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1. INTRODUCTION

With the advent of the Open Radar Data Acquisition
(ORDA) system on WSR-88D radars and the introduction
of significantly more powerful signal processing hardware
comes the opportunity to improve the method used for es-
timating the spectrum width, a measure of the variabil-
ity of radial wind velocities within a measurement pulse
volume. In addition, the implementation of new opera-
tional modes for improved data quality, including SZ phase
coding, will involve very different signal processing tech-
niques and hence may require novel methods to meet
the WSR-88D specifications. While spectrum width has
not been used extensively by radar meteorologists in the
past, the new NEXRAD Turbulence Detection Algorithm
(NTDA), developed under direction and funding from the
FAA’s Aviation Weather Research Program, will soon be
using the WSR-88D spectrum width as a key input for pro-
viding in-cloud turbulence estimates (eddy dissipation rate,
EDR) for an operational aviation decision support system
(Williams et al. 2005). Achieving improved spectrum width
estimator performance would directly benefit the accuracy
of the NTDA product.

This paper addresses these issues by evaluating per-
formance characteristics of several spectrum width esti-
mators, including the pulse-pair estimator currently used
in the WSR-88D. Evaluations are performed using simu-
lated radar timeseries data representing a variety of sce-
narios for different signal-to-noise ratios, overlaid power
ratios, and spectrum widths. A hybrid algorithm combin-
ing three spectrum width estimators is proposed, and it is
shown that this algorithm, while somewhat more compu-
tationally intensive, is more accurate and robust than any
method alone.

2. Methodology

To evaluate and compare different spectrum width esti-
mators we generated random complex timeseries data for
various true spectrum width, signal-to-noise ratio (SNR)
and overlaid power ratio (PR) scenarios. We used an I&Q
simulation technique based on the method described in
Frehlich and Yadlowsky (1994); Frehlich (2000); Frehlich
et al. (2001) except that the autocorrelation function is that
of a weather echo as defined as in Doviak and Zrnić (1993,
p. 125). This is a preferable method for generating com-
plex timeseries with a given average autocorrelation func-
tion, as opposed to what is described by Zrnić (1975), be-
cause it is not necessary to generate as long of a time-
series in order to get the correct temporal statistics.

In this study, we used the simulator to generate both
long pulse repetition time (PRT) and short PRT data. We
created one set of 5000 long PRT timeseries, with a PRT
of 3106 µs (Nyquist velocity V a ≈ 8 m/sec) for 16 sam-
ples, as well as two sets of 5000 short PRT timeseries,
with a PRT of 913 µs (Va ≈ 27m/sec) for 43 samples. The
long PRT data and the first set of the short PRT data were
modulated by varying amounts and to each was added
Gaussian white noise so as to generate data with specific
SNRs. The second set of short PRT data was also mod-
ulated to varying amounts relative to the first set so as to
generate a weaker overlaid trip with specific PRs, that is,
ratios of the strong trip to the weak trip power. These sim-
ulated data correspond to the long and short PRT scans
of the lowest two elevations (0.5◦ and 1.5◦) of NEXRAD
volume control pattern (VCP) 12, which is often used for
observing convective weather, with the pulse repetition fre-
quency (PRF, equals 1/PRT) #6. These settings represent
a difficult case scenario for spectrum width estimators in
particular because the radar dwell time is quite short in
VCP 12. The WSR-88D’s wavelength of 10 cm was as-
sumed. In the scenarios in which the short PRT data has
overlaid echoes, the spectrum widths of the strong trip (the
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long PRT data and the first set of the short PRT data) were
varied from 0.5 to 16 m/sec and the SNRs from 0 to 70 dB.
For the weak trip (the second set of short PRT data), the
velocities were randomized, the spectrum width was set to
4 m/sec, and the PRs were varied from 10 to 30 dB below
the strong trip.

