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ABSTRACT 
 
 The evaluation strategies outlined in this paper 
constitute a set of tools essential to the development of 
robust automated quality control (QC) procedures. 
Traditionally, thresholds for the QC of climate data have 
been selected based on the target flag rate or statistical 
confidence limits. However, this approach by itself does 
not provide an indication of the procedures' 
effectiveness at detecting true errors in the data. This 
information is best obtained by means of a careful 
analysis of geographical and seasonal patterns of flag 
rate combined with a systematic manual inspection of 
samples of flagged values. During the development 
process, an iterative approach of pattern analysis and 
threshold selection aids in choosing the best possible 
combination of QC procedures and associated 
thresholds. 
 
1. INTRODUCTION 
 
 Users of meteorological data may legitimately ask, 
"To what extent have quality-control (QC) procedures 
removed significant errors from the data, and at what 
cost"? In other words, users need to know what types of 
errors remain in a dataset and whether the QC 
procedures have inadvertently removed true climate 
extremes. Ideally, this information would be provided via 
a thorough evaluation of the type I and type II errors, i.e., 
the degree to which the QC process identified good 
observations as erroneous and the extent to which 
known errors remain undetected. An assessment of the 
circumstances under which the two types of error occur 
also benefits the data user. 
 
 This paper outlines three components of such an 
evaluation process. The approach relies on manual 
inspection as a tool for (1) the selection of appropriate 
thresholds for individual procedures, (2) the examination 
of patterns in flagged values, and (3) the determination 
of the type I and type II error rates. An "extremes check" 
for daily precipitation totals is used to illustrate the 
approach.  
 
 In brief, the philosophy behind the evaluation 
process is that a QC system should be tailored to the 
data to which it is applied and that empirical error rates 
should be documented for the end user. The reasons for 
this  philosophy  are  discussed  in  Section 2. Section 3 
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contains a brief description of the precipitation extremes 
check. In Sections 4-6, the three evaluation strategies 
are explained and illustrated. Some concluding remarks 
are found in Section 7. 
 
2. UNDERLYING PHILOSOPHY 
 
 A thorough evaluation of a QC system is of 
particular importance because obvious errors 
sometimes remain in quality-controlled datasets (e.g., 
see the appendix of Durre et al. 2006) and because 
interesting climatic features are occasionally identified 
as errors (Wolter 1997; Fiebrich and Crawford 2001; 
Graybeal et al. 2004a,b). For example, the Complex 
Quality Control applied to the Comprehensive 
Aerological Reference Data Set did not identify clearly 
erroneous pressures, including a surface level at 70 mb 
(Durre et al. 2006). Conversely, the QC system for 
Release 1 of the Comprehensive Atmosphere Ocean 
Data Set rejected a significant portion of the unusually 
warm sea surface temperatures in the central tropical 
Pacific prior to the 1982/83 El Niño event because the 
limits of its "trimming" check were set too tightly to 
accommodate both synoptic and interannual variability 
(Wolter 1997). These cases represent examples of type 
II and type I errors, respectively.   
 
 Typically a quality control procedure is treated as a 
hypothesis test in which the null hypothesis is that a 
datum is valid. The null hypothesis is rejected when the 
datum (or a parameter derived from it) exceeds a 
specified threshold. Approaches for establishing 
thresholds frequently employ statistical confidence limits 
(Collins, 2001; Hubbard et al., 2005), measures of 
deviation from the mean (Kahl et al., 1992; Wolter, 
1997), or target flags rates (Graybeal et al., 2004b). The 
resulting thresholds often imply that an expected 
percentage of values will be flagged regardless of how 
many errors are actually in the data. If applied to error-
free data, this percentage is equivalent to the type I 
error rate. Otherwise, the type I error rate is unknown 
because both data errors and valid values are likely to 
have been flagged.  
 
 Consider, as in Hubbard et al. (2005), a simple test 
in which a value is valid only when it lies within ± 3 
standard deviations of the long-term mean. Assuming a 
normal distribution, the expectation is that 99.73% of all 
data values fall within these limits, yielding a flag rate of 
0.27%. If no errant values exist, then all flagged values 
are type I errors. In this case, the type 1 error rate is 
also 0.27%. On the other hand, the percentage of 
flagged values that are false positives is 100. This “false 
positive rate” is of particular relevance to the data user. 



Unfortunately, when errors are present, the false 
positive rate is unknown unless flagged values are 
inspected (Kunkel et al. 1998; Graybeal et al., 2004b).  
 
