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1. INTRODUCTION

In variational data assimilation, an optimal anal-
ysis is derived from the knowledge of background
and observation error statistics. According to Da-
ley (1993), the observation error can be divided
into two components: the instrumental error of a
measuring device and the representativeness error
of an observation operator. The first one is often
considered to be a white Gaussian noise, whereas
the second is thought to be responsible for spatial
correlations in the observational error. The repre-
sentativeness error depends on a resolution func-
tion of the measuring instrument, observation den-
sity, model grid resolution, and specification of an
observation operator. This dependency was inves-
tigated by Liu and Rabier (2002) in a simple one-
dimensional (1D) framework. They have found
an approximate relation of the aforementioned pa-
rameters corresponding to an optimal analysis.

However in operational practice, the optimal
analysis is usually not achievable, since the
observation-error correlations are difficult to es-
timate and expensive to specify in the assimila-
tion procedure. Therefore, a suboptimal assimi-
lation scheme is often used, in which the obser-
vation errors are assumed to be uncorrelated. In
this scheme, the observations with strongly corre-
lated errors must be filtered out prior to assimila-
tion, in order to achieve a good analysis quality.
This error-decorelation operation is called obser-
vation thinning. Although it is commonly used in
operational practice by most of the weather pre-
diction centers nowadays, the question of optimal
thinning that provides the best balance between
the observation-error correlation and the forecast
error is still not well understood. Liu and Rabier
have investigated the thinning of observations with
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respect to the analysis error and found that small
observation-error correlation-coefficients of ≤ 0.15
can be anticipated in the suboptimal assimilation
scheme. They considered a simple non-adaptive
thinning strategy, in which the observation posi-
tions were constrained to a regular grid and the
sets of equidistant observations only were used in
the assimilation. However, recent studies of Joly
et al. (1997), Langland et al. (1999) and Daescu
and Navon (2004) demonstrate that the forecast
quality may benefit from adaptive observations,
the spatial distribution of which is not regular, but
exhibits a higher observation density in the regions
where the forecast errors are expected to grow
most rapidly. The identification of these regions
of interest is a complicated and expensive task in
general, since it deals with an investigation of the
forecast model dynamics at the time of assimila-
tion (see, e.g., Berliner et al. (1999)). An alterna-
tive much simpler and cheaper approach is based
on the assumption, that such critical for the fore-
cast error areas may be approximately identified
from the information distributed among the obser-
vations available for the assimilation. For exam-
ple, these regions may be the areas of atmospheric
fronts, storms, etc., characterized by a large vari-
ation of some atmospheric variables. In this ap-
proach that got the name ”adaptive observation
thinning”, the spatial distribution of the thinned,
i.e., filtered, observations depends on (adapts to)
their values.

In the context of adaptive thinning, the problem
of optimal thinning becomes more difficult. Sev-
eral adaptive observation thinning methods, based
on different heuristics, were proposed recently by
Ochotta et al. (2005) and Ramachandran et al.
(2005), giving rise to the question about a thinning
strategy, that provides a spatial distribution of ob-
servations to be assimilated that is optimal in the
sense of the analysis or forecast error. To answer
this question, a one-dimensional setting is not suf-
ficient, since most of the thinning schemes operate



on data sets of higher dimensionality. This mo-
tivated us to generalize the one-dimensional anal-
ysis scheme proposed by Liu and Rabier (2002)
to a two-dimensional framework for assimilation
of scalar-valued observation sets distributed on a
2-sphere, in order to be able to perform a compar-
ative analysis of different thinning methods with
respect to the analysis error.

Although being similar in their approaches,
the one- and two-dimensional frameworks differ
in the following important aspect. Due to the
regular spatial observation distribution, the 1D-
investigation represents a purely statistical study,
in which no realizations of observations or true
signal values are necessary. In the present work
in contrary, the assimilation of more realistic ran-
domly distributed observations is of interest. For
this reason, a purely statistical consideration of the
analysis error is not possible and its quality is to
be estimated experimentally over an ensemble of
analysis errors resulting from assimilation of sim-
ulated observations. This paper describes the sim-
ulation framework and presents the experimental
results on the analysis error as a function of model
resolution, observation resolution and observation
density.

