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1. INTRODUCTION

Deterministic Numerical Weather Prediction (NWP)
models integrate the conservation equations of atmospheric
mass, heat, motion, and water. With respect to gridpoint NWP
models, the difference terms in the equations are
approximated as taylor expansions and are integrated forward
in time (Pielke 2002). Processes resolved on the grid-scale are
referred to as model dynamics. Sub-grid scale processes in
NWP models must be accounted for—otherwise the quality of
the numerical predictions will rapidly degrade with time.
These sub-grid scale processes—which by definition cannot
be explicitly determined by the model—are parameterized in
terms of the grid-scale. These parameterizations are referred
to as model physics (Kalnay 2003). The parameterization
important to this paper is convection - those processes related
to shower and thunderstorm activity. The purpose of
convective parameterization (CP) is to reduce atmospheric
instability to prevent the model from generating excessive
grid-scale precipitation. Precipitation is simply a by-product
of the CP process. Thus, such convection is not explicitly
predicted. However, if model grid-spacing is decreased to
around 2-km (the mesoscale/microscale boundary),
convection can be explicitly predicted thus rendering
convective parameterization mute. However, such an increase
in model resolution will require enormous computing
resources (CyRDAS 2004) -- unrealistic for operational
applications at present. Further, it is unclear whether
increasing the horizontal resolution will improve forecast
accuracy. Mass et. al (2002) suggest that increasing horizontal
resolution of NWP models to 4-km may not provide
additional accuracy. According to Fabry (2006), the exact
location of convective cells that develop during the daytime is
generally determined by the location of updrafts on the meso-
γ (2-20 km) or smaller scales. According to Orlanski (1975),
individual deep convective cells occur on the micro-α scale
(200m-2km). However, based on 2-D deterministic numerical
atmospheric simulations, Zeng and Pielke (1995) found that
vertical velocities—induced by surface heterogeneity on flat
terrain—are generally unpredictable on length scales less than
5-km.

The lead author proposes a paradigm shift away from the
idea of increasing NWP model horizontal resolution to
explicitly forecast the development of thunderstorms,
hereafter referred to as convective initiation (CI). The method
presented in this paper is an attempt to improve the forecast
accuracy of CI, up to 24 hrs in advance, and within an
accuracy of 400 km2.
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A feed-forward, supervised, multi-layer perceptron
Artificial Neural Network (ANN) was developed to test the
hypothesis that an ANN can be developed to successfully
forecast CI, based on the following input categories. The first
category consists of seventeen (17) output parameters from a
hydrostatic mesoscale NWP model known as the Eta (e.g.
Rogers et. al. 1996). The specific Eta input parameters chosen
were based on their influence on CI/convective dissipation.
Eta model integrations took place on a grid with a horizontal
grid spacing of 12-km - within the meso-γ scale. However, 
subgrid scale atmospheric processes that directly contribute to
CI cannot be accounted for explicitly by the Eta. A solution is
to incorporate a second category of input data—subgrid scale
data that directly influence CI. One such data type is Land
Surface Temperature (LST) – at a grid spacing of 1-km
(micro-α scale) - derived from the NASA Moderate
Resolution Imaging Spectroradiometer (MODIS) instrument
aboard the Terra and Aqua satellites. For additional
information, see URL http://modis.gsfc.nasa.gov. Land
surface heterogeneity (variations in soil moisture, vegetation,
soil type, etc.) contributes to differential surface heating –
which results in LST and air surface temperature gradients.
These gradients contribute to microscale/meso-γ scale 
convergent wind patterns which in turn contribute to CI (e.g.
Avissar and Liu 1996). Additional sub-grid scale data that
influence CI are horizontal thermal gradients near the edges
of persistent cloud cover (e.g. Markowski et. al. 1998). The
MODIS parameter that measures the percentage of clear sky
coverage also served as input into the ANN. The third type of
subgrid scale data ingest is the Aerosol Optical Depth (AOD),
which may influence cloud microphysics, thunderstorm
dynamics, and the subsequent amount of lightning associated
with thunderstorms.

Thus, in this approach the Eta output provides a forecast
of whether the larger scale mesoscale environment is
conducive to CI while the subgrid data determines the extent
to which convection could be triggered at a particular
location. This study will test the utility of using an ANN to
incorporate numerical model and subgrid scale data to
improve the forecasting of CI on both spatial and temporal
scales.

