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1. INTRODUCTION 
 
 The Laguna Madre is the longest hypersaline 
lagoon in the United States and extends 
southward for over 250 miles from Corpus Christi, 
Texas to La Pesca, Tamulipas, Mexico. The 
Laguna Madre is home and habitat to numerous 
species of larval, juvenile, and adult finfish and 
shellfish as well as a host of endemic and 
migratory birds (Britton and Morton, 1989). The 
passage of cold fronts can dramatically lower air 
temperatures by more than 10°C in less than 24 
hours which leads to a considerable decrease in 
water temperature. Records from the past 20 
years reveal that some of these cold water events 
resulted in massive fish kills. In 1997, more than 
94,000 fish died in the Lower Laguna Madre and 
over 48,000 fish died in the Upper Laguna Madre 
(TPWD, 1997). To mitigate the impact of these 
cold events, local agencies and stakeholders are 
considering interrupting activities such as fishing 
and boating during these events. To help manage 
such interruptions accurate predictions of 
occurrences and length of cold water events are 
critical. 
 At present there is no specific predictive 
model for water temperature other than regional 
weather forecasts. The main objective of this study 
is to design and assess the performance of 
Artificial Neural Network (ANN) models predicting 
water temperatures in the Upper Laguna Madre 
during both normal and cold front conditions. 
 
2. SITE AND DATA DESCRIPTION 
 
 The study takes advantage of real-time and 
archived measurements collected for the Texas 
coast by Texas A&M University-Corpus Christi, 
Division of Nearshore Research (DNR). DNR 
operates the Texas Coastal Ocean Observation 
Network (TCOON). This study focuses on the  
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conditions at the TCOON South Bird Island 
Station, located south of Corpus Christi Bay in the 
Upper Laguna Madre. This study site was selected 
because of its northern location, leading to 
somewhat cooler temperatures, and the 
availability of extensive records of archived 
measurements. Data from other stations was 
included to account for the influence of nearby 
water bodies, i.e. Corpus Christi Bay and the Gulf 
of Mexico. Bob Hall Pier station is located on the 
shores of the Gulf of Mexico and Ingleside Station 
is located on the North shore of Corpus Christi 
Bay. The location of all study stations is illustrated 
in Figure 1. 
 

Figure 1. Map of TCOON Stations used in this study. 
 

 Bird Island station data used in the 
descriptive statistics consists of eleven yearly 
records (1995 to 2005) of air and water 
temperature. Data used in the training and 
optimization of the ANN model include yearly data 
sets 1995, 1996, 2000, and 2001 from Bird Island, 
Bob Hall Pier, and Ingleside Stations. These data 
sets consist of air temperature, water temperature, 
wind speed and wind direction, as well as 
measured and harmonically predicted water 
levels. More information on the data, including a 
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table with data quality for each variable and 
station, can be accessed at the following link: 
http://lighthouse.tamucc.edu/Main/RobynBall. 
Additional graphs and tables related to this study 
are also available through this link. 
 The water temperature measurement 
sensors are located mid-depth in the water column 
at each station. The harmonic forecasts are 
computed using DNR harman & harmpred web 
based software (Mostella et al., 2002). The 
programs implement NOAA procedures 
(Schureman, 1958). The harmonic coefficient 
computations  are based on one year of 
observations of water levels and a set of 26 
harmonic constituents. Wind speed and wind 
direction are included in the model as squared 
winds along and across the local shoreline (angle 
of 25° from North). Gaps in the data used with the 
neural network models were filled using linear 
interpolation between the closest known 
measurements. 
 For the purpose of this study, a cold event is 
defined as any period during two days with one or 
more occurrences of water temperature falling 
below 7.2°C (~45°F). This threshold value is 
based on the experience of scientists from the 
Texas Department of Parks and Wildlife regarding 
the onset of fish mortality. Another important 
parameter for the onset and severity of fish kills is 
the length of time the water temperature remains 
below 7.2°C. Between 1995 and 2005 at Bird 
Island 24 such cold water events occurred, 23 of 
them ranging in length from 1 to 110 hours. One 
event in January of 1997 lasted 214 hours (Figure 
2) and resulted in significant fish mortality (TPWD, 
1997). 

 

 
Figure 2. Distribution of event duration at Bird Island 
from 1995 to 2005. 

