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ABSTRACT

Thinning of observational data sets is an essen-
tial task in assimilation of satellite data for numer-
ical weather forecast. In this work we modify and
improve the scheme of so-called estimation error
analysis (EEA). EEA is an adaptive thinning method
that iteratively removes observations from a given
data set, guided by a special approximation er-
ror measure evaluated at all original observation
points. We propose EEA variants that differ in
methodological and performance aspects, such as
the Grid-EEA method, where errors are evaluated
on a regular grid on the globe. Moreover, in the Top-
Down EEA, we propose to construct the thinnings
by an iterative point insertion strategy, which leads
to improved performance since the number of inser-
tion steps is typically much smaller than the number
of corresponding removal operations in EEA. We
also provide an efficient implementation of the pro-
posed methods yielding a significant acceleration of
the standard EEA approach.

1. INTRODUCTION

Data assimilation combines observational data with
a background model to produce initial states of the
atmosphere for numerical weather forecasts. Cur-
rent and future satellite instruments produce large
amounts of measurements that are integrated into
prediction systems operating in periodic time inter-
vals, e.g., every 3 hours. These data sets show very
different characteristics with respect to data volume
as well as spatial and temporal density, which de-
mands for a very careful preprocessing of the data.

Concerning data density there are two major as-
pects to be considered when integrating the obser-
vations into operational data assimilation schemes.
Firstly, a high data density leads to high com-
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putational costs and to occupation of much disk
space. Secondly, a high data density may violate
the assumption of independent measurement er-
rors, which is made in most practical assimilation
schemes. The error correlations are not known
in advance and implementing estimations of these
correlations would lead to a significant increase in
computational complexity. Moreover, in the work of
Liu and Rabier (2002) it was shown that there is
a connection between the observation density and
the resolution of the model grid. Their theoretical
study shows that the analysis quality decreases,
if the density of the observational data set is too
large and error correlations are neglected as it is
the case in many operational schemes. These re-
strictions motivate thinning methods, which have
the goal to reduce the large satellite data sets, to
reduce spatial error correlations between the ob-
servations, and to retrieve the essential information
content of the data for optimal use in data assimila-
tion.

In this work we revisit an adaptive observations thin-
ning scheme that was recently proposed in Ochotta
et al. (2005). The estimation concept approximates
measurement values on the sphere by a continuous
estimation function, where the value at any position
on the sphere is given by a weighted average of the
observation values in a local neighborhood. Con-
sidering the full observational data set and a sub-
set, this approach allows for defining an approxima-
tion error measure by considering differences be-
tween the two corresponding estimation functions.
The estimation error analysis (EEA) method con-
structs a thinned data set by iteratively removing ob-
servations from the full data set, such that at each
step, the degradation in global estimation error is
minimal. The differences in the estimation func-
tion are thereby evaluated at the positions of the
original observations. The procedure is terminated
when a desired number of retained observations is
reached.

In this work we extend the EEA concept by intro-
ducing variants, which differ in methodological and
performance aspects. In the first proposed variant
(Grid-EEA), we employ a regular grid on the globe
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to evaluate the estimation function. This approach
is motivated by the fact that in most cases, the ob-
servations are distributed non-uniformly. The tradi-
tional EEA is based on evaluation of errors at the
positions of the observations of the original data
set, which consequently produces a bias of the er-
ror function due to uneven sampling densities. De-
pending on the resulting grid resolution, the Grid-
EEA algorithm provides thinnings of varying accu-
racy at different run times.

While the EEA algorithm adopts the concept of it-
erative point removal to obtain a thin data set, we
propose another EEA variant, in which the observa-
tions are iteratively inserted starting with the empty
set. This approach is preferable in settings where
only a small part of the original data set is retained,
e.g., 10%, as it is the case with the satellite sound-
ings in the assimilation process at the Deutscher
Wetterdienst (DWD). For these thinnings, the result-
ing number of insertion operations is consequently
much smaller than the number of observation re-
moval steps in the traditional EEA method, which
makes the method faster and more accurate.

We finally focus on the problem of an efficient im-
plementation of the methods. The introduced vari-
ants rely on observation removal or insertion op-
erations. We propose to organize all observations
that are candidates for removal or insertion opera-
tions in efficient data structures, which allow sorting
the observations according to their redundancy de-
gree. We present two variants of processing these
data structures during the thinning process, leading
to different behavior in accuracy and computational
complexity.

