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1. INTRODUCTION

The sequential data assimilation method
considers only observations up to and including
the time of analysis. Moreover, no matter how
many analyses for various time steps were
performed during the assimilation processes, the
precision of the final analysis has been restricted
because of the growth of background error with
integration of the forecast model. The restrictions
that are not fit for a high quality analysis have
rarely been referred in meteorological literatures
(Cohn et al., 1994; Zhu et al., 2003). As a method
of overcoming such a restriction, Horel and
Colman (2005) emphasized recently the
application of the retrospective analysis, by which
observations after the time of analysis can be
accounted for the past analysis.

The 4D-Var is a well-known retrospective
analysis (Klinker et al., 2000). The 4D-Var finds
the most probable state to be true, for the given

past, current, and future observations. The
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maximally probable solution of the 4D-Var is the
state minimizing the cost function. At each time,
the minimization algorithm determines an analysis
increment that is used to reduce the value of the
cost function with the aid of the adjoint model, and
decides the final analysis field fulfiling the
minimization of the cost function under the
dynamical constraints (Daley, 1991). However,
iteration may stop before the final analysis
reaches the global minimum because of the
existence of the local minima, which would appear
for the strong nonlinearity of a forecast model
employed (Rabier and Courtier, 1992). Such a
multiple local minima problem can be overcome
by employing the computing algorithm that starts
from the point of departure more close to the
global minimum than the initial background
(Evensen, 1997).

We know that the variance of an analysis
derived from a background field and observations
in the optimal interpolation (Ol) is smaller in
magnitude than that of the background field.
Therefore, the analysis error variance decreases

as increasing the number of time-uncorrelated

observations incorporated by the Ol analysis. By



taking into account time-uncorrelated independent
observations through our new implementation
technique named retrospective optimal
interpolation (ROI), we will have a better starting
point which leads us to find the global minimum
correctly.

This paper composed of as follows. The
theoretical aspect of newly developed
implementation technique of the 4D-Var is
explained in section 2. In order to examine and
confirm the validity of our technique, we applied
the method to the three-variable Lorenz model
and compared it with the 4D-Var based on the
gradient descent method in section 3. In section 4,
the conclusions are drawn with further works to be

done in future.
2. Theory
2.1. Basic Equations for the ROI

The vectors X, and X, denote the
analysis state vector and the background field,
respectively, for the true state of m variables at
time t,. And yg does P observations at the
same time. Then, the basic equations for the Ol
comprise the optimal weight matrix

0 0 0 0 -

W=B(H} ) [R® + Hy B(H )1 @)
the analysis vector

Xq =Xy + WYS —H°(x,)], (2)
and the error covariance matrix

P, =(I-WH? )B. 3
In the above expressions, the Mx M matrix B
is the background error covariance matrix and the

pxp matrix R® is the observation error

covariance matrix at time '[:'[0 (Kalnay, 2003).

The forward observation operator H°(x)

converts the background field into the first guess
field for the observations at t=t,, andthe pxm
matrix Hgb is the first derivative of H°(x) with
respectto X at X=X, .

. . 1
In order to assimilate observations Yy, at

future time tl to the previous analysis

X, (t=ty) which have been obtained from X,

and yg, we must include a forecast model
M*(x) which evolves X, from t, to t, in a

future observation operator C!(X) , which

transforms X, into the guesses for observations

at t,. Equations for the ROI using X, as a

background field at t= ty may be written as

C'(x)=H'(M*(x)),

Clxa = lell(xa)an’

W& =P, (C,)TIR" + C, P (C,))'T™,
P =x, + WOyg —CH(x,)],

PO =(1-wHC5 )P,

4

in which superscripts in and without parentheses
mean the number of analyses in the time domain
and the observation time, respectively, for the ROI.
In implementing the above equation sets for
numerical calculations, it is a real challenge to
inverse the weight matrix straightly, especially
when taking into account the dimension of the
operational model state (about 10°). For reducing
the dimension of the inverse matrix, we employ
the identity that is a variant of the Sherman-
Morrison-Woodbury formula (Kalnay, 2003; Bishop
et al., 2001; Tippett et al., 2003),
BHT(HBHT +R)™

: ()
=B +HR'H)*H'R™
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and letting the mxr¢
matrix square root of Péifl) of its rank r{
We can formulate intuitively the equation set for

D at the

the ROI with a background field Xg
present time t;, and an observation vector y!

at a future time t,. They are as followings,

C'(x)=H'(M'(x) (6)

Clan = Hutgn Mgy 0

W(i) _ [| C+ (Cixg.fl)s(ifl))T(Ri )710;2;71)3071)]71 (8)
X (Cixgifl)s(i_l))T(Ri)_l

X =x( - WOy, ~C ()] ©)

péi) — S(ifl)[| + (CL;H)S(H))T(Ri)flC;(a.,l)S(ifl)]fl (10)

><(S(i—l))T
where i>1, and Xgo) is setto be X, . Figure 1
shows the process of implementing the ROI

schematically.
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Fig. 1. A schematic procedure for the ROI
implementation. The time of observations is
marked with a superscript of an observation y
and its error covariance matrix R . The
superscripts in parentheses denote the time of
which observations are assimilated for the

previous analysis and its error covariance matrix.

