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1. INTRODUCTION

The highly energetic electron environment in the inner
magnetosphere (geosynchronous orbit and inward) has
received a lot of research attention in recent years to
better understand the dynamics of relativistic electron
acceleration, loss, and transport. Physical processes
in the Earth’s radiation belts are important to under-
stand because dynamic variations in this environment
can negatively impact the space hardware that our so-
ciety increasingly depends on.

It has been known since the 1970’s that radial diffu-
sion is a key process influencing radiation belt dynamics
(Hilmer et al. 2000; Brautigam and Albert 2000). Re-
cently, new observations and increased monitoring (for
a review see Friedel et al. (2002)) evidenced that other
processes play an important role as well. Reeves et al.
(2003) show that the net effect of geomagnetic activity
on radiation belt dynamics is a delicate balance of ac-
celeration, transport, and losses that can lead to either
increased or decreased fluxes or to almost no changes
at all. Despite uncertainties in the precise nature of all
the processes controlling radiation belt dynamics, it is
widely believed that radial diffusion is one of the critical
factors that need to be accurately specified. Boscher
et al. (1996) and Bourdarie et al. (1996) show that ra-
dial diffusion accounts for 80% of the dynamics for MeV
electrons.

Our new approach is to extend available techniques
of data assimilation that are widely used for other geo-
physical systems (meteorology, oceanography, iono-
sphere) to the radiation belt. The general purpose
of data assimilation is to combine measurements and
models to produce best estimates of current and future
conditions. The resulting “assimilated state” is, either
closer to the data or the model depending on their un-
certainties. Correlations and uncertainties are incorpo-
rated and carried along automatically. The output of the
data assimilation is based on all measurements and the
model.

One important method of data assimilation is the
Kalman filter (Kalman 1960). It became popular be-
cause it is a recursive solution to the optimal estimator
problem. However, the Kalman filter is just one way of
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finding an optimized solution. The least square method,
for instance, can be extended to provide forecast pre-
dictions as well (Tarantola 1987) and the two methods
become basically equivalent.

One of the first attempts was the “direct data inser-
tion” technique used by Bourdarie et al. (2005). They
showed that by adding data of just one extra satellite
into their simulations the updated model could achieve
global fidelity on the order of the input data uncertainty
- in effect overcoming the fundamental limitations of the
underlying physics model. Bourdarie et al. (2005) also
described that one of the most crucial, and often over-
looked, requirements is the fidelity of satellite data inter-
calibration. However, obtaining a well calibrated and
inter-calibrated set of radiation belt particle data can be
a very time consuming but an essential task (Friedel
et al. 2005).

While diffusion is an important part in the radia-
tion belt description, eventually a self-consistent rep-
resentation is necessary that includes ring current de-
velopment and its interaction with radiation belt parti-
cles through, whistler chorus, hiss, electromagnetic ion
cyclotron (EMIC) waves, and other plasma waves with
the changing geomagnetic field. This paper attempts
to lay the foundation for the effort to combine all these
processes into a Dynamic Radiation Environment As-
similation Model (DREAM) to understand acceleration,
transport, and losses in the radiation belts (Reeves et al.
2005). DREAM is a Laboratory Directed Research and
Development project at Los Alamos National Lab. It will
develop a next-generation space radiation model using
extensive satellite measurements, new theoretical in-
sights, global physics-based magnetospheric models,
and the techniques of data assimilation. This paper
presents the first results from the radiation belt module
and also lays the foundation for the data assimilation in
the DREAM model.

2. THE MODEL AND DATA FRAMEWORK

2.1 Radial Diffusion Model

The distribution of relativistic electrons in the radia-
tion belts are described by the phase space den-
sity, f (L, µ, J, t) (Schulz and Lanzerotti 1973) where the
quantities L, µ, J are adiabatic invariants at time t defin-
ing the drift motion, periodic gyration and bounce mo-
tion (Roederer 1970) of electrons in the geomagnetic
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field. We use a model that describes only their radial
evolution in L by using a Fokker-Plank equation with
constant adiabatic invariants µ and J

∂f
∂t

= L2 ∂

∂L

(
DLL

L2

∂f
∂L

)
. (1)

We neglect any source or loss terms here. They are
simply additive and we will argue below that these are
included implicitly by the data assimilation algorithm.

We solve the diffusion equation (1) assuming a dis-
crete meshed grid of dimension N (typically 91 cells)
from 1 < L < 10 and use the Crank-Nicolson scheme
(Crank and Nicolson 1947) which is an implicit, numer-
ically stable method that does not need to satisfy the
Courant condition (Press et al. 1986). We use a param-
eterized form of the diffusion coefficient that is a func-
tion of magnetic activity DLL(Kp, L) = 10(0.506Kp−9.325)L10

(Brautigam and Albert 2000).
The initial condition for the grid is a steady state vec-

tor that has been calculated with a constant Kp over a
very long time and outer boundary of unity. The steady
state is then simply multiplied by a factor to match the
very first data point. Also, all data has been scaled by a
global factor to average at unity.