The paper is organized as follows. In the next sec-
tion we state the problem of data thinning and revisit
related work. In section 3 we describe the proposed
EEA variants, followed by a presentation of experi-
mental results in section 4. We conclude our work
and suggest directions for future improvements in
section 5.

2. PROBLEM STATEMENT AND
RELATED WORK

In this section, we follow the notations in Ochotta
et al. (2005). Our input data set consists of ATOVS
(Advanced TIROS Operational Vertical Sounder)
satellite data, in particular differences of multichan-
nel brightness temperature between bias-corrected
observations and their first guess. We consider
the full observation set P0 that holds the positions
of n measurements as points in three-dimensional
space R3. More specifically, we transform geo-

graphic coordinates (λ ,φ) to cartesian coordinates
(x,y,z)T . For each observed point, an observation
value is given, i.e. a k-dimensional vector that holds
the measured multichannel brightness temperature
differences. We define a function f : P0 → Rk that
gives the observation value for an observation po-
sition p ∈ P0.

Given the full data set P0, the goal of data thin-
ning is to find a subset Pi ⊂ P0 with |Pi| = n − i,
i = 1, . . . ,n−1, that approximates P0 well. The ap-
proximation quality can be measured by a real-
valued function E : 2P×2P → R+∪{0}, where 2P

denotes the set of subsets of P. The optimal
thinning is then given by the set Pi ⊂ P0, satisfy-
ing E(Pi,P0) ≤ E(P′i ,P0) for all subsets P′i ⊂ P0 with
|P′i | = |Pi|. This is a hard optimization problem,
since the well-known NP-hard Rucksack problem
can be seen to be a special case of this optimiza-
tion. Therefore, we cannot expect to find an algo-
rithm for computing the optimal thinning in polyno-
mial time. Instead heuristic methods can be used,
e.g., iteratively removing points from the full data
set until a desired data density is reached.

The most common technique for reducing the ob-
servational data set is given by uniform thinning. In
most cases, the measurements that are obtained
by satellite instruments are arranged in a grid-like
structure on the globe, which suggests to estab-
lish thinning by selecting every n-th point in zonal
and meridional direction. Although this uniform ap-
proach yields robust data reduction, it is not aware
of the variances of observational values in the data
set. The goal is to find adaptive thinnings that re-
tain a higher density in regions with large gradients
or other significant structures in the input signal.

One approach to establish this behavior was pro-
posed in Ramachandran et al. (2005). For a given
observational data set, their methods produces a
spacial octree, in which each node corresponds to
a rectangular cell in 3D-space. The observations
therein are represented by a single reference point,
given by the cell center. The subdivison of each oc-
tree cell is ruled by a statistical test, which models
the corresponding approximation quality.

2.1. Estimation Error Analysis (EEA)

In Ochotta et al. (2005) it was shown that high-
quality thinnings of observational data sets can be
obtained using the concept of iterative point re-
moval. The invented EEA method is based on an
estimation filter, which provides a continuous func-
tion on the sphere for approximating the measure-
ment values. An estimation of the observational
value for a given location with respect to a given
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Figure 1: Anomaly correlations of 500 hPa geopotential based on 27 subsequent 156h-forecasts started
at 12 UTC on Dec. 27, 2004 for the northern hemisphere (left) and the southern hemisphere (right).

data set Pi is computed by the normalized weighted
sum of observations in Pi,

f̃Pi(x) =
∑p∈Pi f (p) ·wh(‖x− p‖)

∑p∈Pi wh(‖x− p‖)
, (1)

where wh(s) = e−s2/h2
is a positive, exponentially de-

creasing weighting function, which assigns larger
weights to points near x. The parameter h defines
the spatial scale of wh. Given the input set P0, the
function f̃P0 serves as a reference for the approxi-
mations f̃Pi of the thinned observation set Pi.