2.2. Minimization of the Cost Function

If we assume that the initial background X

of an atmospheric state X at time f; is
normally distributed around the true state X with
the error covariance matrix B, the probability

density function (PDF) P(x) of the state vector

X is, referring to Lorenc (1986),
P(x)ocexp{-%(x_xb)T B’l(x—xb)] (112)

And if there are mutually independent

observations y?, y!, ..., and y) at ty, ts e
and t, in order, which are Gaussian distributed
with corresponding observation error covariance
matrices R®, R, ..., and RV, the conditional
joint PDF of the observations yg, y%), ..., and

yON fora given X is
P(Y5: Yo Yo [X) o<

o . (12)
exp{—ango[yﬂ A HGORIH —C“(x)]}

where C°(x) is set to be H%(X). By the
Bayesian theorem, the conditional PDF of the
atmospheric state X for the given observations is

POJYo.YorYo ) o PG Yo Yo POPC) - (13)
Substituting the equations (11) and (12) into the

equation (13) and taking the natural logarithm of

the equation will give

IN[P(Xye. Yo, Yo )l =
(14)
—%(x—xb)TB-l(x—xb)

_%n%o[yg ~C"()]"(R")*[ys —C"(x)]+const..

If X is a solution with maximum probability, the
cost function as defined below would have a

minimum value.

I =2 (¢-x,) B x-x,) )

+2 3y -C T (R s ~C" ()

in which the subscript of the cost function means

the number of future observation vectors except



for the present one. Note that multiple local
minima may be possible in (15) for the highly
nonlinear observation operator C"(X) . Hence,
the value of X which makes the gradient of
Jy (X) zero may not be always the maximum
probability solution.

By exploiting the tangent linear relationship
between the better guess X(aN) and the true
solution, we can approximate the above cost

function into a quadratic equation:

Jy(X) z%(x—xb)TB‘l(x—xb)

1N (16)
5 go[yﬁ ~C (%) = Ch (x =x{I

x(R")yg —C" (M) = Clo (x=x{)1.

Because the minimum of the quadratic equation is
unique in general, the value of X which produces
the zero gradient of the cost function is the
maximum probability solution.

By the characteristic of the Ol that gives the
analysis with minimum variance at each analysis
step, the weight on the observational increments
decreases as the number of analyses in the ROI
increases. model

Although the period of

integration increases with larger n, therefore, we

can assume that CZgM :c:(aﬂ) and

C(xM)=CM(x{"™) + Cly [x{V = x V] - I this
Xa

assumption is valid, the gradient of the cost

function may be written as

VI, (X) =B (x=x,) -

N
2 (Clos)R") Ty =C"(x") = Cloy (x=x" )]
n=|

17)
With equation (5), we can change the analysis
error covariance matrix (10) into

PO =[(P{)? +(Cly) (R *Cly I (18)

and the weight matrix (8) into

W(i) — [(Péifl) )71 + (Cixgﬂ) )T (RI )710;(;71) ]71 -
x (Cix(aw )T(Ri)_l

(19)

And from the equation (9), (18), and (19),
VI (X8 = V3L () == V3 (xP) =0
(Kalnay, 2003), that is, the gradient of the cost
function for XgN) becomes zero, which suggests
the successful finding of the most probable
atmospheric state only by the ROI. Therefore, it is
not necessary any longer to perform the

minimization process of the cost function.
2.3. Differential factor

Suppose that a nonlinear function f(X) is
analytic like the numerical weather prediction
model, which expresses a set of partial differential
equations as polynomial functions approximately.
When a state X is represented by the sum of a
reference state X, and a deviation SX from the

X, , by Taylor expansion,

f(X, +X) = f(xr)+ﬂ (X%)
Xy, (20)
10%f , =|10lf i
+= X))+ Y| =—r x) |
20x%| (%) jzil:j! oxl (%) }

By introducing a differential factor « into (20),

Lo ra) - 1o)1=2 (w)

o X, (1)
a 0% f , =laltolf i

+— X))+ Y| —— X))
2 ox? X:x( ) JZJ: jloox! x:x( ) 1

And when «a is much smaller than 1

(Barkmeijer et al., 1998), we get

of

OX

@) =[x, +a) - fx)]- (@D
X=X, a

If the equation (22) is applied to the matrix
Ci

NE

s containing the tangent linear model in

(8), the matrix is given by



i i 1 i i i i i
Crnst ! =—C' (P +ays{ ) -Cl ) (23)
k

where the vector Ss_l) is the K th column of the
matrix square root S(ki_l) . Consequently, by
exploiting the equation (23), we may calculate the
analysis error covariance and the optimal weight
matrix using the original nonlinear model and
obtain the maximum probability solution by the
ROI without using the adjoint model, which, in
most cases, should be revised whenever the
forecast model is changed. The flowchart for the