2. ARTIFICIAL NEURAL NETWORKS

An Artificial Neural Network (ANN) is a computational
model that is loosely based on the manner in which the human
brain processes information. Specifically, it is a network of
highly interconnecting processing elements (neurons)
operating in parallel (Figure 1). An ANN can be used to
solve problems involving complex relationships between
variables. The particular type of ANN used in this study is a
supervised one, wherein an output vector (target) is specified,
and the ANN is trained to minimize the error between the
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output and input vectors, thus resulting in an optimal solution.
This is accomplished by adjusting the connections between
the elements (the weights). In theory, this adjustment process
can be viewed as a form of ‘learning’. Thus, the ANN is
considered to be a form of artificial intelligence (AI). ANNs
were selected for this study in large part because of their
ability to model non-linear relationships. The relationship
between the input and output parameters in this study are
highly non-linear. Additional information on Artificial Neural
Networks can be found in references such as Beale (1990) and
Hagan et al. (1996).

Figure 1: A 2-layer ANN with multiple inputs and single
hidden and output neurons

3. METHODOLOGY

A grid of 14 x 23 equidistant points (20-km grid spacing)
was developed which covers a region slightly larger than the
County Warning and Forecast Area (CWFA) responsibility of
the National Weather Service (NWS) forecasters in the
Weather Forecast Office (WFO) in Corpus Christi Texas
(CRP). These points create 286 square regions (hereafter
referred to as ‘boxes’), each of which defines an area of 400
km2 (figure 2). A 2-layer (one hidden layer, and one output
layer), feed-forward, supervised ANN was utilized in this
study. A framework was established (using MATLAB®

software) to train 286 separate ANNs (one for each box
region) to predict thunderstorm occurrence within each box.
NWS forecasters issue public forecasts on the probability of
precipitation from thunderstorm activity. However, the
highest forecast resolution for the NWS Zone Forecast is the
county level. The median surface area of the 15 counties in
the WFO CRP CWFA is approximately 2256 km2. Thus an
accuracy of 400 km2 would be a significant improvement.
Cloud-to-ground lightning data serves as the proxy for
thunderstorm activity and is also the target. The input
variables were chosen based on their physical relationship to
thunderstorm development/dissipation. For this study, only
two boxes are examined – a coastal region near Corpus
Christi Texas (box 104), and an inland region near Victoria
Texas (box 238). This study is based on data obtained from
the period 1 June 2004 through 19 June 2006. Beyond this
time period, the NWS replaced the Eta with the non-
hydrostatic atmospheric model known as the WRF-NMM
(Janjic et. al. 2001). Although the model physics of this model
are similar to that of the Eta, model dynamics are different.
We prefer not to enhance complexity by requiring the ANN to
train from two different atmospheric models.

3.1 Target Data

Cloud to ground (CTG) lightning data was obtained from the
National Lightning Detection Network (NLDN) (e.g. Orville
1991). Computer scripts were used to extract hourly lightning
data for each of the 286 boxes, and write the output to a series
of text files. The MATLAB® software was then used to input
the data into a target matrix. This data was used as a proxy for
thunderstorm activity. Thus only thunderstorms that generate
CTG lightning strikes detected by NLDN are included. The
purpose of this ANN is to predict the existence of a
thunderstorm within each box. However, instead of creating a
target with binary output (lightning versus no lightning), an
intermediate condition was included – shower activity. It is
hypothesized that training the ANN on both shower and
thunderstorm cases would improve the model’s ability to
predict thunderstorms. Table 1 depicts the criteria used to
classify the three scenarios. Showers were identified using the
following strategy: (1) Filter out CTG lightning cases. (2)
Filter out stratiform rainfall. Hourly rainfall data from a 4-km
grid was obtained from a process that integrates data from the
Weather Surveillance Radar 88 Doppler (WSR-88D) radars
and rain gauges (e.g. Fulton et. al. 1998).

No Convection Shower Thunderstorm

CTG Lightning No No Yes

R (mm/hr) ≤ 8.0 > 8.0 N/A

Value 0 0.1 1

Table 1: Target Criteria

This data, originally referred to as StageIII, includes hourly
rainfall totals. The maximum of the hourly rainfall totals for
each box was calculated by Texas A&M University – Corpus
Christi (TAMUCC) personnel (see the Acknowledgments
section). To filter out stratiform rain cases, a threshold of
maximum rainfall rate R >8 mm/hr was used. This rainfall
rate threshold value (separating stratiform and convection
rainfall) is consistent with those discovered by Morales and
Anagnostou (2003) and Grecu et al. (2000).