 

3. METHODOLOGY 
 
 The ANN model design follows a stepwise 
method, progressively adding and comparing 
possible inputs to the model. A neural net model 
was selected for this work over other techniques 
because of its ability to model non-linear systems, 
robustness to noisy data, and generic modeling 
capability (Hagan, et al., 1996, Rumelhart and 
Chauvin, 1995). Rather than experimenting with 
the number of neurons and the number of hidden 
layers, our initial model follows the approach taken 
by Tissot, et al. This study found that simple [1,1] 
neural networks performed best for predictive 
modeling of water levels at the same location 
(Tissot et al., 2003). A tansig function is used for 
the hidden layer neuron and a purelin function is 
used for the output layer neuron. 
 The ANN models were developed, trained, 
and tested within the Matlab R2006b 
computational environment, utilizing the Neural 
Network Toolbox (The MathWorks, Inc., 2006). All 
ANN models were trained using the Levenberg-
Marquardt algorithm.  
 Because of the number and variation in 
length of events, 1996 with six cold water events 
ranging from 2 to 110 hours, was selected as the 
training year. A significant amount of missing 
measurements during the cold water event of 
1997, which resulted in a significant fish kill, ruled 
out that year as a test year. We selected three 
other test years instead: 1995 with two events (60 
and 63 hrs), 2000 with four events (1, 3, 3, and 39 
hrs), and 2001 with three events (3, 10, and 87 
hrs). 
 Inputs to the neural networks consist of time 
series of previous water and air temperature 
measurements at Bird Island, water temperature 
measurements at Bob Hall Pier, and forecasted air 
temperature at Bird Island. In this study, 
forecasted air temperatures are replaced by 
measured air temperatures at Bird Island. For 
model implementation, air temperature forecasts 
will be provided by the local National Weather 
Service office. Sets of NAM (North American 
Model) predictions have been provided four times 
daily to DNR since 2002. Future models may 
include time series of air temperatures at other 
locations along typical tracks of incoming cold 
fronts. 

Although we are most interested in 
accurately predicting cold events, the ANN models 
are initially optimized based on training and testing 
over yearly data sets. This methodology was 
adopted in large part because the cold events are 
sparse. Once the model is optimized, this initial 
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approach is also compared to seasonal training. 
The ability of the ANN models to perform well, as 
compared to linear models during both regular and 
cold event situations, is also tested. The model 
performance is computed for both average and 
cold water event conditions and is assessed by 
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over the full data sets, one year of water 
temperature measurements. 
 Based on persistence of water temperature, 
initial input selection for the ANN included only 
previous water temperature at Bird Island Station. 
During the optimization process, it was observed 
that short-term (3 and 12 hour) forecasts behaved 
similarly and longer term (24 and 48 hour) 
forecasts, while dissimilar to short-term forecasts, 
compared well to one another. Based on this 
observation, one model was designed for short 3 
and 12 hour forecasts and another model was 
optimized for longer 24 and 48 hour forecasts. A 
stepwise method (Wilks, 2006) was employed to 
determine the optimal number of previous 
measurements to include in the model, with the 
first model including only present water 
temperature (wtp(0)). Up to 60 hours of previous 
water temperature measurements were 
consecutively added, producing a series of 61 
water temperature models: wtp(0), wtp(0:1), 
wtp(0:2)…wtp(0:60) for both the training and test 
years. In total, for previous water temperature 
measurements, 244 models (Figure 4) were 
compared for each forecast. Based on the 
performance over the 3 yearly testing sets, model 
improvements are measurable up to the inclusion 
of the previous 26 hours of water temperature 
measurements (wtp(0:26)) for both short term and 
long term forecasts. 
 Once the basic ANN model is constructed, 
the next step is to select and test other possible 
models against this base model (wtp(0:26)) and 
determine whether including other inputs will lead 
to a significant performance improvement. These 
inputs were selected based on the physical 
understanding of the system as well as availability 
of data. Possible inputs considered include: 

Atmospheric forcing of water temperature 

o Previous air temperature at Bird Island  

o Forecasted air temperature for Bird Island 

o Future models may include air temperatures at a 
remote location along typical cold front tracks 

Air/Water mixing 

o Wind along and wind across shore squared at Bird 
Island 

Heat input from nearby water bodies 

o Primary water level at Bird Island 

o Harmonic water level forecasts at Bird Island 

o Water level difference between Bob Hall Pier and 
Bird Island Stations 

o Previous water temperature measurements at Bob 
Hall Pier and Ingleside Stations 

Day/night cycles 

o 24 hour time stamp 

 
 For each of the additional possible inputs in 
the above list, new models were assembled by 
adding their input to previous water temperatures 
(wtp(0:26)). These other models were evaluated 
one at a time. The same stepwise method 
discussed previously was utilized for each of these 
other models with the number of previous 
measurements progressively increased to include 
up to 60 hours of previous measurements. The 
possible input models were assessed based on 
the average absolute error reduction. To justify 
adding an input time series, results from all test 
years are compared. Additional inputs are 
included if there is a substantial improvement 
(average absolute temperature difference of 
0.02°C or larger) for the majority of the test years.  