ROI utilizing the differential factor is given in

Appendix A.
3. Numerical Experiments
3.1. Experiment Design

In order to ascertain the skill of the ROI, we
carried out an observing system simulation
experiment on the Lorenz model (Lorenz, 1963;

Miller et al., 1994):
dX

—=-0oX + oY,
dt

24
dl:—XZ +rX =Y, 24)
dt
LS
dt

The initial background is formed by adding the
normally distributed random values, with the zero
mean and the identity matrix | as its error
covariance matrix, to the true model state
(X{,Y,,Z,) resulting from integrations of the
model for 2000 time steps that start from
(0,1,0) . The parameters o, b, and r are set
to be 10, 28, and 8/3, which drives the

system into a chaotic regime. Assimilated

observations at nine time steps from t, to tg

have normal distribution around a true state at the
corresponding time with error covariance equal to
its background. The time interval of 0.25
dimensionless time units was adopted as done by

Miller et al. (1994) for their experiments.

3.2. Results of Experiments

In order to examine the proper functioning of
our technique, a randomly generated error, of
which the root-mean-squared (RMS) value for
three model variables is 1, was evolved by
exploiting the differential factor (DF), and
compared with the exact result evolved by the
tangent linear model (TLM). In Figure 2, the
deviation of a result of the DF from that of the TLM
decreases to be about zero as the differential
factor goes from 1 to 0.001. we will set the
factor to be 0.001 in the following experiments.
And we want to examine how the total variance of
the analysis changes as the number of analyses
increases in the ROI. As clear in Figure 3, the final
analysis with minimum variance is to be a

preferred point of departure for deciding the global

minimum without failure.
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Fig. 2. Deviations in the evolution of errors by the



differential factor (DF) from that by the tangent
linear model (TLM). The deviations are RMS

values for three model variables.
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Fig. 3. Reduction of the total variance for the three
model variables in the ROI based on the average
of 30 times repetition. Refer to the main text and
Figure 1 for the configuration of observations

distributed in the assimilation window.

The cost function used in our experiments is
same as the equation (15) of which N =8. The
minimization algorithm for the 4D-Var in the
experiments is the gradient descent method. The
procedure starts from the initial background, in
which the step size varies inversely on the
curvature of the cost function on the direction to
be marched. The method furnishes the state
vector which makes the gradient of the function
zero. The analysis by the gradient descent method
seems to be trapped in the convex of a local
minimum near the initial background in Figure 4.
From no longer decrease in the magnitude of the
cost function against continuous iterations after
reaching about 850 (Figure 4a) and the zero
gradient of the function at the end of iteration
(Figure 5), we are positive as to the existence of

the local minimum.
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Fig. 4. The cost functions: (a) for the 4D-Var and
(b) for the ROI.
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Fig. 5. The RMS gradient of the cost function for

the 4D-Var in Figure 4.

Under these circumstances, the final value of
the cost function by the ROl is 11.88 in Figure
4b. We should remember that there are many new
technologies about the minimization of the cost
function, and the method used for our calculation
is a rudimentary one (Klinker et al., 2000). We can
say at least that the ROI works normally in spite of

a local minimum near the background. To check



whether it is necessary to perform the
minimization process any more or not, we applied
the minimization process to the final analysis
which has resulted from the ROI. As evident in
Figure 6, the cost function does not reduce any
more explicitly. As the validity of the tangent linear
assumption for the observation operator obviously
depends on the observation time interval, we
examined the proper functioning of the ROI and
displayed the affirmative results in Figure 7.
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Fig. 6. Change of the value of the cost function

during the minimizing process starting from the

final analysis which has resulted from the ROI.
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Fig. 7. Percentages of the RMS analysis error
divided by the initial RMS background error based

on the average of 30 times repetition.
4. Conclusion
In this paper, we proposed the theoretical

basis of the ROI, which allowed us to determine

the most probable atmospheric state at a given

time by incorporating the observations after the
analysis time, and confirmed that the technique
gives the solution minimizing the cost function for
the simple three-variable Lorenz model.

Even though the ROI does not demand the
adjoint model, we are not free from the computing
burden for the application of our method to
operational forecast models because of the
number of model integrations equal to the rank of
the background error covariance matrix. However,
such a burden could be mitigated by developing a
parallel procedure for implementing our method
and also by reducing the rank of the error
covariance at each analysis step based on the
feature of the variance-minimizing Ol. The method
for making the ROI efficient will be described

concretely and verified in our future works.
Appendix A: A Flowchart for the ROI

The flowchart in Figure Al shows a procedure
in which the time-uncorrelated observations
distributed in the assimilation window as shown in
the Figure 1 are incorporated into an analysis
XgN) with its error covariance matrix PéN). The
meaning of all indices is the same as that in
section 2. We use the equation sets (6) to (10) for
the ROI, and specially the differential factor in the
equation (23) for calculating the matrix Cix(.,l,s(ki‘l)
in the analysis error covariance and the weight

matrix.
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Fig. Al. A flowchart for the ROI process.

Differential factors are employed for the

calculation of the matrix C! (,,1,53‘1)- Refer to the
Xa
main text and Figure 1 for the configuration of

analysis fields and observations in the iterations.
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