In what follows, the simulator input (“true”) spectrum
width will be denoted as W , while the estimated spec-
trum width will be denoted as Ŵ with a modifying sub-
script specifying the estimation technique used. Estima-
tion errors were calculated by subtracting the simulator in-
put values from the estimated values (i.e. Ŵ − W ). In
this paper, we do not create plots of standard errors (i.e.,
RMS errors); rather, we break out the error analysis into
biases and standard deviations, which have quite different
implications for turbulence detection since bias cannot be
mitigated by averaging while random deviations can. How-
ever, RMS error estimates may be obtained by taking the
square root of the sum of the squared biases and standard
deviations.

3. Standard Spectrum Width Esti-
mators

For simplicity, in this paper we only consider three stan-
dard spectrum width estimators. During our simulation
studies, we evaluated several others, but these three are
widely known, are computationally tractable, and they per-
formed well under certain circumstances, allowing the for-
mation of an effective hybrid method.

a. The short PRT R0/R1 Pulse Pair Estimator

The standard spectrum width estimator currently used in
the WSR-88D radars on short PRT data is the R0/R1 es-
timator (Doviak and Zrnić 1993), so named because it uti-
lizes the ratio of the first two lags of the autocorrelation
function:

Ŵs01 =
(√

2/π
)

Va |log (PS/ |R1|)|1/2 (1)

The “s” in the subscript “s01” indicates that the short
PRT data are used. Here Va is the Nyquist velocity, PS

is the average power of the signal with noise removed,
and R1 is the first lag of the autocorrelation function (i.e.
R1 = (n − 1)−1

∑n−1

k=1
V ∗ (k) V (k + 1) where V (k) are

the complex-valued I&Q radar timeseries). In the event
that |R1| < PS , in which case the log has a negative ar-
gument, the spectrum width is set to 0 as is done on the
WSR-88D.

The performance statistics obtained via simulation for
the short PRT (913 µs) R0/R1 spectrum width estimator
in the case of (essentially) no overlaid echoes is shown in
Figure 1 for various input spectrum widths and SNRs. The
biases are shown in Figure1(a), and the standard devia-
tion of the errors Ŵs01 − W is depicted in 1(b). The error
standard deviation plot agrees reasonably well with that in
Doviak and Zrnić (1993), although there are some differ-
ences. These may be caused by different approaches to

dealing with the cases where |R1| < PS , or to different
methods used to generate timeseries segments for analy-
sis. The biases and standard deviations show that for low
SNRs (0 and 4 dB) this estimator is very poor, with large
error standard deviations and large and variable bias val-
ues. As SNR increases to 10 dB and greater, the bias rel-
ative to the input spectrum width improves dramatically for
all but rather small or quite large input spectrum widths,
and the error standard deviations improve for small and,
especially, medium spectrum width values. For large input
spectrum widths, the spectrum width estimator eventually
saturates, as can be seen from the increasing negative
bias for all SNR levels.

b. The short PRT R1/R2 Pulse Pair Estimator

Another estimator described by Doviak and Zrnić (1993)
is the R1/R2 estimator, which is based on the ratio of the
first and second lags of the autocorrelation function:

Ŵs12 =
(

2/
(

π
√

6
))

Va |log (|R1/R2|)|1/2 (2)

where R2 is the second lag of the autocorrelation function
(i.e. R2 = (n − 2)−1

∑n−2

k=1
V ∗ (k) V (k + 2). In the event

that |R2| < |R1|, the spectrum width is set to 0.
The performance statistics obtained via simulation for

the short PRT (913 µs) R1/R2 spectrum width estimator in
the case of (essentially) no overlay for various input spec-
trum widths and SNRs is shown in Figure 2. The biases
are shown in Figure2(a), and the error standard deviation
in 2(b). The biases and error standard deviations show
that for 0 dB SNR this estimator is very poor, but the per-
formance for 4 dB is much improved over the R0/R1 es-
timator. Again, there are biases for small input spectrum
widths, but the performance is significantly better than the
R0/R1 estimator in this regime, particularly for SNRs of
10 dB or higher. In fact, the estimator as a whole per-
forms better than R0/R1 until the input spectrum width
approaches 8 m/sec. At that point the R1/R2 estimator
saturates, leading to severe negative biases.

