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1.  INTRODUCTION 

 

The sequential data assimilation method 

considers only observations up to and including 

the time of analysis. Moreover, no matter how 

many analyses for various time steps were 

performed during the assimilation processes, the 

precision of the final analysis has been restricted 

because of the growth of background error with 

integration of the forecast model. The restrictions 

that are not fit for a high quality analysis have 

rarely been referred in meteorological literatures 

(Cohn et al., 1994; Zhu et al., 2003). As a method 

of overcoming such a restriction, Horel and 

Colman (2005) emphasized recently the 

application of the retrospective analysis, by which 

observations after the time of analysis can be 

accounted for the past analysis. 

The 4D-Var is a well-known retrospective 

analysis (Klinker et al., 2000). The 4D-Var finds 

the most probable state to be true, for the given 

past, current, and future observations. The 
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maximally probable solution of the 4D-Var is the 

state minimizing the cost function. At each time, 

the minimization algorithm determines an analysis 

increment that is used to reduce the value of the 

cost function with the aid of the adjoint model, and 

decides the final analysis field fulfilling the 

minimization of the cost function under the 

dynamical constraints (Daley, 1991). However, 

iteration may stop before the final analysis 

reaches the global minimum because of the 

existence of the local minima, which would appear 

for the strong nonlinearity of a forecast model 

employed (Rabier and Courtier, 1992). Such a 

multiple local minima problem can be overcome 

by employing the computing algorithm that starts 

from the point of departure more close to the 

global minimum than the initial background 

(Evensen, 1997).  

We know that the variance of an analysis 

derived from a background field and observations 

in the optimal interpolation (OI) is smaller in 

magnitude than that of the background field. 

Therefore, the analysis error variance decreases 

as increasing the number of time-uncorrelated 

observations incorporated by the OI analysis. By 



taking into account time-uncorrelated independent 

observations through our new implementation 

technique named retrospective optimal 

interpolation (ROI), we will have a better starting 

point which leads us to find the global minimum 

correctly. 

This paper composed of as follows. The 

theoretical aspect of newly developed 

implementation technique of the 4D-Var is 

explained in section 2. In order to examine and 

confirm the validity of our technique, we applied 

the method to the three-variable Lorenz model 

and compared it with the 4D-Var based on the 

gradient descent method in section 3. In section 4, 

the conclusions are drawn with further works to be 

done in future.  

 

2. Theory 

 

2.1. Basic Equations for the ROI 

 

The vectors  and  denote the 

analysis state vector and the background field, 

respectively, for the true state of  variables at 

time . And  does 
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same time. Then, the basic equations for the OI 

comprise the optimal weight matrix 
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In the above expressions, the  matrix  

is the background error covariance matrix and the 

 matrix 

mm × B

pp × 0R  is the observation error 

covariance matrix at time =  (Kalnay, 2003). 

The forward observation operator  

converts the background field into the first guess 

field for the observations at 

t 0t
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t = , and the 0t mp ×  

matrix  is the first derivative of  with 

respect to  at = . 
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In order to assimilate observations  at 

future time  to the previous analysis 

( = ) which have been obtained from  

and , we must include a forecast model 

 which evolves  from  to  in a 

future observation operator , which 

transforms  into the guesses for observations 

at . Equations for the ROI using  as a 

background field at =  may be written as 
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in which superscripts in and without parentheses 

mean the number of analyses in the time domain 

and the observation time, respectively, for the ROI.  

In implementing the above equation sets for 

numerical calculations, it is a real challenge to 

inverse the weight matrix straightly, especially 

when taking into account the dimension of the 

operational model state (about ). For reducing 

the dimension of the inverse matrix, we employ 

the identity that is a variant of the Sherman-

Morrison-Woodbury formula (Kalnay, 2003; Bishop 

et al., 2001; Tippett et al., 2003), 
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and letting the  matrix  be the 

matrix square root of  of its rank 
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We can formulate intuitively the equation set for 

the ROI with a background field  at the 

present time  and an observation vector  

at a future time . They are as followings, 
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,where , and  is set to be . Figure 1 

shows the process of implementing the ROI 

schematically.  
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Fig. 1. A schematic procedure for the ROI 

implementation. The time of observations is 

marked with a superscript of an observation y  

and its error covariance matrix R . The 

superscripts in parentheses denote the time of 

which observations are assimilated for the 

previous analysis and its error covariance matrix. 