Figure 3 reveals a 3-D display of the total number of CTG
lightning strikes on the 14 x 23 ANN grid (figure 2). Note that
the greater number of lightning strikes occurred over the
northeast region. This explains one reason for choosing
northeast region box 238 – to provide the maximum amount
of target data to train this supervised ANN. As will be
mentioned later, the limited number of valid lightning cases
represented a limitation.

3.2 Input Data
The first category of data inputs consist of 17 parameters

extracted or derived from Eta output. A software program was
used to extract the interpolated value of each parameter at the
center of each box, which is assumed to be representative of
the box. Input to the software are Eta output written to a 12-
km Lambert Conformal grid.

CI requires sufficient moisture (to generate necessary
hydrometeors), atmospheric instability (to generate updrafts
strong enough to create a charge separation between the liquid
and ice phases of water sufficient to generate lightning), and a



Figure 2: ANN Grid of 14 x 23 equidistant points. Northern (Southern) light blue box is labeled 238 (104).

lifting mechanism (to lift air parcels to the level of free
convection (LFC), above which an unstable equilibrium
exists).

Figure 3: Total CTG Lightning Strikes (6-1-2004 to 6-19-
2006) on the ANN grid. Point (0:0) represents the
southwest corner (box 1)

The Eta-based output parameters were chosen based on
their contribution to the foregoing. As mentioned before, a

12-km grid spacing is insufficient to explicitly forecast
convection. However, the purpose of the numerical output
is to provide a prediction of those parameters that
contribute to CI/convective dissipation in the larger
mesoscale environment. The following are the parameters
and associated justifications.

Parameter 1: Convective precipitation (CP)

This is the precipitation that represents a byproduct of
the CP process. This input is used because an objective of
this study is to provide an ANN that will forecast the
timing and positioning of convection more accurately than
the NWP model. Ideally, the ANN will learn to correct CP
scheme biases and generate more accurate forecasts.

Parameters 2-4: Vertical Velocities at pressure levels 850,
700, and 250 millibars (VV850, VV700, VV250)

In hydrostatic models, the vertical velocity term is
diagnosed from predicted horizontal motions, instead of
being predicted explicitly in non-hydrostatic models.
VV850 and VV700 are used as proxies for lower level
convergence (due to mesoscale phenomena such as sea
breezes, and synoptic scale features including fronts) based
on the reasoning that the continuity of mass relationship
requires upward vertical velocities resulting from surface
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convergence. Surface convergence contributes to CI (e.g.
Ulanski and Garstang 1978). However, due to its 12-km
grid spacing, the Eta cannot resolve the storm scale
divergence responsible for the initiation of individual
convective cells. The purpose of VV700 and VV250 is to
account for upper level disturbances. Operational
experience at the NWS National Centers for Environmental
Prediction (NCEP) Storm Prediction Center suggests that
as many as 50% of thunderstorms are of the elevated
variety (Banacos and Schultz, 2005). In these instances, the
triggering mechanism is not a surface convergent feature
(e.g. surface frontal boundary) but rather mid-level
(between 900 and 600 mb) convergence (Wilson and
Roberts 2006). The subsequent vertical motions would
likely be captured by VV700 and/or VV250. The unstable
equilibrium aloft would be captured by the Lifted Index
(LI), which will be discussed later.

Parameters 5-8: U and V components of the wind at 10-m
and 850 mb(u-10, v-10, u-850, v-850)

MODIS-derived high-resolution LST gradients
contribute to microscale/meso-γ scale wind patterns that 
can trigger convection. However, strong wind can
minimize the gradients generated by land surface
heterogeneity (Dalu et al. 1996; Wang et. al. 1996). The
lead author postulates that strong wind will thus preclude
thunderstorms that would otherwise be triggered by
mesoscale gradients. Thus, it is important to include such
wind as input to the ANN model. Further, the lead author
has experienced a positive correlation between
south/southwest wind at the 850 mb level and atmospheric
stability sufficient to preclude CI over deep South Texas. It
is hypothesized that such a stable equilibrium condition is
caused by the advection of a drier and warmer mid level air
mass moving across the region from Mexico.