The mean squared error of a thinning Pi ⊂ P0 is de-
fined by averaging the squared differences of the
estimation function with respect to the full data set
P0 and the simplified set Pi. These differences are
evaluated at the positions in P0,

Emse(Pi) =
1
|P0| ∑

p∈P0

‖ f̃P0(p)− f̃Pi(p)‖2. (2)

The EEA method aims at finding a minimum of the
mean squared error. The estimation function is
used to define the redundancy degree for each ob-
servation in P0. If replacing an observation leads to
a sufficiently small change in the estimation func-
tion, the observation is supposed to be redundant
with respect to its neighboring observations. Fol-
lowing this concept, the EEA method removes for
i = 0,1,2, . . . ,n−1, the point p j(i) ∈ Pi of the thinning
Pi, given by

p j(i) = argmin
p∈Pi

Emse(Pi \{p}). (3)

The resulting data set is given by

Pi+1 := Pi \{p j(i)}. (4)

Applying this procedure yields a sequence of
nested subsets Pi of P0,

P0 ⊃ P1 ⊃ P2 ⊃ ·· · ⊃ Pn = /0,

each of which provides an approximation of the
original observation set with n− i retained observa-
tions. Throughout this paper we refer to this method

as the traditional variant of the EEA or short EEA,
as in Ochotta et al. (2005).

Figure 1 shows the mean anomaly correlations
for the 500 hPa geopotential depending on fore-
cast time for the EEA method in comparison to
the reference method of stepwise thinning, which
corresponds to retaining every third observation in
zonal and meridional direction of the original data
set. While the EEA algorithm shows slightly higher
anomaly correlations for long term forecasts com-
pared to the non-adaptive stepwise thinning for the
northern hemisphere, no comparable behavior is
observed for the southern hemisphere.

3. PROPOSED EEA VARIANTS

3.1. EEA on a Regular Grid

The EEA thinning algorithm iteratively selects the
observation with the least degradation on the global
estimation function f̃ . The function f̃ is thereby
evaluated at the positions of the observations in the
full data set P0. Since in most cases, the observa-
tions are distributed non-uniformly, this leads to a
bias in the estimation error due to the uneven sam-
pling densities in P0.

In the first variant of the EEA algorithm, we propose
to employ a regular grid on the globe to evaluate the
estimation function f̃ . We apply the grid of the GME
that is used for the model state vectors at the DWD.
The grid of the GME is defined by recursive subdivi-
sions of the 20-sided icosahedron. The subdivision
of each triangle is performed by halfing the edges,
which results in four new triangles, whereby each
vertex in the grid is projected on the sphere.

The constructed grid contains 10n2
i + 2 vertices,

where ni is the number of intervals on one side of
the icosahedron. The number ni also corresponds
to the number of subdivision steps l, ni = 2t . The
grid of the GME provides a near-uniform discretiza-
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Figure 2: Concept of estimation error analysis (EEA); a smooth curve is associated to a given observa-
tions set (left); thinning based on evaluation of the estimation function leads to a bias of the error due to
uneven sampling (middle); we propose to use a regular grid instead to overcome this problem (right).

tion of the sphere, although it contains triangles
fans of varying size and shape. For details, see
Majewski et al. (2002).

Let Gl be the set of vertices of a given GME grid of
subdivision level l. According to Eq. (2) we use the
estimation error Emse(Pi,Gl), which is based on eval-
uating squared differences between two estimation
functions on the grid of the GME with a specified
subdivision level l,

Emse(Pi,Gl) =
1
|Gl | ∑

q∈Gl

‖ f̃P0(q)− f̃Pi(q)‖2. (5)

The selection of the observation p j(i) to be removed
in each step i = 0,1,2, . . . ,n−1, (where n again de-
notes the total number of observations in the full
data set P0) is then defined as

p j(i) = argmin
p∈Pi

Emse(Pi \{p},Gl). (6)

The regular grid Gl facilitates a near uniform sam-
pling of the estimation function f̃Pi , see Fig. 2, and
hence, allows for a more accurate evaluation of the
difference between two estimation functions. The
parameter l defines the resolution of the grid and
can either be adjusted by the user or in coherence
with the model resolution that is used in the assimi-
lation.

3.2. Top-Down EEA

The EEA as well as the Grid-EEA are greedy thin-
ning methods that employ the point removal strat-
egy. As denoted in section 2, the greedy prop-
erty is given by the fact that they work iteratively
by evaluating a number of potential candidates and
selecting the best one, e.g., the candidate with the
least increase in total error. This concept leads to
locally optimal solutions, meaning that the thinning
Pi is found as the best set Pi ⊂ Pi−1. The goal, how-
ever, is to find the globally optimal thinning Pi ⊂ P0
with Emse(Pi)≤ Emse(P′i ) for all P′i ⊂P0, |P′i |= |Pi|. This

global optimality is not guaranteed for the thinnings
in this work that uses the greedy strategy.