 

2.2. Minimization of the Cost Function 

 

If we assume that the initial background  

of an atmospheric state  at time  is 

normally distributed around the true state  with 

the error covariance matrix , the probability 

density function (PDF)  of the state vector 

 is, referring to Lorenc (1986),  
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And if there are mutually independent 

observations , , …, and  at , , …, 

and  in order, which are Gaussian distributed 

with corresponding observation error covariance 

matrices 
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where  is set to be . By the 

Bayesian theorem, the conditional PDF of the 

atmospheric state  for the given observations is 
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Substituting the equations (11) and (12) into the 

equation (13) and taking the natural logarithm of 

the equation will give 
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If  is a solution with maximum probability, the 

cost function as defined below would have a 

minimum value. 
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in which the subscript of the cost function means 

the number of future observation vectors except 



for the present one. Note that multiple local 

minima may be possible in (15) for the highly 

nonlinear observation operator . Hence, 

the value of  which makes the gradient of 

 zero may not be always the maximum 

probability solution.  
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By exploiting the tangent linear relationship 

between the better guess  and the true 

solution, we can approximate the above cost 

function into a quadratic equation: 
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Because the minimum of the quadratic equation is 

unique in general, the value of  which produces 

the zero gradient of the cost function is the 

maximum probability solution.  

x

By the characteristic of the OI that gives the 

analysis with minimum variance at each analysis 

step, the weight on the observational increments 

decreases as the number of analyses in the ROI 

increases. Although the period of model 

integration increases with larger , therefore, we 

can assume that  and 

. If this 

assumption is valid, the gradient of the cost 

function may be written as 
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With equation (5), we can change the analysis 

error covariance matrix (10) into 
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And from the equation (9), (18), and (19), 

= =…= =

(Kalnay, 2003), that is, the gradient of the cost 

function for  becomes zero, which suggests 

the successful finding of the most probable 

atmospheric state only by the ROI. Therefore, it is 

not necessary any longer to perform the 

minimization process of the cost function. 
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2.3. Differential factor 

 

Suppose that a nonlinear function  is 

analytic like the numerical weather prediction 

model, which expresses a set of partial differential 

equations as polynomial functions approximately. 

When a state  is represented by the sum of a 

reference state  and a deviation 
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By introducing a differential factor α  into (20), 
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And when α  is much smaller than 1  

(Barkmeijer et al., 1998), we get 
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If the equation (22) is applied to the matrix 
 containing the tangent linear model in 

(8), the matrix is given by 
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where the vector  is the th column of the 

matrix square root . Consequently, by 

exploiting the equation (23), we may calculate the 

analysis error covariance and the optimal weight 

matrix using the original nonlinear model and 

obtain the maximum probability solution by the 

ROI without using the adjoint model, which, in 

most cases, should be revised whenever the 

forecast model is changed. The flowchart for the 

ROI utilizing the differential factor is given in 

Appendix A. 
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3. Numerical Experiments 

 

3.1. Experiment Design 

 

In order to ascertain the skill of the ROI, we 

carried out an observing system simulation 

experiment on the Lorenz model (Lorenz, 1963; 

Miller et al., 1994):  

.
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              (24) 

The initial background is formed by adding the 

normally distributed random values, with the zero 

mean and the identity matrix  as its error 

covariance matrix, to the true model state 

 resulting from integrations of the 

model for  time steps that start from 

. The parameters 

I

),,( ttt ZYX

2000
)0,1,0( σ , , and b r  are set 

to be 10 , , and , which drives the 

system into a chaotic regime. Assimilated 

observations at nine time steps from  to  

have normal distribution around a true state at the 

corresponding time with error covariance equal to 

its background. The time interval of  

dimensionless time units was adopted as done by 

Miller et al. (1994) for their experiments.  
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3.2. Results of Experiments 

 

In order to examine the proper functioning of 

our technique, a randomly generated error, of 

which the root-mean-squared (RMS) value for 

three model variables is 1 , was evolved by 

exploiting the differential factor (DF), and 

compared with the exact result evolved by the 

tangent linear model (TLM). In Figure 2, the 

deviation of a result of the DF from that of the TLM 

decreases to be about zero as the differential 

factor goes from 1  to . We will set the 

factor to be in the following experiments. 