2. SIMULATION FRAMEWORK

2.1 True signal

Let us consider a continuous two-dimensional ho-
mogeneous zero-mean Gaussian random signal
xt(θ, φ) defined on a sphere S2 of a radius a and
assume that the signal has a limited bandwidth
Kt . Here, the subscript t stands for ”true” and
is used to distinguish the true variables, to be es-
timated, from the model estimation, described in
the next subsection. With the signal, we asso-
ciate an equiangular 2Kt×2Kt grid S2

t = {θj , φk},
where θj = π(2j + 1)/2Kt, φk = 2πk/2Kt are the
spherical colatitude and longitude coordinates, re-
spectively, with j = 0, 1, . . . , 2Kt − 1 and k =
0, 1, . . . , 2Kt − 1. The true signal is modeled as
a random field of samples of xt on S2

t and can be
represented as an Nt-dimensional vector xt, where
Nt = (2Kt)2 is the number of the grid points:

xt ∼ N(0,Pt), (1)

where Pt is the Nt × Nt true signal autocovari-
ance matrix corresponding to the following one-
dimensional autocovariance function suggested by
Thibaux (1976):

ρt(r) = σ2
t ·

[{
cos(br) +

sin(br)
Ltb

}
e−r/Lt

]
, (2)

where r is the distance between two points on the
grid (0 ≤ r ≤ πa), σ2

t is the true signal variance,

and b and Lt are constants. Following Liu and
Rabier (2002), we set σ2

t = 10, a = 1250 km, b =
4/a, and Lt = a/3 ≈ 417 km.

To simplify the following computations, it is
beneficial to deal with a spectral representation
of the true signal:

xt(θ, φ) = lim
Kt→∞

Kt−1∑

l=0

l∑

m=−l

x̂t(l,m) · Y m
l (θ, φ),

(3)
where the basis functions Y m

l (θ, φ) are the surface
spherical harmonics of degree l and order m, and
x̂t(l,m) are the corresponding spectral coefficients
(see, e.g., Byerly (1893)). For our specification of
the signal autocorrelation function, it is sufficient
to fix the signal bandwidth to Kt = 117. The
spectral power of the true signal beyond this limit
is negligible and can be ignored. Then, Eq. 3 can
be written in a matrix form as:

xt = Ftx̂t, (4)

where xt is the real-valued vector of the values
of a realization of the random field xt and x̂t is
a complex-valued Mt-dimensional vector of the
spectral coefficients, where Mt = (Kt)2. Ft is
a Nt × Mt matrix of spherical harmonics Y m

l

(l = 0 . . .Kt − 1,m = −l . . . l) evaluated on S2
t .

The matrix-vector product (4) can be efficiently
computed by the discrete inverse spherical har-
monic transform routine implemented in Healy
et al. (2003).

The main advantage of the spectral represen-
tation of an isotropic Gaussian random field con-
sists in the diagonal form of its spectral covari-
ance structure (see, e.g., Ogorodnikov and Pri-
garin (1996)). In spectral domain, the true signal
(1) can be modeled as:

x̂t ∼ N(0, P̂t), (5)

where the Mt×Mt-dimensional covariance matrix
P̂t is diagonal with its elements being the spectral
coefficients ρ̂t(l) of the true-signal autocovariance
function, obtained by the Legendre transform of
(2)*. Thus, the procedure of numerical modeling
of the real-valued field (1) reduces to a generation
of a random complex-valued vector of spectral co-
efficients x̂t, the components x̂t(l,m) of which sat-
isfy the following criteria, as described in Vio et al.
(2002):

E(x̂t(l,m)) = 0;
E(x̂t(l,m) · x̂t(l′,m′)∗) = ρ̂t(l) · δl,l′,m,m′

x̂t(l,−m) = (−1)m · x̂t(l,m)∗,
(6)

*Due to the isotropy of the true signal, the spectral
transform of its autocovariance is a function of the spher-
ical harmonics degree l only and can be obtained via the
one-dimensional Legendre transform.



where E(·) and (·)∗ stand for the expectation and
complex conjugate operators, respectively, and
δl,l′,m,m′ is the Kronecker’s delta.

