
4.8           ENSEMBLE KALMAN FILTER IN THE PRESENCE OF MODEL ERRORS 
 

Hong Li1,*, Eugenia Kalnay1, Takemasa Miyoshi2 and Christopher M. Danforth1  

 
 1University of Maryland, College Park, Maryland 

2Numerical Prediction Division, Japan Meteorological Agency 
 
 
 

1. INTRODUCTION1 

 
    The accuracy of a data assimilation 
algorithm relies on error statistics of both the 
model forecast and the observations. The 
forecast error covariance has a crucial impact on 
the analysis but it is difficult to estimate. In 
3DVAR, a data assimilation scheme used in 
many operational centers, the forecast error 
covariance is assumed to be isotropic and 
stationary. In contrast, ensemble Kalman filters 
(Anderson 2001, Houtekamer and Mitchell 2001, 
Whitaker and Hamill 2002, Ott et al. 2004, Hunt 
et al. 2006) include information on the flow-
dependent error of day (both temporally and 
spatially variant) by estimating the forecast error 
covariance for each analysis cycle from the 
difference between the forecast ensemble 
members and the ensemble mean. The 
ensemble Kalman filters have been shown to be 
more accurate than 3D-Var under the 
assumption of a perfect model (Whitaker et al 
2004, Szunyogh et al 2005). However, in reality, 
forecast errors derive not only from errors in the 
initial conditions but also from errors due to the 
model deficiencies.  The latter type of error is 
usually called model error. The sources of model 
error can be due to lack of resolution, 
approximate parameterizations of physical 
processes, numerical dispersion, etc.  For 
assimilation of real observations, the assumption 
of a perfect model should be relaxed.  
Therefore there is no guarantee that the EnKF 
will be still better than 3D-Var data assimilation 
systems when assimilating the real data. In fact, 
Miyoshi (2005) has shown that model error has 
a stronger negative influence on the 
performance of the EnKF than on the 3D-Var. 
Accounting for model errors associated with 
model deficiencies has become an important 
issue for all data assimilation systems, and 
especially for EnKF. 

The Local Ensemble Transform Kalman 
Filter (LETKF) (Hunt et al 2006) is a relatively 
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new ensemble based data assimilation scheme. 
It has been implemented to assimilate simulated 
observations in the NCEP GFS model 
(Szunyogh et al. 2005), and recently in the 
NASA fvGCM model (Liu et al. 2006). The 
results are excellent for a perfect model 
scenario. With real data, LETKF has been 
shown to be superior to the operational NCEP 
3DVAR in southern Hemisphere and 
comparable to 3DVAR in northern Hemisphere 
by using a simple multiplicative inflation method 
to account for model error (Szunyogh et al. 
2006). In order to develop the LETKF into a 
competitive, operationally applicable data 
assimilation system, it is necessary to 
investigate more advanced techniques for 
treating model errors to further improve the 
LETKF performance in the realistic weather 
forecast systems.  

The main schemes for treating model errors 
in EnKF include the Dee and da Silva method 
(1998, DdS thereafter), ‘covariance inflation’ 
(Anderson and Anderson 1999), ‘additive 
inflation’ (Whitaker et al. 2006), the Baek et al 
(2006) high-order method, and the Danforth et al 
(2006) low-order method. In this study we will 
investigate DdS, ‘covariance inflation’, and 
Danforth et al (2006) low-order method, 
compare their performances on the LETKF. 
Though we focus on the LETKF, the results may 
also be applicable to other Ensemble Kalman 
Filters.  

 
2. TECHNIQUES FOR TREATING MODEL 
ERRORS 
 
2.1 Full dimensional augmented state 
method 
 

Friedland (1969) proposed the “augmented 
state” method by augmenting the state vector by 
a model bias vector, to estimate both the state 
and bias variables. Building on this idea, Dee 
and da Silva (1998) developed a two-stage 
estimation algorithm, in which the estimation 
procedures for the bias and the state are carried 
out successively. At the first stage of the 
analysis process, the bias is estimated on every 



model grid point by assimilating the observed-
minus-forecast residuals  as the 
observed bias: 
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where the matrix and are the forecast 
error covariance for the bias and the state 
variables, respectively. is the operator 
mapping the model state variables into 
observation space. At the second step, the 
analysis for the state variables is obtained using 
the standard analysis procedure with the 
unbiased forecast state  
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During the forecasting process, the forecast 
model for bias is assumed to be ‘persistent’, that 
is to say there are no dynamics for the bias 
itself, leading to 
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Estimating bias forecast error covariance 
is very difficult. It has been assumed to have 

the same spatial structure as the state forecast 
error covariance but with different covariance 
localization scales (Keppenne et al 2005). The 
cost of solving the equations above is roughly 
double that of without estimating bias since the 
updated equations are solved twice, first for the 
bias estimation and then for the state variables. 
A simplified version of the algorithm was 
described in Radakovich et al (2001) and 
Todling 2004, where the order of the bias 
estimation step is reversed with respect to that 
of the state analysis, and the bias gain is 
approximated by a multiple 

f
bbP

α  (which is a 
tunable coefficient) of the analysis matrix. The 
simplified algorithm is as follows: 
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Equation (10) is the bias forecast model 
where µ is a tunable coefficient.  µ =1.0 
represents the ‘persistent’ model.  Since there 
is no extra computation for the bias gain, the 
simplified DdS scheme is very efficient. 