As a consequence, the iterative point removal
method may select non-optimal points leading the
algorithm away from the globally optimal solution.
Considering the data sets in this work, the density
of the thinned observation sets is at roughly 10%
of the density of the full data set. Taking this into
account, we propose thinning by top-down estima-
tion analysis (Top-Down EEA), in which observa-
tions are iteratively added starting with the empty
set. In line with the findings in subsection 3.1, we
build the Top-Down EEA upon a regular grid Gl .
Considering Eq. (3) and (4), the observation p j(i)
at step i = n−1,n−2, . . . ,1 is selected as follows:

p j(i) = arg min
p∈P0\Pi

Emse(Pi∪{p},Gl),

yielding the observations set

Pi−1 := Pi∪{p j(i)}.

The advantage of this approach is that the number
of point insertion operations for sparse thinnings
is much smaller than the number of point removal
steps in the traditional EEA (see subsection 2.1).
This leads to an acceleration of the thinning proce-
dure as well as to an improvement in approximation
quality due to reduced error accumulation.

3.3. Implementation and Acceleration

The computation of an estimation value f̃Pi(x) (1) re-
quires for the summation of many (weighted) contri-
butions. Since the weighting function wh(s) is expo-
nentially decreasing, we restrict the summation in
(1) to observations in Pi within a local neighborhood
of radius r around x. This yields for each obser-
vation p ∈ Pi, a region of influence where estimation
terms f̃Pi(x) are dependent on the observation value
f (p). It follows that the removal of this observation
only affects f̃Pi(x), if and only if ‖x− p‖ ≤ r, using
the euclidean norm.
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This approach may lead to special cases, where
no observations are available in the prescribed r-
neighborhood, e.g., for very sparse data sets. We
then degenerate the estimation filter to a nearest
neighbor interpolation. More precisely, for these
samples, we grow r until one observation is within
the r-neighborhood and set the estimation value to
the corresponding observation value.

We utilize the r-neighborhoods to construct a graph
to hold depencies between grid points, for which
the estimation function is evaluated, and observa-
tions that are removal candidates. The increase
in total error when removing observation p j(i) ∈ Pi
(6) can easily be evaluated by computing the esti-
mation function for a relatively small number of grid
samples with and without involving p j(i).

The point removal procedure is implemented us-
ing a priority queue, which is a data structure to
efficiently find elements with the highest associ-
ated priority across a sequence of operations. In
our case, the elements correspond to observations,
the priority value of each is given by the inverse of
the associated error increment. The elements are
sorted in descending order, starting with the ele-
ment with the highest priority. The removal of an
observation then corresponds to the removal of the
first element in the priority queue, followed by an
updating procedure, in which error increments of af-
fected observations are recomputed. In particular,
the removal of an observation p ∈ Pi requires for re-
computation of the error increments of observations
s ∈ Pi, if and only if there is a grid point q ∈ Gl with
‖p−q‖ ≤ r and ‖s−q‖ ≤ r.

Lazy Evaluation The benefits of using the prior-
ity queue are reduced computational costs, since
only the error increments of affected observations
need to be recomputed for each removal step, while
the increments of all other observations remain un-
touched. However, depending on the parameter r,
the number of required recomputations per obser-
vation removal step can become large, e.g., up to
100 for the data sets we use. The resulting com-
putational costs may consequently slow down the
thinning procedure.

To accelerate the process we propose to estab-
lish the so-called lazy evaluation scheme, in which
the updating procedure is slightly modified in order
save computational costs. In contrast to the full up-
dating procedure, no error increments are updated
after removing an observation. Instead, there is a
validity test when an observation is to be removed.
More specifically, considering p∈ Pi the observation
that is the candidate for the next removal operation,
we check if all dependent observations are still in
Pi, e.g., have not yet been removed. If this is the

case, the error increment of p is still valid and p can
be removed. Otherwise, the error increment has to
be recomputed and the corresponding element is
reinserted into the priority queue.

The benefit of the lazy evaluation is a reduced num-
ber of evaluated error increments at each point in-
sertion or removal step, leading to reduced compu-
tational costs. The drawback is a slight loss in accu-
racy that follows from the fact that the search space
of possible observation candidates is smaller than
for the full updating procedure, which consequently
produces a slightly different sequence of processed
observations during the thinning.