A realization of the random vector x̂t satisfying
(6) can be generated by setting its components
equal to x̂t(l,m) =

√
ρt(l) · exp(iψ), where i is the

imaginary unit and ψ is a random phase angle uni-
formly distributed over [0, 2π), i.e., ψ ∈R [0, 2π).
If desired, the corresponding representation of the
field’s realization in grid-point space can be ob-
tained by the inverse transform (4).

2.2 Model and background

In model representation, the true signal xt is ap-
proximated by a signal x of a lower bandwidth
Km ≤ Kt, with which a 2Km × 2Km model grid
S2

m with Nm = (2Km)2 grid points is associated.
We define a grid size value ∆rm = 2πa/2Km km
as the maximum distance between two adjacent
points of the grid. We note that the distance be-
tween adjacent grid points is a function of colati-
tude and considerably decreases towards the poles.

Similar to the truth, the model signal is spec-
ified in spectral domain as an Mm-dimensional
(Mm = (Km)2) vector x̂ of spectral coefficients
x̂(l,m), related to the spherical harmonics of de-
grees l = 0, 1, . . . ,Km − 1 and orders m = −l . . . l.
These coefficients are to be estimated in the assim-
ilation procedure. The corresponding grid-point
representation of the model can be expressed as:

x = Fx̂, (7)

where F is the Nm ×Mm-dimensional matrix of
spherical harmonics evaluated on S2

m.
The model a priori estimation of the truth, i.e.,

the background signal, is denoted by a spectral
vector x̂b. To apply a variational assimilation pro-
cedure, the covariance matrix of the background
error εb = xt − xb has to be specified. Following
Liu and Rabier (2002), we define the background
error as a homogeneous isotropic Gaussian random
field, that can be modeled similar to the true signal
in spectral space as an Mm-dimensional vector:

ε̂b ∼ N(0, B̂), (8)

with diagonal Mm × Mm-matrix B̂, which ele-
ments are the spectral coefficients ρ̂b(l) of a de-
generate second-order autoregressive correlation-
function ρb(r) due to Thibaux et al. (1986):

ρb(r) = σ2
b (1 + r/Lb) e−r/Lb , (9)

where σ2
b = 1 is the background-error variance

and Lb = a/6 ≈ 208 km is the background-error
correlation-length.

A realization of the background spectral vector
x̂b is obtained from the realizations of the back-
ground error and true signal by:

x̂b = T(x̂t)− ε̂b, (10)

where T(·) : CMt → CMm is a model truncation
operator, which cuts off the spectral truth vector
to the model resolution.

2.3 Generation of observations

An observation value at a certain point (θ0, φ0) on
the sphere is modeled as a spherical convolution of
the true signal xt by a resolution function w(θ, φ)
of a measuring instrument centered at (θ0, φ0) plus
an instrumental white noise εi:

y(θ0, φ0) = (xt ∗ w)(θ0, φ0) + εi (11)

As a resolution function, we specify a uniform
isotropic averaging function with a circular foot-
print of the radius Lo:

w(θ, φ) =
{ 1

πL2
o

, d(θ0,φ0)(θ, φ) ≤ Lo

0 , otherwise.
, (12)

where d(θ0,φ0)(θ, φ) is the distance between the
(θ, φ) and (θ0, φ0) points. In the following, we will
refer to the footprint radius Lo characterizing the
resolution function as to an observation resolution.

The convolution in Eq. 11 has an equivalent
form in spectral domain:

(xt ∗ w)(θ0, φ0) =

Kt−1X

l=0

lX

m=−l

̂(xt ∗ w)(l, m)Y m
l (θ0, φ0).