Parameter 9: Vertical wind shear between the surface (10-
m) and 800 mb (sh0-8)

Thunderstorm development within a particular 400 km2

region can be influenced by phenomena in adjacent boxes.
However, the ANN in this study does not explicitly account
for such. The present ANN model predicts convection for a
particular box solely based on information for that box.
Including the Eta sh0-8 prediction is one way to account for
the influence of conditions over a broader spatial area.
Rotunno et. al (1988) suggest that when a gust front (the
leading edge of negatively-buoyant air generated by
thunderstorms) moves into a environment with a certain
shear profile in the lowest 2-km, the subsequent updraft is
maximized, which can trigger additional convection. The
sh0-8 parameter approximates the 0-2km vertical wind
shear. Inputs to the ANN do not include specific
information about the gust front. Thus, this parameter is
only useful for cases wherein convection within a particular
box is generated by gust fronts that enter the box from
outside.
Parameter 10: Vertical wind shear between 800mb and
600 mb (sh8-6)

Crook (1996) has shown that convection initiation
could be prevented by strong vertical wind shear above the
planetary boundary layer. The sh8-6 parameter is used as a
proxy for the vertical shear encountered by a parcel moving

just above the boundary layer.

Parameter 11: Precipitable water (PW)

This parameter is the sole moisture input variable.
Thunderstorms cannot develop without sufficient
atmospheric moisture. Specifically, PW measures the
amount of rain that would occur if 100% of atmospheric
moisture were to rain out.

Parameter 12: Lifted Index (LI)

The Lifted Index (LI) is simply the temperature
difference between the environment and an ascending air
parcel at the 500mb pressure level. A negative value
indicates a parcel warmer than the surrounding
environment, thus positively buoyant (unstable
equilibrium). As such, it is a measure of atmospheric
stability. The primary purpose for inclusion of LI is to
account for elevated convection. Elevated convection tends
to occur when upper level disturbances move across
unstable equilibrium environments aloft. As mentioned
before, VV700 and VV250 will serve as proxies for upper
level disturbances, and the LI serves as a measure of upper
level instability.

Parameters 13-14: Convective Available Potential Energy
(CAPE) and Convective Inhibition (CIN)

CAPE measures the total energy available to generate
thunderstorms. It is computed as the positive area on a
thermodynamic diagram (e.g. SkewT-LogP). The greater
this value, the greater the energy available for thunderstorm
generation. Further, parcel theory indicates that the
maximum speed of an updraft is a simple function of
CAPE. However, updrafts in nature are generally weaker
than what parcel theory suggests owing to turbulent
mixing. The CIN measures the negative area on a
thermodynamic chart, which typically represents an
atmospheric layer starting at the surface. For non-elevated
convection to occur, air parcels must be forced from the
surface to the top of the CIN layer. However, if CIN is too
strong, the parcel cannot reach the LFC and thus CI will not
occur.

Parameter 15: Potential Temperature Drop-off

Crook (1996) has shown that convection tends to occur
over areas wherein the potential temperature (temperature
achieved when an air parcel is brought dry adiabatically to
1000 mb) in the boundary layer is lower than the value at
the surface. However in this study, the proxy for the
boundary layer potential temperature is the potential
temperature at 900 mb.

Parameter 16: Height of the 0oC Isotherm

Thunderstorm lightning is thought to occur due to
charge separation resulting from the vertical separation of
the liquid and solid phases of water, with each containing
opposite electrical charge. Thus, this process requires a
temperature colder than 0oC (Saunders 1993). This
parameter, when compared to the strength of the updraft
(proportional to CAPE based on parcel theory) can be
viewed as the extent to which updrafts extend above the



0oC level. Thus, the ANN will have the opportunity to
learn that lightning is less likely to occur for low CAPE
and high 0oC level height.

Parameter 17: Lifting Condensation Level (LCL)

Although CAPE measures the total energy available for
the conversion to upward vertical velocities, cloud base
height (CBH) – according to Williams et. al (2005) –
measures the efficiency of this process. A high CBH
condition tends to be correlated with an environment that is
more efficient than low CBH environments in the
conversion to strong updrafts sufficient for thunderstorm
development. The LCL is used as a proxy for CBH.