The inner boundary at L∗ = 1 is fixed at zero how-
ever the outer boundary is a free parameter that can be
adjusted by the Kalman Filter. We use a so-called aug-
mented state vector approach where the state vector is
extended by parameters of the physics model, here the
outer boundary.

2.2 Ensemble Kalman Filter

The term “data assimilation” is short for model-based
assimilation of observations, i.e. data assimilation is
the combination of a physical model with observations.
The purpose is to find the most likely estimation to the
true state (which is unknown) using the information pro-
vided by the chosen physical model and the available
observational data considering both of their uncertain-
ties. Data assimilation methods are based on, and can
be derived from, Bayesian statistics, minimum variance,
maximum likelihood, or least square methods (Maybeck
1979; Kalnay 2003; Daley 1991; Talagrand 1997; Taran-
tola 1987; Tarantola and Valette 1982).

One popular method for data assimilation is the
Kalman filter (Kalman 1960). It is an optimal recursive
data processing algorithm (Maybeck 1979) that has be-
come a favorite for many engineering application includ-
ing the navigational system on the Apollo mission, GPS
stand-alone devices, and many more (Sorenson 1985).

The Kalman filter involves three steps that are sum-
marized as follows:

yo(ti )
xf(ti )

}
K−→ xa(ti )

M−→ xf(ti+1) (2)

where yo(t) is the observational state vector and x is the
state vector. The other terms are as described below.

(1) Gain computation: which yields the “Kalman
gain matrix” or “weight matrix” K.

(2) State estimate: which uses the Kalman gain
K to weight the “observational residual” (in the older
meteorological literature) or the “innovation vector” d =
yo − Hxf and computes the “state estimate” or “assimi-
lated state” xa = xf + K · d. The operator H is the obser-
vational operator which maps the state vector into the
observational domain.

(3) State forecast or prediction: The next step is to
apply a “forward model operator” M which results in the
“forecast state vector” xf(ti+1) that can be compared with
new observations at time ti+1 in the next cycle. See also
Koller et al. (2005).

We use a variant of the classical Kalman Filter since
the classical version works only for linear models. We
want to leave the outer boundary as a free parame-
ter but doing so makes our model operator non-linear.
The ensemble Kalman Filter (Evensen 1994, 2003) can
describe the error statistics from non-linear models by
using a Monte-Carlo technique. The ensemble mem-
bers are created by randomly perturbing the state vec-
tor, separately advancing them in time using the model,
and then comparing them to each other. The new, most
likely, forecast is the mean of the whole forecast en-
semble. The spread of the ensemble members, after
the model has been applied, determines the uncertainty
of the forecast. The more ensemble members that are
used, the better the probability distribution of the state
vector is determined.

2.3 Kalman Innovation as Source in the Model

The second step in the Kalman filter warrants a more
detailed discussion because this is where we argue
that “missing physics” e.g. sources and losses are in-
cluded implicitly in the Kalman filter method. xf is cal-
culated with the diffusion equation (1) without the addi-
tional source/loss. However, K · d represents effectively
a source/loss but depending on the observations and
not a physical model. It is important to note here that
the magnitude of K · d depends not only on the obser-
vations but also on the uncertainty of model and ob-
servations and how they compare to each other. If the
confidence in the observations is low, the estimate will
favor the model. On the other hand, if the uncertainty of
the model is large, then more weight will be given to the
observations.

2.4 Data, Model, and Parameter Uncertainties

Uncertainties of the observations ∆y and the model ∆M

are key ingredients for every data assimilation. The ob-
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FIG. 1: The outer boundary as estimated by the ensem-
ble Kalman Filter to fit the observations. There is an initial
adjustment period of about 15 days where the Kalman Filter
continuously dropped the outer boundary to a lower value in
order to match POLAR and LANL GEO observations.

servational uncertainty can be estimated by comparing
different satellite measurements of the same parame-
ter against one another and adding an estimate of sys-
tematic uncertainties. By using a one dimensional grid
with the other dimensions projected onto it, one can find
many conjunctions between the geosynchronous satel-
lites. A statistical analysis of the conjunctions will give
the relative uncertainty of the observations assuming all
instruments have the same uncertainty. We find a rel-
ative uncertainty of 30% using 6500 conjunctions. We
use the same data uncertainty for GPS and POLAR. We
note that in practice this is often only a best estimate of
the observational uncertainty.