(13)
Here ̂(xt ∗ w)(l,m) are the spectral coefficients of
the convolution, which can be computed by a
pointwise product of the transforms (see Driscoll
and Healy (1994)):

̂(xt ∗ w)(l,m) = 2π

√
4π

2l + 1
x̂t(l,m)ŵ(l, 0). (14)

In the present study, we are interested in assim-
ilation of observations, which are not distributed
regularly but at random positions. Therefore, we
generate a set of N observation points (θi, φi)
uniformly distributed over the sphere by the sec-
ond the three methods described Marsaglia (1972).
The values the observations take at these position
can be computed via (11) and (13):

y = FoW · x̂t + εi, (15)

where Fo is a N × Mt matrix of spherical har-
monics Y m

l (θi, φi), and W is a diagonal matrix

with diag(W) = 2π
√

4π
2l+1 ŵ(l, 0). However, (15)

is too expensive to deal with due to the necessity



to evaluate the complex Y m
l functions at arbitrary

(random) points {θi, φi}. It is more efficient to
generate a larger observations set yt on the dense
truth grid S2

t :

yt = FtW · x̂t + εi, (16)

since (16) can be computed efficiently by a
fast spherical transform algorithm for equiangu-
lar grids by Healy et al. (2003). Thereafter, we
apply a sampling operator U(·) : RNt → RN to
obtain a subset y ⊆ yt of observations distributed
uniformly over S2

t :

y = U(yt). (17)

The sampling operator U is implemented as fol-
lows. It generates N random points on the sphere
S2 and finds their next nearest neighbors on the
set S2

t . The latter are then used as the obser-
vation coordinates {θi, φi}. In this way, we gen-
erate observations at the positions which are not
entirely random but constrained to the truth grid.
However, if the truth grid is much denser than
the model grid and the number of observations is
much smaller than the number of truth grid points
(N ¿ Nt), then the presence of the underlying
grid can be ignored in the model and the observa-
tion distribution may be considered to be random.
This strategy makes it possible to formalize the
representativeness error as described in the next
subsection.

2.4 Observation operator, representative-
ness error and observation thinning

The observation error εo measures how well the
real observations yt can be represented in the
model by an observation operator H provided the
true state x̂t of the modeled system is known:

εo = yt −H ·T(x̂t), (18)

where T is as in (10) the operator truncating the
truth vector to the model resolution, and H is an
Nt×Mm matrix computing a model representation
of the observations on the truth grid S2

t . Here, we
assume that the resolution function of a measuring
device w is not known and treat the observations
as in-situ measurements. Therefore, we set

H = Fm
t , (19)

where Fm
t similarly to F in (7) is the model inverse

spherical transform matrix of spherical harmonics
of degrees l = 0 . . .Km − 1, but evaluated on the
truth grid S2

t .
By substituting (16) into (18) and taking an ex-

pectation of the error outerproduct, we obtain the
observation-error covariance matrix Rt:

Rt = E[εo · εo
∗] = Ri + RH, (20)

where Ri = E[εi · ε∗i ] is the instrument-error co-
variance that is assumed to be diagonal with the
instrument-error variance σ2

i = 1 and

RH = E[(FtW · x̂t −HTx̂t) · (FtW · x̂t −HTx̂t)∗]

= (FtW −HT) · E[x̂tx̂t
∗] · (FtW · −HT)∗

= (FtW −HT) · P̂t · (FtW · −HT)∗

(21)
is the representativeness-error covariance. P̂t is
the true signal spectral covariance matrix defined
in (5). Deriving (20), we assumed that there is
no correlation between the instrumental error and
the signal.