The second category of data consists of subgrid scale
data to account for processes that are thought to directly
trigger convection. The first set of subgrid scale parameters
are derived from the MODIS 1-km LST data. Several
parameters were computed to serve as proxies for the LST
gradient in each box. One such parameter is the range
(Parameter 18) – the difference between the maximum
and minimum value of LST. The other LST gradient
parameters are the maximum finite difference (Parameters
19 and 20) between adjacent LST grid point values, in both
horizontal orthogonal directions, and the standard
deviation (Parameter 21). Numerous studies have shown
that land surface heterogeneity (resulting in LST gradients)
on these scales contribute to the development of micro-
α/meso-γ wind fields that contribute to CI (e.g. Avissar and
Liu 1996). A significant limitation with regard to MODIS
data is the lack of data when clouds exist, which limited a
significant number of valid cases. The Daily LST product
used was the LST_Night_1km SDS (Scientific Data Set)
parameter from the Aqua (Terra) satellite, which moves
across the ANN grid generally during the 0645-0825
(0400-0550) UTC period daily. Again, it must be
emphasized that the MODIS LST gradients are only
measured for clear-sky conditions.

The next sub-grid scale input is the percentage of clear
sky (Parameter 22) within each box. CI can occur
near/along the location of horizontal thermal gradients
generated by a persistent clear-cloudy sky boundary (e.g.
Markowski et. al. 1998). It is not uncommon for CI to
occur during the afternoon near the location where a clear-
cloudy sky boundary occurred earlier in the morning.
Although the total percentage of clear sky does not directly
correlate to the existence of a cloud boundary, the
assumption is that a predominately cloudy or clear sky (i.e.
< 10% or > 90%) implies a minimum thermal gradient,
whereas percentage values between the extremes indicate a
greater likelihood that a cloud edge exists. For each day
and box within the analysis time frame, the percentage was
calculated from the LST_Night_1km SDS parameter from
the MODIS Terra (Aqua) satellite which provides output
for the ANN grid for approximately the 0400-0545 (0645-
0825) UTC period daily.

With respect to the LST and clear-sky coverage data,
we plan to use more sophisticated data mining techniques
(i.e. clustering) in the future to better elucidate the
existence of thermal boundaries and gradients within each
box.

The third sub-grid scale parameter is Aerosol Optical
Depth (AOD) (Parameter 23), available at 4-km grid
spacing (and 15-minute time resolution) from the GOES
satellite. Studies suggest that AOD may contribute to the
thunderstorm electrification process. In their study of
cloud-to-ground lightning over Houston, Texas for the
period 1989-2000, Steiger et. al (2002) postulated that
increased aerosol concentration may enhance the density of
cloud-to-ground lightning strikes. Further, van den Heever
et. al. (2005) found that increasing aerosol concentrations
can enhance horizontally-averaged convective updraft
strength. The AOD data set contains a significant number
of missing data. Thus, for each day of the time frame
analyzed, data from the 1415, 1515, and 1615 UTC times
were used to increase the likelihood of acquiring valid data.
This approach is reasonable as Anderson et. al. (2003) have
shown that AOD temporal variations at a given location are
not significant for time scales ≤ 6 hours. Each day, the
latest valid data of the three was used to predict CI for the
4-hour period centered at 2100 UTC for the same day
(explained in more detail later).

Appendix 1 illustrates the correlation (within box 238)
between foregoing parameters 8 (v-850), 10, 11, 13, and 14
(for all days), and the occurrence of CTG lightning (for the
19-23 UTC period each day). The lead author suggests that
an ANN will be able to incorporate both the grid-scale
numerical model output and sub-grid scale observations
and more accurately forecast the timing and position of CI.
This hypothesis is based on the reasoning that a model
which incorporates both the mesoscale environment
conducive to, and microscale processes consistent with, CI
should provide optimal solutions and thus more accurate
forecasts.