Model uncertainties, ∆M , are determined by a com-
bination of the ensemble spread, ∆e, in the ensemble
Kalman Filter and free parameters like the outer bound-
ary. They are much more difficult to estimate, especially
since we know that our simple 1-D diffusion model is
incomplete but do not know the magnitude of the result-
ing model uncertainty. This is an still ongoing research
topic in the atmospheric data assimilation community.
See (Mitchell et al. 2002) and references therein.

We did several tests and find that an ensemble
spread ∆e ≈ ∆y leaves enough room for the Kalman
Filter to adjust for the fast changes in phase space
densities of the observations. The uncertainty of the
outer boundary is estimated by how fast the observa-
tions from the POLAR satellite change.

3. DATA

We used data from three LANL geosynchronous satel-
lites (LANL-97a, 1991-080, 1990-095), POLAR, and
GPS-ns41 for our data assimilation of a six month pe-
riod in 2002 (Figure 2) top panel.

We obtained the phase space densities at given
adiabatic invariants (µ = 2083 MeV/ G, K = 0.1

√
GRE)

by using the angular resolved electron fluxes and local

magnetic field magnitude for each of the satellites. We
also applied the global magnetic field configuration from
the Tsyganenko 2001 storm model (Tsyganenko 2002;
Tsyganenko et al. 2003). See Chen et al. (2005, 2006)
for details on the calculation of phase space densities
and adiabatic invariants.

On board of the Los Alamos National Labora-
tory geosynchronous (LANL GEO) satellites (1990-095,
1991-080, and LANL-97A), the Synchronous Orbit Par-
ticle Analyzer (SOPA) instrument (Belian et al. 1992)
can measure the full three-dimensional electron distri-
bution from 50 keV to more than 1.5 MeV in each spin.
Since the LANL GEO satellites carry no magnetome-
ter instruments, we employ the method developed by
Thomsen et al. (1996) through which the local magnetic
field direction can be derived from the measurement of
the plasma distribution by another instrument on board
- the Magnetospheric Plasma Analyzer (MPA), to obtain
the pitch angle distribution (Chen et al. 2005). In this
work the LANL GEO electron data have a 10 minute
time resolution, and we use the empirical magnetic field
model to calculate the adiabatic invariants (µ, J, L∗).

The POLAR satellite, with a polar orbit of 2 × 9RE ,
crosses the magnetic equatorial plane every 18 hours
just outside of GEO during the time periods studied
here. The Comprehensive Energetic Particle and Pitch
Angle Distribution (CEPPAD) experiment (Blake et al.
1995) on board of POLAR provides angular resolved
flux data of energetic electrons, covering the energy
range from 30 keV-10 MeV. Flux data have a time reso-
lution of 3.2 min, and we only use the measurement at
the apogee equatorial crossings. POLAR also carries a
Magnetic Field Experiment (MFE) (Russell et al. 1995)
measuring magnetic field vectors. Therefore, µ can be
calculated directly but J and L∗ still require the model.

The GPS satellites have a circular orbit with a radius
of 4RE and inclination of 55 degrees, which makes them
cross the equatorial plane every 6 hours. The electron
data used in this work are from one satellite, GPS-ns41,
measured with the BBD-IIR (Burst Detector Dosimeter
IIR) obtaining differential energy electron fluxes from 77
keV up to > 5 MeV (Cayton et al. 1998). The flux data
have a time resolution of 4 min. Since GPS satellites
are three-axis stabilized and have no magnetometer on
board, we assume here an isotropic pitch angle distri-
bution and use the T01s model for (µ, J, L∗).

We made strong efforts to calibrate the measured
data between satellites. The inter-calibration between
the three LANL GEO satellites was obtained by match-
ing the phase space densities (Chen et al. 2005), that is,
comparing the phase space density values of electrons
with the same combination of (µ, K, L∗) but measured
by satellites at different spatial locations during magnet-
ically quiet times. The same method is applied to obtain
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FIG. 2: Observations, reanalysis results, and Dst from July 15 to December 30, 2002. The top panel shows the phase space
density data from POLAR, three LANL Geosynchronous satellites, and one GPS satellite. The middle panel depicts the results
from our reanalysis with data assimilation by combining observations with a physical diffusion model. White circles mark the
L-shell locations where satellite data was assimilated. The bottom panel shows Dst for the same time period.
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the inter-calibration between LANL GEO and POLAR
(Chen et al. 2006). Also, a preliminary inter-calibration
between POLAR and LANL GPS fluxes was done by
Friedel et al. (2005).