Along with previous measurements, models 
including air temperature forecasts and 
harmonically predicted water levels were also 
considered. We employed the same stepwise 
method with the exception that the models 
included forecasts up to the water temperature 
forecast time (3, 12, 24, and 48 hours). 
 The optimal model was obtained by adding to 
the past water temperatures (wtp(0:26)) all the 
other series of inputs that improved upon the base 
model. Other inputs were discarded. 
 
4. RESULTS 
 
 For previous water temperature input (see 
Figure 4), the model’s average absolute error 
continues to decrease over the entire 60 hours of 
added inputs for every test year. The 48 hour 
forecast errors decrease in a linear fashion, while 
the other forecast errors steeply decrease 
between approximately 0 and 5 and 15 to 20 
hours. The error levels off after approximately 26 
hours of previous measurements. Based on these 
results, 26 hours of previous water temperature at 
Bird Island are included in all ANN models.  
 The results for other possible input variables 
are represented in Table 2. The optimized ANN 
models include previous water and air temperature 
at Bird Island as well as forecasted air 
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Figure 4. Average absolute errors for 3, 12, 24, and 48, 
hour forecasts. Previous water temperatures at Bird 
Island (ranging from 0 to the past 60 hours) are the only 
inputs. 

 
temperature at Bird Island. The short-term model 
(3 and 12 hour forecasts) also includes the 
previous 16 hours of a 24 hour time stamp 
[0.1,2.4] and the long-term model includes the 
current water temperature measurement at Bob 
Hall Pier. The performance of the final ANN model 
is presented in Table 3.  
 
5. DISCUSSION 
 
 The optimized ANN model performance 
presented in Table 3 shows that the accuracy of 
the model decreases from 0.3°C for 3 hour 
forecasts to between 0.6°C and 0.9°C for 48 hour  

 Series Included 

Possible Inputs Considered 
Short 
Term 

Long 
Term 

Bird Island wtp wtp(0:26) wtp(0:26) 

Bird Island atp atp(0:22) atp(0:16) 

Bird Island forecasted atp ALL ALL 

Wind along and across shore None None 

Bird Island pwl None None 

Bird Island harmwl None None 

Bird Island & Bob Hall pwldiff None None 

Bob Hall wtp None Current 

Ingleside wtp None None 

24 hr time stamp time(0:16) None 

Table 2. Possible inputs and series of inputs included in 
the model. (wtp = water temperature, atp = air 
temperature, pwl = water level, harmwl = harmonic 
predicted water level, pwldiff = water level difference, 
time = time stamp) 
 

Average Absolute Error of Optimized ANN [in °C] 

 Forecast 1996 1995 2000 2001 

Year 3 hours 0.314 0.301 0.281 0.292 

Cold Events   0.418 0.223 0.425 0.294 

Year 12 hours 0.557 0.534 0.488 0.549 

Cold Events   0.816 0.445 0.419 0.794 

Year 24 hours 0.592 0.565 0.533 0.662 

Cold Events   0.916 0.393 0.457 0.783 

Year 48 hours 0.693 0.650 0.636 0.869 

Cold Events   0.994 0.449 0.477 0.397 

Table 3. Average absolute errors in the optimized ANN 
model for both the training year (1996) and test years 
(1995, 2000, 2001). 
 

forecasts when evaluated over yearly data sets. 
Interestingly, the model is more accurate for cold 
water temperature predictions; however, there is 
greater year to year variability. The variability is 
likely due to the smaller number of predictions as 
well as the variability in the intensity of the frontal 
passages generating these cold events. During 
cold events, the accuracy decreases from 0.2°C to 
0.4°C for 3 hour forecasts to 0.4°C to 0.5°C for 48 
hour forecasts. 

It is hypothesized that the better performance 
during cold events, as compared to the 
performance averaged over the overall data set, is 
due to the more systematic behavior of the water 
temperature during such events. In particular, the 
water temperature is strongly correlated to 
previous air temperatures during cold events. 
Such correlation should lead to a model 
performance sensitive to the accuracy of air 
temperature predictions. To assess the 



importance of air temperature predictions the 
model was further tested without such predictions. 
Results are presented in Table 4. 
 As can be observed in Table 4, model 
accuracy for cold events is now considerably 
below average model performance. The average 
absolute errors increase dramatically during test 
years by 2.3°C to 4.7°C for 48 hour forecasts; a 
400% to 900% increase. The differences between 
the results with and without air temperature 
predictions emphasize the importance of this 
parameter, particularly during cold events.  
 

Average Absolute Error of Optimized ANN without 
Air Temperature Predictions [in °C] 

 Forecast 1996 1995 2000 2001 

Year 3 hours 0.33 0.32 0.29 0.31 

Cold Events   0.44 0.25 0.46 0.30 

Year 12 hours 0.78 0.77 0.67 0.75 

Cold Events   1.21 0.93 0.92 1.07 

Year 24 hours 1.09 1.07 0.94 1.02 

Cold Events   2.07 1.74 1.59 0.90 

Year 48 hours 1.81 1.72 1.51 1.59 

Cold Events   5.28 4.06 4.75 2.26 

Table 4. Average absolute errors in the optimized ANN 
model without air temperature predictions for both the 
training year (1996) and the test years (1995, 2000, 
2001). 
 