c. The long PRT R1/R2 Pulse Pair Estimator

For the lowest elevations tilts on the WSR-88D, a long PRT
scan is followed by a short PRT scan in a “split cut” strat-
egy that produces reflectivity estimates from the long PRT
data and velocity and spectrum width estimates from the
short PRT data. Currently, the long PRT data is not used in
the Doppler moment estimates, but it is in principle avail-
able for this purpose. Thus, while not strictly a different
estimator than the short PRT R1/R2 estimator described
in section b, the long PRT R1/R2 estimator provides a
separate estimate of the spectrum width having different
performance characteristics due to the different PRT. The
equation is the same as 2, except that we will denote this
estimator as ŴL12 (“L” for long PRT).

The performance statistics obtained via simulation of
the long PRT (3106 µs) R1/R2 spectrum width estima-
tor in the case of (essentially) no overlay for various input
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(a) Bias of Ŵs01
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(b) Standard Deviation of Ŵs01

Figure 1: Bias and error standard deviation plots of the short PRT R0/R1 spectrum width estimator for
varying input spectrum widths and SNRs (0, 4, 10, 15 and 20 dB shown). The PR in this data is set at 30
dB, low enough such that the weak trip does not significantly impact the statistics.
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(a) Bias of Ŵs12
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(b) Standard Deviation of Ŵs12

Figure 2: Bias and error standard deviation plots of the short PRT R1/R2 spectrum width estimator for
varying input spectrum widths and SNRs (0, 4, 10, 15 and 20 dB shown). The PR in this data is set at 30
dB, low enough that the weak trip does not significantly impact the statistics.



spectrum widths and SNRs is shown in Figure 3. The bi-
ases are shown in Figure3(a), and the error standard de-
viations in 3(b). The biases and error standard deviations
show that for SNRs of 0 and 4 dB this estimator is very
poor overall. However, as opposed to Ŵs01 and Ŵs12, this
estimator has no bias for small spectrum widths down to
0.5 m/sec. Also, the error standard deviations are quite
good, performing better than the R0/R1 estimator in this
regime. In fact, on the whole the long PRT R1/R2 esti-
mator performs better than the short PRT R0/R1 estima-
tor until the input spectrum width approaches 3 m/sec, at
which point the long PRT R1/R2 estimator saturates.

4. A Hybrid Approach

Taking the results from the three estimators (Ŵs01, Ŵs12,
and ŴL12) together, it is seen that each performs well
in certain regimes. Ŵs01 performs well in higher SNRs
and for larger spectrum widths, whereas Ŵs12 performs
well for slightly lower SNRs and medium-valued spectrum
widths. The estimator ŴL12 performs the best for very
narrow spectrum widths. These complementary regimes
of relatively good performance suggest that a hybrid ap-
proach where all estimators are appropriately combined,
might achieve good overall performance. There are many
different ways that this combination could be done, but we
have chosen to use a simple fuzzy logic-type approach. To
wit, we define

ŴH = Cs01Ŵs01 + Cs12Ŵs12 + CL12ŴL12 (3)

where the weights Cs01, Cs12, and CL12 may depend on
various parameters, for instance, the input spectrum width,
W , as well as SNR and PR. This is not a practical algo-
rithm, of course, since we are using the input spectrum
width, W , which wouldn’t be available in practice and in
fact is exactly what we are attempting to estimate. We get
around this by using an initial estimate of W to retrieve the
ideal weights, which are then used to in 3 to calculate the
final estimate.

a. Generating the Combination Weights

As mentioned in section 2, we simulated short PRT time-
series data for various SNRs, PRs and input spectrum
widths. Accompanying each simulation of the short PRT
timeseries is a long PRT series with the same SNR and in-
put spectrum width, but with no overlaid echoes. For each
regime (i.e., values of spectrum width, SNR and PR) we
generated 5000 overlaid short PRT time series and 5000
non-overlaid long PRT timeseries . Using these data, the
mean and error standard deviation of each estimator can
be calculated for each regime.