 Another unknown is the number of true errors that 
remain undetected (type II errors). One approach to 
estimating the type II error rate is to introduce erroneous 
values into a sample dataset in order to determine 
whether the “seeds” are detected by the QC process 
(Guttman et al., 1988; Graybeal et al. 2004b; Hubbard 
et al. 2005). The errors introduced either are chosen to 
reflect known types of errors (e.g., Graybeal et al. 
2004b) or are generated randomly from a uniform or 
normal distribution (Hubbard et al. 2005). The results 
provide insight into the sensitivity of the check versus 
the magnitude of error. However, when there is little 
knowledge of both the type and distribution of true 
errors, the correspondence between the miss rate for 
seeded errors and the miss rate for true errors is 
unknown. Furthermore, since the values flagged are 
likely to be a combination of seeded errors, valid values, 
and true errors, error seeding is not well suited to 
determining the check’s false positive rate (Graybeal et 
al., 2004b).  
 
 From the above discussion, it follows that neither 
seeding nor threshold selection based on expected error 
rates is sufficient for evaluating the performance of 
quality control procedures. Rather, a thorough 
evaluation should include an assessment of spatial and 
temporal patterns in the flag rate, of biases associated 
with particular meteorological conditions, and of the 
overall type I and type II error rates. An evaluation 
should further include the determination of whether any 
biases or unreasonable error rates are the result of 
inappropriate thresholds, an inadequate representation 
of the spatial or temporal variability, variations in data 
resolution, undocumented observing practices, or 
systematic errors in the data. 
  
 A critical component of such an evaluation is the 
manual inspection of a random sample of flagged 
values for false positives and a randomly selected 
sample of all values for obvious errors that are not 
detected by the procedure. This inspection process is 
similar to the practice of manual validation, which is 
often employed in semi-automatic quality assurance 
(Guttman et al., 1988; Loehrer et al. 1996; Wolter 1997; 
Shafer et al., 2000; Graybeal et al. 2004a). In both 
cases, inspection by a human expert is used to assess 
the validity of decisions made by automated procedures. 
However, in the approach proposed here, the purpose 
of the manual evaluation is to document the 
performance of the automatic procedures and to provide 
guidance for improvement rather than to override a 
system's automated decisions. 
 
3. BRIEF DESCRIPTION OF THE PRECIPITATION 

EXTREMES CHECK 
 
 This section provides a brief description of the 
"precipitation extremes check" used as an illustrative 

example in subsequent sections. In brief, this check 
identifies erroneously large 24-hour precipitation totals 
by comparing the value in question to the overall 
distribution at a given station and time of year. The 
particular challenge in the case of precipitation is that 
the distribution of daily totals is positively skewed. The 
skewness results from the relatively large frequency of 
small totals versus the comparatively rare occurrence of 
heavy precipitation in conjunction with, for example, 
deep moist convection or tropical systems. The long tail 
of the distribution makes it difficult to distinguish 
between valid and erroneous extreme values, 
precluding the use of common measures of central 
tendency and dispersion (e.g., the mean and standard 
deviation).  
 
 The precipitation extremes check uses a reference 
value equal to the daily total that corresponds to the 95th 
percentile of all nonzero values for a given station and 
time of year. For each daily total a ratio is calculated as  

95p
xratio = ,   (1) 

where x  is the daily total and 95p represents the 95th 
percentile of all nonzero daily values for the period 
within a 29-day window centered on the day in question. 
A daily total is flagged when the ratio exceeds a 
specified threshold. This threshold must be selected 
such that the check identifies erroneous values without 
flagging a significant number of real extreme events.  
 
 For illustrative purposes, a threshold is developed 
here using observations from Cooperative Observer 
(Coop) Network stations in the contiguous U.S. Coop 
data are well suited to this task because several 
information sources are available to enhance the 
manual inspection process. For example, scanned 
images of original Coop observer forms can be used to 
identify digitizing errors. Likewise, tropical cyclone track 
data and qualitative comparisons with surrounding 
stations can assist in the verification of certain heavy 
precipitation totals, thus aiding the identification of false 
positives.  
 
4. THRESHOLD SELECTION TECHNIQUE 
 
 The type 1 and type 2 error rates of a QC test are 
directly linked to the threshold chosen for that test. For 
instance, a high threshold usually implies a low false-
positive rate, while a lower threshold tends to detect a 
larger number of errors, albeit at a greater risk of over 
flagging. Consequently, when implementing a particular 
QC procedure, the threshold ideally should strike a 
balance between the number of errors detected and the 
number of false positives. 
 
 A logical first step is to establish the range of 
parameter values within which the threshold is certain to 
fall. For the precipitation extremes check, this was 
accomplished by examining small number of 
observations with ratios exceeding 1. The initial 



inspection suggested that all events with ratios greater 
than 15 were clearly erroneous and many events with 
ratios less than 6 were plausible because they coincided 
with heavy totals at neighboring stations. 
 