The representativeness errors are correlated
(RH is not diagonal) due to the correlated signal.
As follows from (21) the correlation coefficients de-
pend on the observation-resolution matrix W that
is a function of the instrument-footprint radius
Lo. This dependency is investigated in detail in
Section 3.1, where the analysis error is discussed.
Here, it is sufficient to mention that the errors of
adjacent observations are correlated stronger than
the errors of observations, which are farther apart.
Therefore, in order to decrease the effective obser-
vation error-correlation, a thinning of observations
is often applied in operational practice before the
assimilation, in the case the observation-error cor-
relations are not known. Observation thinning can
be represented in the operator form:

yo = A(y), (22)

where A(·) : RN → RNo (No ≤ N) is a thinning
operator that maps the observation set y onto one
of its subsets yo ⊆ y according to some algorithm.
In this study, we consider three thinning strategies:

1. Random thinning: the elements of yo are cho-
sen entirely randomly from y.

2. Poisson-disk thinning: the elements are cho-
sen at random but have to satisfy a minimum-
distance constraint between the observation
points. The distance constraint ensures a uni-
form distribution of the thinned observations
yo and is a function of No. The implementa-
tion of this method makes use of the simple
dart-throwing technique described in Mitchell
(1987).

3. Adaptive thinning: the resulting distribution
of observations depends on the observation
values. We use the estimation thinning al-
gorithm developed by Ochotta et al. (2005).

The impact of these thinning methods on the anal-
ysis error is investigated in Section 3.2.

As follows from Eqs. 20 and 21, the Nt × Nt

observation-error covariance matrix Rt can be
computed purely statistically, i.e., no simulations



of observations and true signal are necessary. The
No × No observation-error covariance matrix R,
used in the assimilation procedure, can be com-
posed from the corresponding element of Rt at
the time of assimilation.

2.5 Assimilation scheme

According to the variational formulation of the as-
similation problem stated by Lorenc (1986), the
minimum-variance estimation of the model spec-
tral coefficients, i.e. the analysis x̂a, given a set of
observations yo and the model a priori estimation
x̂b, is the minimizer of the following cost function:

J(x̂) =(Hx̂− yo)∗R−1(Hx̂− yo)+

+ (x̂− x̂b)∗B̂−1(x̂− x̂b)
(23)

In the case of linear observation operator, the anal-
ysis has an explicit expression:

x̂a = x̂b + K(yo −Hx̂b), (24)

where K is the gain matrix

K = B̂H∗(HB̂H∗ + R)−1

= H∗R−1(B̂−1 + H∗R−1H)−1.
(25)

The analysis error is computed as the difference:

ε̂a = x̂a −T(x̂t), (26)

where T(·) is the model truncation operator.
If B̂, H, R, and K matrices are constant, then

the expected spectral analysis-error covariance can
be written explicitly as

Â = E[ε̂a · ε̂a
∗]

= (I−KH)B̂(I−KH)∗ + KRK∗,
(27)

with I being the identity matrix.
However in the present study, the observation-

error covariance matrix R (and thus the gain ma-
trix K) does not remain constant but varies with
every realization of the true signal. This varia-
tion is due to the random spatial distribution of
observations yo to be assimilated. Therefore, the
analysis-error covariance matrix cannot be com-
puted statistically by (27) but has to be estimated
experimentally by numerical simulation of the true
signal, background, and observations with their
subsequent assimilation into the model. The esti-
mator of the analysis-error covariance is then the
average over n simulated cycles:

Ân =
1
n

n∑

i=1

ε̂a · ε̂a
∗. (28)

In order to avoid the inversion of a large ma-
trix in (25), we do not use (24) to compute the

analysis. Instead, we apply the iterative conju-
gate gradient-descent method to find x̂a minimiz-
ing J(x̂). Moreover, we focus our study on the sub-
optimal assimilation scheme, which is often used in
practice, when the observation-error correlations
are not known. In this scheme the observations
are assimilated as if their errors were uncorrelated.
Therefore, we specify only the observation-error
variance in the the cost function (23), i.e., we set
R = Rdiag = Ri + diag(RH) instead of the real
complete R.