It can be shown that if n uncorrelated random variables
Xi, i = 1, . . . , n, have variances σ2

i , then the weights Ci

satisfying 0 ≤ Ci ≤ 1 and
∑n

i=1
Ci = 1 that minimize the

variance of
∑n

i=1
CiXi are defined by

=

∏

k 6=i
σ2

k
∑n

j=1

∏

k 6=j
σ2

k

(4)

The product
∏

k 6=i
is short hand for

∏n

k=1,k 6=i
. While this

suggests a principled approach to generating the weights,
it has a serious deficiency in that it does not address the
fact that we want to minimize bias as well. Therefore, the
following ad-hoc metric was used instead:

ε = 10B2 + S2 (5)

where B is the average bias and S is the error standard
deviation (not standard error) for the estimator. For each
SNR, PR and spectrum width regime and spectrum width
estimator, ε is calculated. The weights for that regime are
then calculated using 4, where ε is substituted for the σ2

k

values (i.e. εs01 is substituted for σ2

1 , etc.).
While the choice of 5 is somewhat arbitrary, it does

have the desired attributes of strongly penalizing spectrum
width estimators for biases while also penalizing for large
variances. The factor 10 was chosen simply by trial and
error. There are certainly more rigorous choices for com-
puting optimal weights, and these will be explored in future
work.

b. Hybrid Algorithm using Optimal Weights

Using the weights generated in section a, a new hybrid
spectrum width estimator ŴH is computed by the follow-
ing algorithm:

1. Compute the 3 estimators Ŵs01, Ŵs12, and ŴL12

2. Look up the weights for the 3 estimators based on
W , SNR, and PR

3. Calculate the hybrid spectrum width estimator using
3.

As mentioned before, this estimator can only be computed
when performing simulation studies since that is the only
time that the input spectrum width W is known. In the next
section, we propose a hybrid algorithm in which we do not
assume that W is known. The ŴH estimator because it
serves as a ‘best case’ scenario for the performance of
the hybrid approach when the appropriate weights must
be guessed.

c. Hybrid Algorithm using an Initial Seed

The obvious approach to dealing with the fact that W is
unknown is to simply use one of the estimators Ŵs01,
Ŵs12, or ŴL12 as a proxy for W in finding the combina-
tion weights. After all, these estimates will need to be
computed anyway. On the other hand, no one of these al-
gorithms performs very well in all situations. Experiments
using either Ŵs12 or Ŵs12 as a proxy for W resulted in
very poor performance. The use of ŴL12 as a proxy for W
is not feasible since it saturates for fairly small spectrum
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Figure 3: Bias and error standard deviation plots of the long PRT R1/R2 spectrum width estimator for vary-
ing input spectrum widths and SNRs (0, 4, 10, 15 and 20 dB shown). The PR in this data is set at 30 dB,
low enough such that the weak trip does not impact the statistics.

widths. The approach that we settled on was a heuristic
estimator defined by the following:

ŴS =







Ŵs01 if Ŵs01 > T1

Ŵs12 if Ŵs01 ≤ T1 and Ŵs12 > T2

ŴL01 if Ŵs01 ≤ T1, Ŵs12 ≤ T2

(6)

where for this study we chose T1 = 7 m/sec and T2 =
2m/sec.

Thus we define a new estimator, ŴĤ , which is com-
puted using the following algorithm:

1. Compute the 3 estimators Ŵs01, Ŵs12, and ŴL12

2. Compute ŴS using 6

3. Look up the weights for the 3 estimators based on
W = ŴS , SNR, and PR

4. Calculate ŴĤ as in 3.

Unlike ŴH , the estimator ŴĤ uses only information avail-
able from measured parameters and is therefore a practi-
cal algorithm for an operational radar.