 Observations with ratios between 6 and 15 were 
then examined in detail. Specifically, ten values were 
chosen at random from each “bin” in Table 1, the validity 
of each value being assessed by manually examining 
observations at surrounding stations as well as by 
consulting the original observer forms when available. 
Each sample value that was judged to be erroneous 
was counted in the "number of errors in sample" column 
in Table 1. When a value was found to be questionable 
but not clearly erroneous, half an error was counted.  
 
 The total number of errors in each bin is estimated 
from the error rate in the corresponding sample of 
inspected values. For a particular threshold, the 
cumulative false positive rate is obtained from the total 
number of false positives in all bins above the threshold 
relative to the total number values above the threshold. 
For example, for ratios 12 to 15, 8.5 out of the 10 
sample values inspected were considered erroneous. 
Assuming that this 85% error rate applies to the entire 
bin, 43 out of the 51 bin values are errors. For a ratio 
threshold of 12, the cumulate number of errors is 268, 
while the total number of values with ratios greater than 
12 is 276. Therefore, the cumulative false-positive rate 
is equal to 8 out of 276, or approximately 3%. Note that 
this percentage is relative to the total number of values 
flagged, not to the total number of data values 
processed. 
 
 In general, the false-positive rate increases 
significantly for ratios below 9. Furthermore, half of the 
values are false positives when the threshold is between 
8 and 9, implying that the probability that a value is an 
error is equal to the probability that it is valid. An 
example of a false positive occurred at Benevides, 
Texas where 488 mm of rain was reported on 
September 11, 1971, yielding a ratio of 8.7. This total 
occurred in conjunction with the landfall of Hurricane 
Fern and is corroborated by similarly heavy totals at 
several nearby stations. A developer interested in 
preserving this type of extreme value could therefore set 
the ratio threshold to 9, leaving errors in lower ratio 
categories undetected by this check. If the number of 
true errors in the lower bins were considered excessive, 
additional checks could be developed to explicitly target 
those undetected errors.  
 
5. ANALYSIS OF PATTERNS IN FLAG RATE 
 
 The evaluation of a QC check should also include 
the examination of spatial and temporal patterns in the 
flagged values. In theory, such patterns may be caused 
by concentrations of true data errors in specific regions 
or periods (Collins, 2001; Graybeal et al., 2004a,b). On 
the other hand, a pattern may be indicative of 
procedural deficiencies such as systematic flagging of 
particular climatic conditions or the failure to adequately 

account for different observing practices (Wolter 1997; 
Fiebrich and Crawford 2001). Patterns may also arise 
as an artifact of variations in the temporal or spatial 
resolution of the data that limit a procedure's 
applicability at specific places and times (e.g., a lack of 
neighbors for a “spatial” consistency check).  
 
 Pattern analysis involves the generation and 
interpretation of summary statistics. Typical examples 
include histograms of the overall percentage of values 
flagged during each calendar month and maps of 
stations with flagged values. An example of the latter is 
the spatial distribution of flags set by the precipitation 
extremes check at stations across the contiguous 
United States. For a threshold of 9, flags are 
concentrated in the northern and interior western United 
States during the cold season months of November 
through March (Fig. 1a). In contrast, no apparent bias 
exists in the corresponding map for the months of May 
through September (Fig. 1b). However, when the 
threshold is lowered to 6, a small bias towards the 
South and the Eastern Seaboard appears during the 
warm season (Fig. 1c) while the overall cold-season 
bias (not shown) remains essentially the same.  
 
 Based on the examination of observation forms, the 
concentration of flags in the north during winter months 
(Fig. 1a) appears to be related to the practice of 
inadvertently recording a snowfall total in the water 
equivalent field. The areas with a relatively high 
concentration of warm season flags for a threshold of 6 
(Fig 1c) coincide with regions most likely to be affected 
by tropical cyclones, which is consistent with the 
evaluation of specific cases during the threshold 
selection process. Thus, the wintertime pattern in Fig 1a 
reflects a systematic error in the data, while the spatial 
bias in Fig. 1c is likely an indication of overflagging.  
 
6. ANALYSIS OF QC SYSTEM PERFORMANCE 
 
 Most QC systems consist of a suite of checks that 
are applied in succession (e.g., an extremes check 
followed by a spatial check). Once a threshold has been 
set for each check individually, the final step in the 
evaluation process should be an analysis of overall 
system performance (e.g, Lorenc and Hammon, 1988). 
The effectiveness of the system is best characterized by 
its false-positive rate relative to all flagged values and its 
miss rate relative to known errors. On the other hand, 
the Type I and Type II error rates are useful for 
assessing the impact of the QC system on the dataset 
as a whole. All of these quantities can be determined 
through the manual inspection of a representative 
sample of the processed data. In general, this involves 
1) applying the QC system to the entire dataset, 2) 
manually inspecting random samples of the data for 
invalid values, and 3) computing the performance 
metrics for the system as a whole. 
 
