate 

 

 

                                                           
4The official Amount of Precipitation forecasts are expressed in terms of rainfall ranges and, for verification purposes, 
the Amount of Precipitation forecast is taken to be the mid-point of the range forecast: 
    Range 0 = No precipitation; Range 1 = 0.2 mm to 2.4 mm (1.3 mm); Range 2 = 2.5mm to 4.9mm (3.7 mm); Range 
3 = 5.0mm to 9.9mm (7.5mm); Range 4 = 10.0mm to 19.9mm (14.9mm); Range 5 = 20.0mm to 39.9mm (29.9mm); 
Range 6 = 40.0mm to 79.9mm (59.9mm); and, Range 7 = 80.0mm or more (119.9mm).   
5RMS inter-diurnal change from Day-7 to Day6 to … to Day-1 forecast. 
6Implied by probability of precipitation estimates. 
7Forecasts were also prepared for a number of other Central District localities. Verification of the Day-1 maximum 
temperature component of these forecasts, namely, for those ten places for which official forecasts are issued (note 
that, for six of these ten places, only Day-1 temperature forecasts are issued officially) reveals that, expressed as an 
expected departure from Melbourne’s maximum temperature, the mean absolute error of the system’s forecasts was 
0.971ºC, compared with 1.099ºC for the official forecasts. 
8For verification purposes, it is said that there has been a thunderstorm in the metropolitan area during a particular 
day when at least one of the 0300, 0600, 0900, 1200, 1500, 1800, 2100, or 2400 Melbourne CBD and/or Melbourne 
Airport observations include a report of cumulonimbus with an anvil and/or lightning and/or funnel cloud and/or 
thunder (with or without precipitation) – refer to Stern (1980a). 
9For verification purposes, it is said that there has been fog in the metropolitan area during a particular day when at 
least one of the 0300, 0600, 0900, 1200, 1500, 1800, 2100, or 2400 Melbourne CBD and/or Melbourne Airport 
observations include a report of fog (including shallow fog) and/or distant fog. 
10Wind forecast verification data are only provided here for the 236 sets of twice-daily (9am and 3pm) Day-1 forecasts 
from 27 December 2005, when combined wind forecasts were first generated. 
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APPENDIX  

A.1 Placing a value on the forecasts. 

Options pricing theory shows that the more consistent forecasts are from one day to the next, between Day-7 (when 
they are first issued) and Day-1 (the final issue), the cheaper are the prices of option contracts that one may wish to 
purchase to protect against the eventuality that the forecasts might be incorrect. The implication from this is that, the 
more consistent forecasts are from one day to the next, the more valuable are the forecasts.   
A challenge in pricing options on commodities is non-randomness in the evolution of many commodity prices. For 
example, the spot price of an agricultural product will generally rise prior to a harvest and fall following the harvest. 
Natural gas tends to be more expensive during winter months than summer months. Because of such non-
randomness, many spot commodity prices cannot be modelled with a geometric Brownian motion, and the Black-
Scholes (1973) or Merton (1973) models for options on stocks do not apply. In 1976, Fischer Black published a paper 
(Black, 1976) addressing this problem and the Risk Glossary (2006) summarises the result of his work thus:   
His (Black’s) solution was to model forward prices as opposed to spot prices. Forward prices do not exhibit the same 
non-randomness of spot prices. Consider a forward price for delivery shortly after a harvest of an agricultural product. 
Prior to the harvest, the spot price may be high, reflecting depleted supplies of the product, but the forward price will 
not be high. Because it is for delivery after the harvest, it will be low in anticipation of a drop in prices following the 
harvest. While it is not reasonable to model the spot price with a Brownian motion, it may be reasonable to model the 
forward price with one. The assumption that the spot price follows a log-normal process is replaced by the 
assumption that the forward price follows such a process. From there the derivation is identical to the Black-Scholes 
formula for evaluating stock options and so the final formula is the same except that the spot price is replaced by the 
forward - the forward price represents the expected future value discounted at the risk free rate. Black's (1976) option 
pricing formula reflects this solution, modelling a forward price as an underlier in place of a spot price.  

Pricing options on forecast weather elements, which may be employed in a weather risk management context, also 
requires one to address non-randomness in the evolution of many forecasts of these weather elements. For example, 
the predicted maximum temperature, for say, 4 days hence, will generally rise as a ridge of high-pressure approaches 
(anticipating warmer winds from lower latitudes once the ridge passes) even though the current temperature is 
relatively low. Because of such non-randomness, forecasts of weather elements cannot be modelled with a geometric 
Brownian motion, and Black's (1976) option pricing formula also now can be applied to forecasts of a weather 
element. From the foregoing, one may note that, in evaluating option contracts used in the context of applying 
“weather derivatives” to day to day forecasts in a risk management context, it may be demonstrated that the cost of 
the “weather derivative” option on a forecast increases as the volatility (σ) of the underlying forecast increases in 
precisely the same manner that the cost of an option on a forward contract increases as the volatility (σ) of the 
underlying forward increases. The Black (1976) formula for a call option on an underlying struck at K, expiring T years 
in the future is c = e − rT(FN(d1) − KN(d2)) and the put price is p = e − rT(KN( − d2) − FN( − d1)) where 

r is the risk-free interest rate  
F is the current forward price of the underlying for the option maturity  

 

 
σ is the volatility of the forward price.  
and N(.) is the standard cumulative Normal distribution function.  

From the formula, the issue of what values to use is not a trivial one. To illustrate, let us suppose that one wishes to 
value a European call option (using a dividend yield of 0%) on the Day-1 forecast maximum temperature being above 
35°C when: 

o The forecast at Day-7 is for a temperature of 32°C,  

o The RMS Inter-Diurnal Change is 2°C,  

o The interest rate is 5%, and  
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o The pay-off is $1.00 per each degree Celsius above 35°C. 

The methodology is illustrated in PANEL A.1 below: 

PANEL A.1 

Step 1. To neutralise the impact of the choice of units used, add a large number, say, 1000, to both F and K, which 
results in F=1035 and K=1032. 

Step 2. To neutralise the impact of the units used for the volatility, divide the RMS inter-diurnal change (2°C) by the 
new value for K (1032), which approximates to the 1-day volatility that one would obtain under the assumption that 
the new forecast follows a log-normal process. This is because the new forecast series is a set of large numbers, 
and, as a consequence, the 

RMS inter-diurnal change ~ 

√((1/6)x∑(((ln(Abs(Day-6/Day-7))2 + ln(Abs(Day-5/Day-6))2 + … + ln(Abs(Day-1/Day-2))2 ) 

Step 3. To obtain the annualised volatility, multiply the 1-day volatility obtained at Step 2 by √(365) that, in the current 
case, yields 3.70%.  

Step 4. Go to one of the many option calculators on the WEB (for example, Numa Financial Systems, 2006) to obtain 
a theoretical European call option value based on a maturity date of 6 days hence (Day-7 to Day-1) to yield $1.06 as 
the value of the call option. 

The proposition that, when undertaking a defensive strategy of purchasing weather derivatives, the cost of protecting 
against the possibility of weather forecasts being in error reduces as the forecast consistency increases. To illustrate: 

o For an RMS Inter-Diurnal Change of 1°C, the value of the call option reduces to $0.25, but, 

o For an RMS Inter-Diurnal Change of 3°C, the value of the call option increases to $1.97, and, 

o For an RMS Inter-Diurnal Change of 4°C, the value of the call option increases further to $2.93.    

 