5. Results

Performance comparison plots for the five spectrum width
estimators (Ŵs01, Ŵs12, ŴL01, ŴH , and ŴĤ ) are shown
in Figures 4-10. Biases as a function of spectrum width
are shown in the top panel of each figure, and the error
standard deviations in the middle. The weights applied to
each of the standard spectrum widths (Ŵs01, Ŵs12, and
ŴL01) for a given input spectrum width (W in the case of

ŴH , and estimated by ŴS in the case of ŴĤ), are shown
in the bottom plot.

a. Non-overlaid case

Results for the simulated cases containing essentially no
overlaid echoes (that is, 30 dB PR) for SNRs of 4, 10, and
70 dB, respectively, are shown in Figures 4, 5, and 6. In
general, the seeded hybrid estimator ŴĤ outperforms the
other estimators with the exception of the idealized ŴH .
For 4 dB SNR and low input spectrum widths, some im-
provement is still desired as the seeded hybrid estimator
becomes biased high and has error standard deviations
that are worse than both Ŵs12 and ŴL01, although it still
performs better than Ŵs01.

For 10 dB SNR, the performance almost perfectly
tracks the best parts of each of the three original spec-
trum width estimators (Ŵs01, Ŵs12, and ŴL01), except for
the case with spectrum width of 0.5 m/sec. ŴL12 still per-
forms best for very narrow spectrum widths. For the 70 dB
SNR case, the seeded hybrid algorithm performs essen-
tially as the best parts of each algorithm, outperforming
Ŵs01 for narrow spectrum widths.

b. Overlaid case with a power ratio of 10 dB

Results for the simulated cases containing overlaid echoes
at 10 dB PR are shown in Figures 7 and 8 for SNRs of 4
dB and 10 dB, respectively. All of the estimators perform
very poorly in general for the 4 dB SNR case. The seeded
algorithm does not perform very well in this case, but it is
the most consistent of the group. The Ŵs12 estimator has



good performance when the spectrum width is less than 6
m/sec, at which point it starts to saturate. The Ŵs01 esti-
mator is almost always badly biased.

In the 10 dB SNR case, ŴĤ exhibits a minor bias
throughout except when the input spectrum widths are
small, where it becomes significant. Ŵs01, however, has
a consistently worse bias. ŴL01 performs better for very
small spectrum widths. Larger SNRs are not shown here
but the performance of all the estimators are largely un-
changed from the 10dB SNR case.

c. Overlaid case with a power ratio of 14 dB

The 14 dB PR results are shown in Figures 9 and 10 for
SNRs of 4 dB and 10 dB, respectively. Again, larger SNRs
are not shown since the spectrum width estimator perfor-
mances are similar to those at 10 dB SNR. The seeded hy-
brid estimator performs well, though there is still room for
improvement in the 4 dB SNR case. Again, it outperforms
Ŵs01 for smaller spectrum widths, but the Ŵs12 estimator
outperforms both of them in this regime.

In the 10 dB SNR case, the seeded hybrid spectrum
width estimator performs very well, although some im-
provement may be possible for narrow spectrum widths,
where there is a bias, and especially at 0.5 m/sec, where
there is a spike in the error standard deviation. Again,
ŴL01 performs better for very small spectrum widths.