 To obtain the overall false positive and Type I error 
rates, one should choose a random sample of the 
flagged values and then determine, via manual 



inspection, the number of false positives in the sample. 
As an example, suppose that a hypothetical system 
flags 10,000 values in a dataset of 10 million. If 100 
flagged values are examined manually and 20 are 
considered valid, then the system's false-positive rate is 
estimated to be 20%. By implication, the corresponding 
Type I error rate is approximately 2000 out of 10 million 
or 0.02%. 
 
 Although the actual total number of true errors in 
the dataset is rarely, if ever, known, manual inspection 
can also be used to estimate the miss and Type II error 
rates. To obtain such estimates, one might randomly 
choose a certain number of values from the entire 
dataset and manually determine their validity. Suppose, 
for example, that two of 100 values selected are 
manually identified as errors, but only one is detected by 
the automated QC. In this case, the miss rate if 1 out of 
2 or 50%, while the Type II error rate is 1 out of 100 or 
1%. In many circumstances, the sample may not include 
any obvious errors. In that case, the miss rate is 
undefined and the Type II cannot be quantified precisely, 
but is known to be less than 1%.  
 
7. CONCLUSION 
 
 The strategies outlined in this paper constitute a set 
of tools for evaluating automated QC procedures. These 
strategies, which rely heavily on manual review, are 
essential to quantifying the performance of QC checks 
and should be used to ensure a robust QC system. If 
each test is thoroughly evaluated as it is developed, the 
system developer has the luxury of continually adapting 
the QC strategy thereby maximizing the effectiveness of 
the overall system.  
 
 In general, QC system development should include 
the following: 
 
• the design of tests to detect known data problems 
• the use of manual evaluation and pattern analysis 

of flagged values to select test thresholds such that 
each check has a low false positive rate 

• the quantification of the overall type I error, type II 
error, false positive and miss rates for the 
combination of checks 

• when necessary, the development of additional 
checks that target undetected gross errors and re-
evaluation of system performance. 

 
 The question arises, when is it necessary to 
develop additional checks? Although the answer may 
depend on the particular application for which the 
quality-controlled data are to be used, the following 
general considerations may serve as guidance. Firstly, 
while each individual procedure may be designed to 
detect only a certain kind of error (e.g., unrealistically 
extreme values), one would expect the entire QC 
system to be able to identify the vast majority of 
egregious errors, i.e., those erroneous data points 
whose presence in the output data would damage the 
credibility of the quality-control effort. If the miss rate is 

unacceptably high, the development of additional 
checks may be a more appropriate remedy than the 
lowering of parameter thresholds. In fact, in our 
experience, the best results are obtained when the 
developer maintains an open mind towards the 
possibility of abandoning ineffective procedures and 
adding new checks as insights are gained about the 
error characteristics of the data and the efficiency of 
different procedures.  
 
 Following QC system development, both the QC 
procedures and the evaluation results should be 
documented. Such documentation should include a 
description of each check and its false positive rate, the 
type I and type II errors rates for the overall system as 
well as the percentage of values by the system. 
Information regarding the types of errors being detected, 
the types of errors that might remain in the data, and the 
conditions under which valid values might be 
misidentified as errors should also be provided. This 
kind of comprehensive documentation enables users to 
make informed decisions about the suitability of the data 
given their particular application.  
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Table 1. QC evaluation table for the precipitation extremes check. Results are based on the manual inspection of 
sample values for different ratio thresholds. 
 

Ratio Number of 
values in bin Sample size Number errors 

in sample 
Number 

errors in bin 
Cumulative 

false positive 
rate 

>30 114 10 10 114 0% 
20 to 30 56 10 10 56 0% 
15 to 20 55 10 10 55 0% 
12 to 15 51 10 8.5 43 3% 
10 to 12 75 10 8 60 7% 
9 to 10 52 10 7 36 10% 
8 to 9 121 10 5 61 19% 
7 to 8 185 10 4 74 30% 
6 to 7 481 10 2 96 50% 

 



 
Figure 1a. Geographic distributions of stations with daily precipitation values flagged by the precipitation extremes 
check using a ratio of 9.0 during the months November through March. 
 



  
Figure 1b. Geographic distributions of stations with daily precipitation values flagged by the precipitation extremes 
check using a ratio of 9.0 during the months May through September. 



 
Figure 1c. Geographic distributions of stations with daily precipitation values flagged by the precipitation extremes 
check using a ratio of 6.0 during the months May through September. 
 
 
 
 
 
 
 
 
 
 