4. RESULTS AND DISCUSSION

We present experimental results for an ATOVS
satellite data set containing 27367 observations with
observation values as differences between bias-
corrected measured brightness temperatures and
first guess in eight channels. Measurements are
considered over sea as implemented in the exper-
imental analysis and forecast system of the DWD.
As reference method we implement the stepwise
thinning scheme, which corresponds to retaining
every third point in zonal and meridional direction
in the full data set P0. The stepwise thinning is used
in the operational service of the DWD.

The proposed algorithms in this paper can operate
as individual components of the EEA. We combine
them with each other and consider the following
EEA variants:

traditional EEA; Iterative point removal and evalu-
ating f̃ at the positions of the observations in
P0 (as in Ochotta et al. (2005));

Top-Down EEA; Iterative point insertion and evalu-
ating f̃ at the positions of the observations in
P0;

Grid EEA; Iterative point removal and evaluating f̃
on the regular grid Gl ;

Top-Down Grid EEA; Iterative point insertion and
evaluating f̃ on the regular grid Gl ;

Moreover, these four variants can be carried out us-
ing either the full updating procedure or the lazy
evaluation approach.

The approximation quality of the methods is com-
pared in terms of the grid-based mean-squared es-
timation error Emse, Eq. (5), for which we use a grid
with a dense sampling (G8) to obtain an accurate er-
ror evaluation. Note that the grid resolution may be
differently used for the thinning process and for the
computation of the approximation quality (5), e.g.,
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Figure 3: Comparison between the traditional EEA
and the grid-variant based on the error Emse(Pi,G8)
(5); the grid-based thinning is carried out using grid
of varying resolutions l; in brackets the number of
grid samples that are considered during the thin-
ning.

we can choose a smaller l for the thinning for accel-
eration purposes.

Figure 3 shows the resulting error Emse(Pi,G8) for
various grid resolutions. Considering the number of
original observations, applying a grid with reduced
resolution, e.g., l = 6 with 6245 samples, already
leads to satisfying approximation quality. Increas-
ing the grid resolution marginally improves the per-
formance, i.e l = 7.

Results of applying the top-down variant are shown
in Fig. 4. We consider two scenarios, firstly, ap-
plying the top-down strategy to the traditional EEA
in Ochotta et al. (2005), where we observe a sig-
nificant improvement in approximation quality (Fig.
4(top)), and secondly, using the regular grid G6 as
proposed in this paper, where a smaller quality gain
for thinnings with a small number of retained obser-
vations is obtained. We found that this behavior is
typical, meaning that there is an evidence that the
grid variant of the EEA approach based on point re-
moval provides good data approximation even for
strong thinnings. Note that in Fig. 4(top), we used
the error measure based on evaluation of the differ-
ences in estimation function at the positions of the
original points in P0, see Eq. (2).

Table 1 shows timings for various thinnings
achieved with the proposed methods. We can ba-
sically observe two effects. Firstly, for the top-down
approach, the run time is proportional to the number
of retained observations, while the variants based
the point removal strategy show inverse proportion-
ality. Secondly, the regular grids can be leveraged
to accelerate the thinning process by using smaller
resolutions l, e.g., the number of samples for evalu-
ation of f̃ on the grid G6 is much smaller (6245 sam-
ples) than for the traditional EEA approach (27637
samples). Lastly, the lazy evaluation technique sig-
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Figure 4: The top-down approach improves the ap-
proximation quality of the traditional EEA (top); ap-
plying the regular grid reduces the quality gain (bot-
tom).

nificantly reduces the run times, e.g., in order to
construct a thinning with 3000 retained observa-
tions, the Grid EEA method needs 63 seconds us-
ing the full updating procedure, while the lazy eval-
uation scheme needs only 0.78 seconds.

Focusing on the approximation quality of applying
the lazy evaluation method, we observe that the
quality loss is negligible for the point removal strat-
egy, Fig. 5(top). The top-down approach, however,
leads to a noticable increase in approximation er-
ror for thinnings that retain more than 15% of the
original observations. The acceleration technique
in combination with the top-down approach is there-
fore only suitable, if a small number of observations
if desired.