 
2.2 Low order bias estimation scheme 
 

Danforth et al (2006) assume that model 
error is composed by the state-independent 
component and the state-dependent component. 

=fε  state-independent error + state-
dependent error. 
    The state-independent model error 
component can be represented by the mean 

bias  and the leading EOFs from the 
anomalous model error field which is not 
represented in the mean bias. The state-
dependent component is given by the leading 

SVDs  of the covariance of the coupled 
model state anomalies and corresponding 
measured errors.  
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where L and M are the number of leading 

modes of EOFs and SVDs , respectively. The 

base fields b , and  are pre-computed 
using the samples in the training period.  The 
variables need to be estimated on-line are the 

amplitudes 
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lβ  and mγ  which have a much 
lower dimension than the full model dimension.  
Danforth et al (2006) have performed this 
procedure in the 5-day forecast using 5 years as 
training period. In their case, the initial condition 
is from the NCEP reanalysis taken as “truth”, 
therefore no data assimilation procedure is 
required. 

In this study we extend their work to a 
more realistic case. Both the random errors in 
the initial condition and the model errors are 
considered and treated in each data assimilation 
cycle.  

 
2.3 Covariance inflation 
       

Covariance inflation has been widely 
used to prevent filter divergence due to an 
underestimation of the true forecast error 
covariance even with a perfect model. In the 
presence of model error, ‘covariance inflation’ is 
also a simple and straightforward method to 
account for model errors. In theory, the forecast 
error covariance should be given by:  
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where M is tangent linear model and Q is the 
model error covariance.  In ensemble Kalman 
filters, the first term in the forecast error 
covariance above is estimated from the 
ensemble perturbation and the second term is 
ignored:   
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    When the model error is significant, ignoring 
the Q term will cause the forecast error 
covariance to underestimate the true forecast 
error and divert the analysis away from the truth.  
To account for the Q term in a simple way, we 
inflate the covariance matrix , which is 
estimated from (13), by using 

 , where  is a number 
called the inflation coefficient. 
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Comparing with the first two model error 
correction methods where the model error is 
directly removed from the forecast, the 
covariance inflation can be regarded as second 
order model error estimation scheme.  In 
principle, if the model error can be exactly 
estimated, directly removing the model error 
should result in better analysis than 
parameterization of the model error covariance 
Q term in covariance inflation  
 
3. IMPLEMENTATION ON THE LETKF IN THE 
PRESENCE OF THE MODEL ERRORS 
 
3.1 The SPEEDY model 
 

The SPEEDY model (Molteni 2003) is a 
recently developed atmospheric general 
circulation model (AGCM) with simplified 
physical parameterization schemes that are 
computationally efficient, but that maintain the 
basic characteristics of a state-of-the-art AGCM 
with complex physics.  It has a spectral 
primitive-equation dynamics and triangular 
truncation T30 at 7 sigma levels.  

 
3.2 Evidence of model error 
    First we investigate the SPEEDY model 
bias against the NCEP/NCAR reanalysis (NNR) 
fields (Kalnay et al 1996) as the “truth”. The 
SPEEY model is integrated from NNR initial 
conditions every 6 hours. Figure 1 shows the 
differences between the SPEEDY 6hr forecasts 
and the NNR verified at the same time, 
averaged over two months in the period from 
January 1, 1987 to February 28, 1987, for the 
zonal wind and height at 500 hPa. The largest 
model bias of the u-wind can be seen in the 

polar regions. Orographic effects are a major 
originator for the systematic errors in the height 
field.  

 
 
Fig. 1   Time-mean SPEEDY 6-hour model error of 
u-wind (top, unit: m/s) and height (bottom, unit: m) at 
500hPa against NNR reanalysis fields for the period 
of January and February in 1987. 
 
3.3 LETKF data assimilation scheme 
 
   LETKF is an ensemble square-root filter in 
which the observations are assimilated to 
update only the ensemble mean (14), while the 
ensemble perturbations are updated by 
transforming the forecast perturbations through 
a transform matrix (15) introduced by Bishop et 
al (2001). The basic formulas used in the LETKF 
(Hunt et al. 2006) are 
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Here  are the analysis and 
forecast ensemble perturbations, respectively 
(matrices whose columns are the difference 
between the ensemble members and the 

ensemble mean). The transform matrix 

ba XX ,
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aP~ , the analysis error covariance in ensemble 
space, is given by 
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It has dimension k by k, where k is the 
ensemble size, which is generally much smaller 
than both the dimension of the model and the 
number of observations. Thus, the LETKF 
performs the analysis in the space spanned by 
the forecast ensemble members, which greatly 
reduces the computational cost. Furthermore, 
since the analysis is computed independently at 
each grid point, the LETKF computation can be 
performed in parallel. 
 