Current work is underway to replace the 
perfect predictions with historical NAM model 
output. The performance of the ANN model with 
NAM air temperature inputs will give a more 
realistic performance of the model. That said, even 
a substantial degradation of the performance will 
still lead to a very useful predictive tool.  

This study utilizes a tansig transfer function 
for the hidden layer neuron and a purelin function 
for the output layer neuron (tansig/purelin). To 
estimate the importance of including the nonlinear 
modeling capability an additional linear model was 
tested with the same inputs, but using a purelin 
transfer function for both the hidden layer and 
output neurons (purelin/purelin). Models were 
compared based on the average absolute error. 
The performance of the purelin/purelin model was 
similar to the nonlinear ANN design over the full 
yearly data sets. The nonlinear model, however, 
outperformed the linear model during cold events, 
as can be seen in Table 5. The mean of the 
average absolute error of all test years during cold 
events is lower for all forecast times and, as the 
forecast time increases, so does the difference in 
the error between the linear and nonlinear models. 

Figure 6 and 7 further illustrate the better 
performance of the nonlinear model during cold 
events. The figures also suggest that the linear 
model is negatively biased for low temperatures. 

 

 
Figure 6. Target vs. Predicted. tansig/purelin and 
purelin/purelin transfer function combinations during 
cold events. 1995, 2000, 2001. 48 hour forecast.  
 

 
Figure 7. Linear and non linear model average error 
(bias) vs. measured target temperature.  
 
Mean of 1995, 2000, and 2001 Average Absolute Errors 

during Cold Events  [in °C] 

Forecast  3 hrs 12 hrs 24 hrs 48 hrs 

Tansig/Purelin 0.282 0.533 0.494 0.448 

Purelin/Purelin 0.292 0.540 0.544 0.519 

Table 5. Mean of 1995, 2000, and 2001 average 
absolute errors during cold events. 

 
It is hypothesized that the modeling capability of 
the non linear ANN design allows for an unbiased 
or less biased prediction of water temperatures 
during cold events. 
 Initially, the models were trained and tested 
on yearly data sets. This method was compared to 
training seasonally with the same inputs. Because 



of the distribution of events, the models were 
trained on data from December 1995 – April 1996, 
and consisted of 6 events (2, 4, 38, 57, 63, and 
110 hrs). Both seasonally trained and yearly 
trained models were tested on data from 
December 2000 – March 2001, also consisting of 
6 cold events (1, 3, 3, 3, 10, and 87 hrs). 
 For average conditions, seasonally and 
yearly trained models yielded similar results for 
short-term forecasts. For longer term forecasts, 
the yearly training method performed slightly 
better for average conditions. The seasonal model 
performance was mixed during cold events. 
Although the error decreased by more than 15% 
for 12 hour forecasts, the error increased by over 
7% for 48 hour forecasts. Because of the 
distribution of cold water events over the available 
data, there was only one season with a substantial 
number of cold events (6) on which to test the 
model. More testing will be required to evaluate 
potential benefits of seasonally trained models.  
 
6. CONCLUSION 
 

An Artificial Neural Network model was 
designed to predict water temperatures in the 
Laguna Madre. A successful model will be an 
important management tool to help mitigate the 
impact of cold water events on fish mortality by, for 
example, regulating fishing and shipping activities 
during the predicted cold events. 
 A short term model was designed for 3 and 
12 hour forecasts and a longer term model was 
constructed for 24 and 48 hour forecasts. The 
models were designed following a stepwise 
method, consecutively adding possible inputs and 
then comparing the average absolute error of the 
models. Both models included the previous 26 
hours of water temperature at Bird Island and air 
temperature forecasts. The short term model 
inputs also consisted of the previous 22 hours of 
air temperature measurements and the past 16 
hours of a 24 hour time stamp. Long term model 
inputs included the previous 16 hours of air 
temperature measurements along with the last 
water temperature measurement at Bob Hall Pier. 
  Model performance was excellent, with an 
accuracy of better than 0.5°C for all forecast times, 
up to 48 hours during cold events. The present 
model is, however, based on perfect air 
temperature predictions and work is ongoing to 
evaluate a model based on historical NAM 
predictions provided by the Corpus Christi 
Weather Forecasting office.   
 Other observations from the study include 
better performance of nonlinear ANN models 

during cold events as compared to a linear model 
and the absence of significant performance 
difference during average conditions. A real time 
model including NAM predictions will be 
implemented as one of the online forecasting tools 
of the TAMU-CC Division of Nearshore Research. 
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