5. CONCLUSIONS AND FUTURE WORK

We presented methods for thinning of observational
data sets that are delivered by current satellite in-
struments. We build our methods upon the previ-
ously proposed estimation error analysis scheme,
in which observations were iteratively removed ac-
cording to a redundancy measure. We proposed
variants of this thinning approach by applying a uni-
form sampling strategy for the evaluation of the cor-
responding estimation function. We furthermore ex-
tended the technique to applying an iterative point
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run time [seconds] full updating
EEA n− i = 1000 2000 3000 5000 15000 25000
traditional 120 120 110 98 93 25
Top-Down 13 24 36 58 140 180
Grid 81 69 63 57 45 11
Grid Top-Down 4.9 9.6 14 23 55 68

run time [seconds] lazy evaluation
EEA n− i = 1000 2000 3000 5000 15000 25000
traditional 4.6 4.4 4.3 4.0 2.4 0.7
Top-Down 3.4 3.9 4.1 4.5 5.8 7.1
Grid 0.87 0.83 0.78 0.74 0.44 0.14
Grid Top-Down 0.47 0.56 0.62 0.72 0.98 1.2

Table 1: Timings in seconds for the proposed EEA
methods achieved by using the full updating pro-
cedure for priority queue maintenance (top); apply-
ing the lazy evaluation strategy leads to a drastic
acceleration (bottom); the bold timings indicate the
fastest method for the corresponding thinning.

insertion strategy instead of removing observations
from the full data set, and moreover, we discussed
an acceleration technique for time-efficient process-
ing of very large data sets. Results show that our
modifications lead to an improved overall approxi-
mation quality, as well as a drastic acceleration of
the estimation error approach.

For a practical application, we recommend to use
the estimation error analysis scheme based on reg-
ular grids. Depending on the input data density and
the desired number of retained observations, the
top-down approach using the full updating proce-
dure has shown the best approximation quality at
tolerable computational costs. Future satellites are
expected to deliver data sets with a much higher
density, and moreover, there is a demand on fur-
ther decreasing the desired number of retained ob-
servations. For these scenarios, the lazy evaluation
strategy might become more meaningful to acceler-
ate the data reduction.

In future work we plan to analyze the performance
of the proposed methods with respect to long term
forecasts. Moreover, thinning techniques can be
discussed that deeply analyze the influence of ob-
servations and their distribution within the assimila-
tion process.

ACKNOWLEDGMENTS

We thank Reinhold Hess, Gerhard Paul, and
Andreas Rodin for helpful discussions throughout
this project. This work was supported by the DFG
Graduiertenkolleg 1042 ’Explorative Analysis and
Visualization of Large Information Spaces’.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  5000  10000  15000  20000  25000  30000

e
s
ti
m

a
ti
o

n
 e

rr
o

r

remaining points

stepwise thinning
lazy evaluation

full updating

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  5000  10000  15000  20000  25000  30000

e
s
ti
m

a
ti
o

n
 e

rr
o

r
remaining points

stepwise thinning
lazy evaluation Top−Down

full updating Top−Down

Figure 5: The performance impact of the lazy eval-
uation strategy is negligible for the Grid EEA us-
ing the point removal strategy (top), while there is a
significant quality loss using the point insertion ap-
proach for thinnings with more than 15% retained
observations (bottom).

References

Liu, Z.-Q. and F. Rabier, 2002: The interaction be-
tween model resolution, observation resolution
and observation density in data assimilation: An
one-dimensional study. Q. J. R. Meteorol. Soc.,
128, 1367–1386.

Majewski, D., D. Liermann, P. Prohl, B. Ritter,
M. Buchhold, T. Hanisch, and G. Paul, 2002:
The operational global icosahedral-hexagonal
grid point model GME – operational version and
high resolution tests. Monthly Weather Review ,
130, 319–338.

Ochotta, T., C. Gebhardt, D. Saupe, and W. Wer-
gen, 2005: Adaptive thinning of atmospheric ob-
servations in data assimilation with vector quan-
tization and filtering methods. QJ of R. Met. Soc.,
131, 3427–3437.

Ramachandran, R., X. Li, S. Movva, S. Graves,
S. Greco, D. Emmitt, J. Terry, and R. Atlas, 2005:
Intelligent data thinning algorithm for earth sys-
tem numerical model research and application.
Proc. 21st Intl. Conf. on IIPS.

7