3. RESULTS AND DISCUSSION

In this section, the relation between the observa-
tion and analysis errors is investigated. In Sub-
section 3.1, the representativeness-error covariance
is computed as a function of the observation res-
olution. The variance of the observational error
is then used in the assimilation. The analysis-
error variance is used as a measure of the anal-
ysis quality. Subsection 3.2 addresses the question
of the decorrelation of the observational errors by
observation thinning. The maximum observation-
error correlation coefficient that can be anticipated
without thinning is estimated. The observation
sets for which the effective error-correlation ex-
ceeds this threshold, has to be thinned. Three
thinning strategies, one adaptive and two non-
adaptive ones, are compared with respect to the
analysis-error variance.

All the computations were performed with the
following configuration of the experimental frame-
work parameters. The radius of the sphere was
a = 1250 km. The true signal bandwidth was fixed
to Kt = 117 and its variance to σ2

t = 100. The
bandwidth of the model signal was Km = 39 cor-
responding to the size ∆r = 2πa/2Km ≈ 100 km
of the associated model grid S2

m. The instrumen-
tal and background error variances σ2

i = σ2
b = 1.

The suboptimal assimilation scheme with diago-
nal Rdiag observation-error covariance matrix was
used. The analysis-error variance was estimated
over n = 500 assimilation cycles.

3.1 Representativeness and analysis error

As follows from Eqs. (21) and (12), the
representativeness-error covariance depends on the
observation resolution, i.e., on the footprint radius
of the resolution function of a measuring instru-
ment. This dependency is demonstrated in Figs.
1 and 3. Fig. 1 shows the representativeness-error
variance as a function of the footprint radius Lo.
The error variance increases to lower observation
resolutions (larger Lo) and exhibits a minimum at
the radius Lo ≈ 50 km. The diameter of this op-
timal footprint is comparable with the size of the
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Figure 1: Representativeness-error variance vs.
the observation resolution.

model grid ∆r ≈ 100 km. This result is consis-
tent with the behavior of the representativeness-
error variance reported by Liu and Rabier (2002)
in their 1D-study, supporting the statement that
the most representative observation is the uniform
average of the signal within the grid box. How-
ever, the minimum observed in our 2D-study is
much less pronounced than the one in the 1D-case.
The averaging of the signal on smaller and slightly
larger than the grid size scales (Lo = 20− 70 km)
results in similar representativeness errors.

The analysis-error variance versus the footprint
radius for different number of assimilated obser-
vations is shown in Fig. 2. As expected, the
variation of the analysis error is consistent with
that of the representativeness error. A weekly
pronounced minimum of the analysis-error vari-
ance appears at Lo ≈ 50 − 60 km. Interestingly,
the position of the minimum is not influenced by
the number of observations assimilated into the
model, what contradicts the results obtained by
Liu and Rabier with the 1D-framework. Accord-
ing to their 1D-study, the optimal (in the sense of
analysis-error variance) configuration of the obser-
vation density, model grid and observation resolu-
tion can be stated in the following form:

Lopt
o ≈ 2 ·∆rNm

N
, (29)

where Lopt
o is the optimal footprint radius, ∆r is

the grid-box size, Nm is the number of model grid
points and N is the number of observations. Fol-
lowing (29), high observation resolution is prefer-
able, if dense observation sets are to be assimi-
lated, whereas assimilation of sparse observations
can benefit from the use of measuring instruments
with coarser resolution. However, the results of
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Figure 2: Analysis-error variance vs. observa-
tion resolution for three observation sets of dif-
ferent sizes. The observations within each of the
sets were distributed randomly with a minimum
distance-constaint between two observation posi-
tions (Poisson-disk distribution).

our experiments with different number of observa-
tions (Fig. 2) do not support this finding. This
apparent discrepancy is due to the different analy-
sis schemes used in the 1D-study and in the present
work. Liu and Rabier derived (29) from the opti-
mal assimilation with a complete observation-error
covariance matrix R, whereas in this study, we
apply the suboptimal assimilation scheme, which
makes use of the diagonal Rdiag ignoring the off-
diagonal observation-error covariances. The lat-
ter, however, become rather large as Lo increases
as shown in Fig. 3. The suboptimal assimilation of
observations with strongly correlated errors leads
to larger (compared to the optimal assimilation
scheme) analysis error, what explains why (29) is
not valid and suggests that a high observation res-
olution is always beneficial in the case of the sub-
optimal observation assimilation.