3.4 Experimental setup   

 
The observations are obtained by adding 

zero mean normally distributed noise to the NNR 
fields. With respect to these observations, the 
SPEEDY model has significant model errors 
(shown in section 3.2). The observations are 
available on the model grid at every 2 grid 
points.  
    First the control run is performed, in which 
the LETKF is used to correct the random errors 
in the initial condition and no additional method 
is used to correct the model error.  Then the 
LETKF is combined with each of several bias 
estimation methods to correct the forecast 
errors, which are due to both inaccurate initial 
conditions and model errors. To compare the 
performances of model error estimation 
methods, the initial one month is considered as 
the spin-up period, and the second month is 
used for verification.   

For the low-order model error estimation 
scheme, only the first term in equation (11) has 
been considered. The time mean bias is 
estimated by the difference between 6-hour 
SPPEEDY forecast initiated by NNR and NNR at 
the verification time, averaged over the training 
period. Two different training periods have been 
tested. One is  January and February, 1982-
1986, the same period used by  Danforth et al 
(2006), the other is the one month prior to the 
experimental month, for example December 
1986 is used as the training period for the 
January 1987 experiment, and January 1987 as 
the training period for the experiment in 
February 1987. 

 
4. PRELIMINARY RESULTS 
 

Table 1 summarizes the ensemble-mean 
analysis error spatially averaged over the globe 

and temporally averaged over February 1987 for 
500 hPa height using the dense observational 
network. All experiments use LETKF with 10 
ensemble members. Unlike the other 
experiments, the “perfect model” experiment 
assimilates the observations generated from a 
nature run created with the same model, rather 
than the NNR. The RMSE in the control run, 
where no model error treatment is applied, is an 
order of magnitude larger than that in the perfect 
model experiment, indicating that LETKF is very 
vulnerable to model errors.  In real data 
assimilation the situation may not be as bad 
because the model deficiencies in a 
sophisticated operational model should be much 
less dominant than that in SPEEDY. 
 
Table 1 Global ensemble-mean analysis error of 500 

hPa height fields from the control run (no model error 

estimator) and from applying different model error 

correction methods.   

EXP     RMSE (m) 

Control run        78.3 

Approximate DdS  (u=1.0,a=0.5)       Div 

Approximate DdS  (u=0.95, a=0.5)       67.1 

 20% covariance inflation       68.6 

Low order (training Jan & Feb 

,1982-86) 

      66.4 

Low order (training 1 month prior)         50.1 

Perfect model         5.5 

 
If we correct the model error in each data 

assimilation cycle using three bias correction 
methods (covariance inflation, simplified DdS 
and low-order method), except for the simplified 
DdS algorithm with u=1.0, all the bias estimation 
methods succeed in reducing the analysis error 
at 500 hPa height.  For the low-order method, 
the results show that removing the time-mean 
bias estimated from the recent training period is 
better than that from the long climatic period.  
The best result in table 1 shows a reduction of 
the RMSE error of 28 meters of 500 hPa 
geopotential height but it is still much worse than 
the perfect model case.    

Fig. 2 shows the RMSE with time for other 
variables at 500 hPa. In general, the low-order 
method works better than the simplified DdS 
algorithm except for humidity. Covariance 
inflation works well also in temperature and 
humidity but not in geopotential height.  The 
results at 500 hPa are true for other pressure 
levels below 200 hPa. Above 200 hPa, the 



analysis from the low-order method is bigger 
than that from the control run (Fig. 3). 

 
5. DISCUSSON AND FUTURE WORK  
 

We have tested three methods to treat 
model errors. In general, all of them can 
estimate and correct model error but just 
partially. Low-order method works better than 
simplified DdS and covariance inflation, but at 
high level it is worse. 

For the DdS scheme, we have only tested 
its simplified version. We will try the original DdS 
scheme which is less efficient but should be 
more accurate than its simplified version.  

  For the low-order method, our results have 
shown that simply subtracting the constant 
mean bias from the background fields at every 
analysis cycle has a significant positive impact 
on the LETKF. In our future work, we will correct 
the diurnal bias and then the state-dependent 
bias. Retaining each component of the bias 
estimate, we should be able to get a good 
estimate of the true model errors. If successful, 
this approach could not only improve the 
performance of the LETKF, but also of the 
forecast, as well as providing information on 
model errors useful for diagnostic purposes. 
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Fig.3 Global ensemble-mean analysis RMSE at all SPEEDY model levels using LETKF with 10 members 

to assimilate observations derived from the NNR. RMSE for different model error correction methods are 

shown in red (control run), blue (covariance inflation), yellow (simplified DdS) and green (low-order), for 

zonal wind (a), height (b), temperature (c) and specific humidity (d), respectively.  
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