And we want to examine how the total variance of 

the analysis changes as the number of analyses 

increases in the ROI. As clear in Figure 3, the final 

analysis with minimum variance is to be a 

preferred point of departure for deciding the global 

minimum without failure.  
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Fig. 2. Deviations in the evolution of errors by the 



differential factor (DF) from that by the tangent 

linear model (TLM). The deviations are RMS 

values for three model variables. 

 
Fig. 3. Reduction of the total variance for the three 

model variables in the ROI based on the average 

of  times repetition. Refer to the main text and 

Figure 1 for the configuration of observations 

distributed in the assimilation window. 
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The cost function used in our experiments is 

same as the equation (15) of which =8 . The 

minimization algorithm for the 4D-Var in the 

experiments is the gradient descent method. The 

procedure starts from the initial background, in 

which the step size varies inversely on the 

curvature of the cost function on the direction to 

be marched. The method furnishes the state 

vector which makes the gradient of the function 

zero. The analysis by the gradient descent method 

seems to be trapped in the convex of a local 

minimum near the initial background in Figure 4. 

From no longer decrease in the magnitude of the 

cost function against continuous iterations after 

reaching about  (Figure 4a) and the zero 

gradient of the function at the end of iteration 

(Figure 5), we are positive as to the existence of 

the local minimum.  
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Fig. 4. The cost functions: (a) for the 4D-Var and 

(b) for the ROI. 

 

Fig. 5. The RMS gradient of the cost function for 

the 4D-Var in Figure 4. 

 

Under these circumstances, the final value of 

the cost function by the ROI is  in Figure 

4b. We should remember that there are many new 

technologies about the minimization of the cost 

function, and the method used for our calculation 

is a rudimentary one (Klinker et al., 2000). We can 

say at least that the ROI works normally in spite of 

a local minimum near the background. To check 

88.11



whether it is necessary to perform the 

minimization process any more or not, we applied 

the minimization process to the final analysis 

which has resulted from the ROI. As evident in 

Figure 6, the cost function does not reduce any 

more explicitly. As the validity of the tangent linear 

assumption for the observation operator obviously 

depends on the observation time interval, we 

examined the proper functioning of the ROI and 

displayed the affirmative results in Figure 7. 
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Fig. 6. Change of the value of the cost function 

during the minimizing process starting from the 

final analysis which has resulted from the ROI. 

 

Fig. 7. Percentages of the RMS analysis error 

divided by the initial RMS background error based 

on the average of  times repetition. 30

 

4. Conclusion 

 

In this paper, we proposed the theoretical 

basis of the ROI, which allowed us to determine 

the most probable atmospheric state at a given 

time by incorporating the observations after the 

analysis time, and confirmed that the technique 

gives the solution minimizing the cost function for 

the simple three-variable Lorenz model.  

Even though the ROI does not demand the 

adjoint model, we are not free from the computing 

burden for the application of our method to 

operational forecast models because of the 

number of model integrations equal to the rank of 

the background error covariance matrix. However, 

such a burden could be mitigated by developing a 

parallel procedure for implementing our method 

and also by reducing the rank of the error 

covariance at each analysis step based on the 

feature of the variance-minimizing OI. The method 

for making the ROI efficient will be described 

concretely and verified in our future works.  

 

Appendix A: A Flowchart for the ROI 

 

The flowchart in Figure A1 shows a procedure 

in which the time-uncorrelated observations 

distributed in the assimilation window as shown in 

the Figure 1 are incorporated into an analysis 

 with its error covariance matrix . The 

meaning of all indices is the same as that in 

section 2. We use the equation sets (6) to (10) for 

the ROI, and specially the differential factor in the 
equation (23) for calculating the matrix  

in the analysis error covariance and the weight 

matrix. 
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Fig. A1. A flowchart for the ROI process. 

Differential factors are employed for the 
calculation of the matrix . Refer to the 

main text and Figure 1 for the configuration of 

analysis fields and observations in the iterations. 
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