The arguments just brought also explain the fact
that the incorporation of many (dense) observa-
tions obtained by a large footprint instrument is
not always advantageous, as Fig. 2 illustrates. So,
for Lo = 200 km, the analysis error corresponding
to the assimilation of 3000 observations is clearly
larger than that obtained with 500 observations
only. This result demonstrates the importance
of observation thinning and raises two open ques-
tions: (1) what is the maximum footprint size, for
which observation thinning is not yet essential and
(2) what is the optimal thinning strategy. These
questions are addressed in the next subsection.
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Figure 3: The representativeness-error covariance (a) and correlation (b) coefficients as a function of the
inter-observation distance for four values of the observation resolution, Lo.

3.2 Observation thinning

Fig. 4 shows the analysis-error variance, σ2
a, ver-

sus the number of observations assimilated into
the model. 5000 homogeneously distributed ob-
servations were generated according to the proce-
dure described in Subsection 2.3 and thinned prior
to the analysis using the random thinning scheme
(see Subsection 2.4). Four footprint radii were con-
sidered, which representativeness-error correlation
structure is depicted in Fig. 3. For Lo = 100 km,
the analysis-error variance is a monotonously de-
creasing function of the observation number. This
result means that the correlation of the observa-
tional errors corresponding to the footprint ra-
dius of 100 km, that is nearly two times larger
than the optimal footprint radius (see Fig. 1),
are small enough to be ignored in the assimila-
tion, and thus the analysis quality benefits from all
the observations incorporated into the model. The
magnitude of the observation-error correlation-
coefficients is bounded from above by the term
0.4245/(1 + 0.4245) ≈ 0.3, where 0.4245 is the
representative-error variance (and thus the upper
bound for the total observation-error covariance)
and σ2

o = 1 + 0.4245 is the total observation-error
variance (see Eq. 20). Thus, assimilation of the ob-
servations, for which error-correlation coefficients
do not exceed 0.3, results in higher analysis qual-
ity. It is worth to note that this threshold value
is twice as large as the one estimated in Liu and
Rabier (2002). Use of observations with stronger
correlated errors, in contrary, increases the anal-

ysis error, as can be seen from the three upper
curves in Fig. 4.

The maximum error-correlation coefficient of
the observations generated at the observation res-
olution Lo = 150 km is 1.427/(1 + 1.427) ≈ 0.59.
The corresponding analysis-error variance curve is
not monotonous but exhibits a minimum at 2000
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Figure 4: Analysis-error variance vs. the number
of assimilated observations for the four footprint
radii, considered in Fig. 3. Prior to assimilation,
a set of ≈ 5000 uniformly distributed observations
was generated and thinned to its subset using the
random thinning method.
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Figure 5: Analysis-error variance vs. the number of assimilated observations, generated at the observation
resolution of (a) Lo = 150 km and (b) Lo = 200 km. In each assimilation experiment, the same set of
≈ 5000 observations was thinned by one of the three thinning methods.

observations implying that assimilation of more
measurement data does not improve the analy-
sis and is thus not reasonable. The more pro-
nounced minima observed for the other two curves
demonstrate that about 1000 and 500 (out of
5000) observations only should be assimilated for
Lo = 200 and for Lo = 400 km, the maximum
error-correlation coefficients of which are / 0.77
and / 0.95, respectively. The principal question
we address in the following is how to select these
observations.

We consider three observation thinning strate-
gies described in Subsection 2.4. The two of them,
random and Poisson-disk thinning, are nonadap-
tive, what means that the observation values are
not taken into account in their algorithms. The
third one, the estimation thinning method, repre-
sents an adaptive approach, in which higher ob-
servation density is preserved in the regions with
large variation of observation values. For a de-
tailed explanation of the algorithm, the reader is
referred to Ochotta et al. (2005).