3.3 ANN Training and Testing

The ANN models for this study were developed,
trained, and tested within the Matlab® computational
environment utilizing the Neural Network Toolbox (The
MathWorks, Inc., 2006). All ANN models were trained
using the automated regularization algorithm (trainbr) to
improve generalization. The ANN architecture for this
study is a feed-forward, supervised, multilayer perceptron
network with two (2) layers – one hidden layer and an
output layer. The transfer function used in both the hidden
and output layers is logsig. One hidden neuron was used for
this study. The selection of very small ANNs for this model
was partly to avoid possible overtraining of the data and
based on the success of small [1,1] ANN structures to
model the non-linear relationship between winds and
predicted water levels (Tissot et al., 2003). Nevertheless,
additional hidden neurons did not improve the results. The
ANN models were designed to compute each prediction
separately resulting in models with one output neuron.

The data sets were divided into one training set and one
testing with the even numbered Julian days used for
training and odd numbers for testing. The training and
testing sets were then alternated resulting in two pairs of
training/testing sets. A total of about 750 days were used to
be split evenly between the two data sets. After a
forecasting time has been set the input and output vectors
are created while eliminating cases for which a forecast or



measurement is not available. The ANN model requires a
full input set. A screening of the input and target data is
performed once the forecast time is selected and cases
missing a prediction or measurement are eliminated. After
the screening process, approximately 60-80% of the 750
cases were available for training and testing.

In this study, we are testing the ability of the ANN
model to forecast CTG lightning occurrence in boxes 104
and 238 for the 4-hour period, centered at 2100 UTC, based
on the following inputs:

1: Forecasts from the 12 UTC Eta cycle valid at 2100 UTC.
2: GOES AOD observations at 1415, 1515, or 1615 UTC.
3: MODIS Aqua (Terra) LST gradients from the 0645-0825
(0400-0545) UTC period.
4: MODIS Aqua (Terra) Clear-sky percentage from the
0645-0825 (0400-0545 ) UTC period

4. RESULTS

ANN model performance was evaluated using the
following verification parameters: Probability of Detection
(POD), False Alarm Rate (FAR), Critical Success Index
(CSI), and the Heidke Skill Score (HSS). Actual lightning
observations served as the benchmark. Thus for a given
box, POD measures the fraction of cases wherein at least
one CTG lightning strike occurred during the 1900-2300
UTC period that was correctly forecast. FAR measures the
fraction of ANN forecasts of lightning within a box that did
not occur. CSI is the ratio of correct forecasts to the sum of
false alarms, misses and correct forecasts. According to the
World Meteorological Organization, POD, FAR, and CSI
measure accuracy, while HSS measures skill. Table 2
depicts the verification results for the following eight (8)
different combinations of ANN inputs for box 238
(numbers in parentheses are parameter numbers from
section 3.2):

Case 1: Eta (1-17)
Case 2: Eta+AOD (1-17; 23)
Case 3: Eta+LST (1-17; 18-21)
Case 4: Eta+Cloud (1-17; 22)
Case 5: Eta+AOD+LST (1-17; 18-21; 23)
Case 6: Eta+AOD+LST+Cloud (1-23)
Case 7: Eta+LST+Cloud (1-17; 18-22)
Case 8: Eta+AOD+Cloud (1-17; 22-23)

The results suggest utility of the ANN model. In this
case, the combination of Eta and LST gradient inputs (case
3), and the combination of Eta, LST, and AOD (case 5),
resulted in a model that accurately predicted lightning
within a 4-hour period centered at 2100 UTC (7-11 hour
forecast) greater than 50% of the time (POD=0.58,0.53).
However, the false alarm rate was high for each case
(FAR=0.84,0.85), resulting in low CSI values. These
results suggest that the model is too aggressive in
predicting thunderstorm activity. When evaluating based
solely on CSI and HSS, the combination of Eta and AOD
(case 2) generated the best absolute results (CSI=0.20,
HSS=0.25).

Figure 4 depicts the testing of ANN case 3 (even-
numbered julian days) for box 238. From this graphical

perspective, you can deduce the reason for the high FAR
for case 3. However, note that the ANN model performs
well given its general tendency to properly forecast
thunderstorm occurrence when CTG lightning actually
occurred 7-11 hours later.

Case N n POD FAR CSI HSS

1 297 27 0.26 0.74 0.15 0.19

2 297 27 0.15 0.76 0.10 0.12

3 238 24 0.13 0.77 0.09 0.10

4 249 26 0.19 0.78 0.11 0.12

5 238 24 0.08 0.80 0.06 0.06

6 237 16 0.44 0.83 0.14 0.17

7 237 16 0.25 0.80 0.13 0.16

8 249 26 0.19 0.80 0.11 0.10

Table 2a: ANN model verification statistics for testing set:
Odd-numbered Julian days. Box 238. 7-11 hour forecast
(relative to 1200 UTC Eta cycle) centered at 2100 UTC.
The cases refer to the different input combinations tested.
N=sample size; n=CTG lightning cases. See text for details.