One distinguished feature in Figure 2 is that the L∗

positions of satellites vary greatly with time, even during
quiet times. This variation involves two parts: (1) The
diurnal variation for LANL GEO satellites, which have
nearly fixed equatorial radial distances, is caused by
the asymmetric magnetic field. For larger L∗ and on
the night side, the measured field is more stretched
and weaker than on the day side (Chen et al. 2005,
2006). This variation dominates during quiet time. (2)
After the diurnal change is removed, the remaining vari-
ation in L∗ is more pronounced during storm times and
is caused by changing magnetospheric current systems
(especially the ring current). These current systems si-
multaneously cause the change in Dst and therefore
lead to the “Dst effect”. Electrons move to different spa-
tial position so they conserve the third adiabatic invari-
ant (Kim 1997). To conserve the invariants, the ”Dst ef-
fect” requires the drift shell to move radially outward and
consequently leaves the GEO satellite to find itself on a
new drift shell with smaller L∗ value. The same reason
makes the GEO satellites move back to the pre-storm L∗

shells in the recovery phase. This mechanism applies
to all satellites. Such changes in L∗ justify the impor-
tance of comparing phase space densities in a correct
magnetic coordinate system.

4. RESULTS

The result from our reanalysis, the assimilated state, is
shown the in middle panel of Figure 2. All regions where
no data was available are now filled by the data assim-
ilation procedure as are temporal gaps in the data cov-
erage by individual satellites. However, confidence in
the estimated state decreases with distance from loca-
tion of available data. The white dots in 2 denote the L∗

locations of assimilated data.
As with previous studies (Green and Kivelson 2004;

Taylor et al. 2004; Chen et al. 2005), we find that the
phase space densities have maxima around geosyn-
chronous orbit. All major storms in this time period (see
also bottom panel for Dst) show a drop-out in phase
space density over a large range down to L = 4. How-
ever, each recovery phase can be very different: While
most of them show an enhancement at geosynchronous
orbits (e.g. August 21, October 14) some have an en-
hancement over a much larger L-shell range like from
L = 4 − 6 for September 8, October 25, November 3.
There are also two cases (July 22, August 10) where
Dst drops only to Dst = −35 but the enhancements in
the recovery phase are very large and over a wide range

of L = 4 − 8. This confirms in phase space densities
what was seen in fluxes by Reeves (1998).

The first fifteen days of the assimilated state are
likely to be more inaccurate because the initial condition
for the assimilation was a pre-existing steady state sys-
tem with a high boundary. It took the ensemble Kalman
filter a while to adjust the outer boundary to lower values
consistent with the observations (see Figure 1). The
outer boundary then stayed low for most of the time.
The values for the outer boundary is driven mostly by
POLAR data due to the proximity of the computational
boundary at L = 10.

None of the large accelerations at geosynchronous
are explained by radial inward diffusion. The ensem-
ble Kalman Filter did not raise the boundary condition
to facilitate the inward diffusion but rather added phase
space densities locally like a source term.

The region inside of L = 4 is mostly due to the cho-
sen steady state initial condition and some slow inward
diffusion modulated by Kp. It is not driven by any data
and therefore does not show large changes. The cor-
relation between the outer radiation belt and the inner
radiation belt is weak.

5. DISCUSSION AND CONCLUSION

We studied the combination of a 1-D radial diffusion
code with an ensemble Kalman filter and assimilated
data from 5 satellites in the second half of 2002. The
data from three LANL geosynchronous, POLAR, and
GPS show strong enhancements and drop outs. But the
data coverage is only limited. The advantage of reanal-
ysis with data assimilation lies in obtaining a complete
picture of the radiation belt. Data gaps are filled by the
model and free parameters like the outer boundary can
be estimated.

Our ensemble Kalman Filter estimated the state
and the outer boundary as a parameter. We find that
the outer boundary stayed low most of the time after an
initial adjustment period. This result points to the expla-
nation that the phase space density enhancements in
the recovery phases are due to local acceleration pro-
cesses and not radial inward diffusion.

We find that the ensemble Kalman Filter can com-
pensate for a missing source or loss terms in the
physics model. This makes the ensemble Kalman Filter
an efficient tool to study radiation belt data and holds
promise to extract new physical understanding by quan-
tifying how much the Kalman filter had to compensate
for. This will be studied in a forthcoming paper.

A reanalysis of historic data can be also very useful
for a possible AE/AP-8 replacement. Data assimilation
provides the techniques for filling data gaps and carry-
ing the uncertainties along for proper statistics. We are
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planning to create a reanalysis of a whole solar cycle
that can be used to fly artificial satellites for pre-flight
risk assessment. This is a currently ongoing project
funded by NASA LWS program in collaboration with
Aerospace Corporation.
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