As in the previous experiment, about 5000
random observations were generated and subse-
quently thinned before the analysis with one of
the thinning methods. To generate the obser-
vations, two instrument weighting functions with
footprint radii Lo = 150 and 200 km were used.
The results of the assimilation are shown in Fig.
5. The worst analysis-error variance corresponds
to the random thinning, the best one is obtained
in the case of the Poisson-disk thinning, whereas

the adaptive observation thinning yields the anal-
ysis error, which variance is between the two ex-
tremes. These results can be explained by con-
sideration of the spatial distribution of assimi-
lated observations corresponding to each of the
thinning methods. The Poisson-disk thinning en-
sures the most uniform observation distribution
and thus the largest distance between adjacent
observation points. Since the observation-error
correlation is a decreasing function of the inter-
observation distance (Fig. 3 (b)), the Poisson-disk
thinning results in the lowest effective correlation
of the observational error for a given observation
set and thus in the smallest analysis-error vari-
ance. The adaptive thinning yields observations
with stronger correlation of their errors due to
the observation clustering occurring in the regions,
where a large variation of the observation values
is detected. Therefore assimilation of adaptively
thinned observations results in larger variance of
the analysis-error as compared to the Poisson-disk
thinning. The effective observation-error correla-
tion and consequently the analysis-error variance
turns to be even higher in the case of random ob-
servation thinning.

The presented results lead to the conclusion that
the adaptive thinning strategy is rather disadvan-
tageous than useful in terms of the analysis-error
variance. However, they do not necessarily mean
that adaptive thinning is not beneficial in terms of
the forecast error, since the latter depends on the
analysis error in a nonlinear way due to the non-



linear dynamics of the weather forecast model. To
discuss the question, additional studies including
experiments with some simplistic weather forecast
models are necessary.

4. CONCLUSIONS

Unknown observation-error statistics is one of the
major problems in variational data assimilation.
In the current assimilation schemes, observational
errors are often assumed to be uncorrelated. How-
ever, the representativeness error of an observation
operator introduces some spatial correlations into
the error of observations making their assimila-
tion suboptimal. Liu and Rabier (2002) proposed
a one-dimensional approach allowing to formalize
the representativeness error and study its influence
on the analysis error. In the present work, this
approach is generalized to a two dimensional as-
similation scheme operating on a 2-sphere. More-
over, it is extended to assimilation of randomly
distributed observations, what makes possible a
direct incorporation of the practical observation
thinning algorithms into the analysis scheme and
study their properties with respect to the analysis
error. From the results of the performed assimila-
tion experiments, the following conclusions can be
drawn:

1. In contrast to the optimal analysis, a high ob-
servation resolution (small footprint radius of
a measuring instrument Lo) is beneficial for
both dense and sparse observation sets if the
suboptimal assimilation scheme with diagonal
observation-error covariance matrix is used.
This result is due to the strong spatial corre-
lation of the representativeness and thus ob-
servational error corresponding to large foot-
prints. The optimal footprint size resulting in
the minimum error correlations is comparable
with the size of the model grid.

2. The observation-error correlation-coefficients,
which do not exceed 0.3, can be ignored in the
assimilation without deteriorating the analy-
sis quality. This value is two times larger than
the threshold previously estimated by Liu and
Rabier (2002). The observations with higher
error correlations have to be thinned out be-
fore the assimilation.

3. The analysis-error variance benefits most
from the nonadaptive Poisson-disk observa-
tion thinning resulting in a uniform distribu-
tion of the observations. Other observation
distributions corresponding to different, e.g.,
adaptive, thinning methods result in larger
analysis-error variance.

However, no conclusion can be made about the
corresponding forecast error due to a nonlinear
transformation the analysis error undergoes in the
weather forecast model. An extension of the pre-
sented framework by a simplistic forecast model
imitating the nonlinear dynamics of the weather
is the subject of subsequent work.
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