Case N n POD FAR CSI HSS

1 297 28 0.32 0.71 0.18 0.23

2 297 28 0.36 0.70 0.20 0.25

3 238 19 0.58 0.84 0.15 0.15
4 249 20 0.25 0.77 0.14 0.17

5 238 19 0.53 0.85 0.13 0.12

6 238 27 0.22 0.79 0.12 0.12

7 238 27 0.22 0.78 0.13 0.12

8 249 20 0.30 0.70 0.18 0.24

Table 2b: ANN model verification statistics for testing set:
Even-numbered Julian days. Box 238. 7-11 hour forecast
(relative to 1200 UTC Eta cycle) centered at 2100 UTC.
The cases refer to the different input combinations tested.
N=sample size; n=CTG lightning cases. See text for details.

The results also indicate the utility of AOD and LST.
These parameters appear in two of the three cases that show
the most promise in terms of POD, CSI, and HSS. This
adds credence to the numerous studies that demonstrate a
surface heterogeneity contribution to CI based on LST
gradients. With respect to AOD, this study is consistent
with the findings of van den Heever et. al. (2005)
mentioned earlier.

However, the results for box 104 (not shown) were
worse. Yet, we hypothesize that the reason is related to the
number of valid lightning cases available to train the
model. The number of training cases that included CTG
lightning strikes for case 3 was 43 (even+odd numbered
Julian days). Yet only around 20 corresponding cases were
available for the box 104 case. We speculate that the model
will improve as the number of lightning cases increase—As
the ANN trains on more lightning events, the better the
optimized result.

5. CONCLUSIONS

The hypothesis that an ANN can be developed to
improve the forecasting of CI in time and space, by
incorporating a combination of mesoscale NWP output (to



incorporate the mesoscale environment) and micro-α/meso-
γ scale satellite data (to incorporate expected micro-
α/meso-γ convergent flow), was tested. 

The results of this study add credence to the foregoing
hypothesis. The results indicate that the ANN demonstrates
predictability, yet tends to over-forecast events. However,

Figure 4: ANN Testing (Case 3; Even-numbered Julian
days; Box 238). Any predicted ordinate value (blue-colored
lines) of ≥ 0.2 indicates an ANN thunderstorm prediction.
The red-colored lines depict CTG lightning observations.

the model’s limitation may be related to the amount of
lightning data available in this case. Of the 475-594 valid
cases available to train the ANN, only 43-55 of them
involved lightning strikes. It’s probable that this amount of
data was insufficient. If so, then the results presented here
are not conclusive. Nevertheless, these results suggest that
the incorporation of AOD magnitudes and LST gradients
enhance the predictability of the ANN model.

We caution that the specific parameters used to
elucidate LST gradients (maximum finite differences,
range, standard deviation) are likely less than optimal
choices. For example, maximum finite differences between
adjacent gridpoints do not necessarily indicate that
sufficient heterogeneity exists within the box -- necessary
to generate the small scale convergent wind patterns
thought to trigger convection. We plan to utilize more
sophisticated techniques, such as data mining, to better
assess whether the necessary thermal gradients and
boundaries exist within each box. This is important since
the total number of LST data values for each box (400
maximum) can be limited owing to cloud cover, which
further complicates the analysis.

Once the data set increases significantly, and more
accurate assessments of the thermal gradients that
contribute to micro-α and meso-γ convergent flow are 
conducted, the performance is expected to improve.
Further, the authors plan to test whether other AI
techniques could improve the results. For example, Genetic
Algorithms (Haupt and Haupt, 2004) offer a different
approach than the ANN to the optimization problem by
incorporating the concept of natural selection.

When evaluating the performance of this ANN in
future studies, we plan to incorporate WFO CRP forecaster
output as another benchmark. If this ANN performs better
than the forecasters in certain cases, it can serve as a
supplemental tool when anticipating the timing and
position of CI.
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 Appendix 1: Graphic Comparison of Lightning Occurrences with Selected Eta Predicted Parameters 