6. Conclusions

The simulation results presented in this paper have shown
that the short PRT R0/R1spectrum width estimator cur-
rently used on WSR-88Ds does not perform as well as the
short or long PRT R1/R2 estimators in certain regimes.
A hybrid approach that combines these methods using
weights appropriate to each regime shows great promise
in producing improved overall performance. While knowl-
edge of the true spectrum width would allow determining
the ideal combination weights, an alternative that uses a
spectrum width estimate, or “seed”, based on the values
of the three spectrum width estimators was proposed as
a practical alternative. The seeded hybrid estimator pre-
sented in this paper was shown to outperform all three
spectrum width estimators in most cases, and at the least
did no worse than the short PRT R0/R1 estimator cur-
rently used by the WSR-88D. For larger spectrum widths,
it outperforms the short and long PRT R1/R2 estimators,
but for low spectrum widths and low SNRs and/or PRs
they in turn outperform the seeded hybrid estimator. Fortu-
nately, this is the domain least importance for a turbulence
warning capability. Computationally, the seeded hybrid al-
gorithm is fairly modest, requiring fewer operations than
the FFT needed by a spectral technique. The biggest re-
quirement would be the memory needed to store the ta-
ble of combination weights for the weighted sum, since
weights would be required for each of the different spec-
trum width, SNR, and PR regimes.

Future work includes improving the performance for

small spectrum widths, where the less than optimal quality
seems to be due to the poor estimation of the seed spec-
trum width ŴS . That this is the source of the poor perfor-
mance can be seen by the fact that if the simulation input
spectrum width is used, as in ŴH , the resulting estima-
tor’s performance is superior to any one algorithm. Thus,
the algorithm for the seed spectrum width will be further
refined. In addition, other spectrum width estimators such
as spectral or maximum likelihood methods could easily be
integrated into the general framework developed here, and
this hybrid approach can be applied to other VCPs includ-
ing those that involve phase-coded signals. It is our rec-
ommendation that the hybrid estimator approach be fur-
ther refined and then considered for implementation in the
WSR-88D Open Radar Data Acquisition system.
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Ĥ
estimator is ŴS , whereas

for ŴH the simulator input W is used.
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Figure 7: Performance statistics plots for 4 dB SNR and 10 dB PR, for the short PRT R1/R2 (Ŵs12)and
R0/R1 (Ŵs01), long PRT R1/R2 (ŴL12), and the hybrid estimators ŴH and Ŵ

Ĥ
. Biases as a function of

input (“true”) spectrum width are shown in the top panel, the error standard deviations in the middle, and
the weights used for the hybrid estimators in the bottom. Note that the “input” W for the Ŵ

Ĥ
estimator is the

“seed” ŴS described in the text, whereas for ŴH the simulator input W is used.
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Figure 8: Performance statistics plots for 10 dB SNR and 10 dB PR, for the short PRT R1/R2 (Ŵs12)and
R0/R1 (Ŵs01), long PRT R1/R2 (ŴL12), and the hybrid estimators ŴH and Ŵ

Ĥ
. Biases as a function of in-

put spectrum width are shown in the top panel, the error standard deviations in the middle, and the weights
used for the hybrid estimators in the bottom. Note that the “input” W for the Ŵ

Ĥ
estimator is ŴS , whereas

for ŴH the simulator input W is used.
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Figure 9: Performance statistics plots for 4 dB SNR and 14 dB PR, for the short PRT R1/R2 (Ŵs12)and
R0/R1 (Ŵs01), long PRT R1/R2 (ŴL12), and the hybrid estimators ŴH and Ŵ

Ĥ
. Biases as a function of in-

put spectrum width are shown in the top panel, the error standard deviations in the middle, and the weights
used for the hybrid estimators in the bottom. Note that the “input” W for the Ŵ

Ĥ
estimator is ŴS , whereas

for ŴH the simulator input W is used.
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Figure 10: Performance statistics plots for 10 dB SNR and 14 dB PR, for the short PRT R1/R2 (Ŵs12)and
R0/R1 (Ŵs01), long PRT R1/R2 (ŴL12), and the hybrid estimators ŴH and Ŵ

Ĥ
. Biases as a function of in-

put spectrum width are shown in the top panel, the error standard deviations in the middle, and the weights
used for the hybrid estimators in the bottom. Note that the “input” W for the Ŵ

Ĥ
estimator is ŴS , whereas

for ŴH the simulator input W is used.


