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1. INTRODUCTION

 
Dual-polarization radar is a unique instrument for 

classification of radar echo. Different versions of the 
classification algorithm based on the principles of fuzzy 
logic are described in a number of papers (Zrnic and 
Ryzhkov 1999, Vivekanandan et al. 1999, Liu and 
Chandrasekar 2000, Zrnic et al. 2001, Keenan 2003, 
Lim et al. 2005). Initially the classification techniques 
have been developed and tested at S band. Adaptation 
of classification routine for C band requires some 
special considerations mainly because of the more 
pronounced effects of resonance scattering and 
stronger attenuation at this shorter wavelength. 

In this paper, we briefly describe the S-band 
classification algorithm which is going to be 
implemented on polarimetric WSR-88Ds and examine 
the differences between classification routines at S and 
C bands using S-band data collected in Oklahoma and 
C-band data obtained in Alabama and Southern Ontario, 
Canada. 

 
2. NEXRAD CLASSIFICATION ALGORITHM 
 

The suggested classification algorithm 
distinguishes between 10 classes of radar echo: (1) 
ground clutter / anomalous propagation (GC/AP), (2) 
biological scatterers (BS), (3) dry aggregated snow (DS), 
(4) wet snow (WS), (5) crystals of different orientation 
(CR), (6) graupel (GR), (7) “big drops” (BD), (8) light and 
moderate rain (RA), (9) heavy rain (HR), and (10) rain / 
hail mixture (RH). The algorithm utilizes six radar 
variables: radar reflectivity at horizontal polarization Z, 
differential reflectivity ZDR, cross-correlation coefficient 
ρhv, specific differential phase KDP, and the texture 
parameters of radar reflectivity SD(Z) and differential 
phase SD(ΦDP). These six variables are directly used in 
a fuzzy logic classification scheme. Additional Doppler 
variable, mean Doppler velocity V, is utilized for 
discrimination between hail and ground clutter / AP, 
although it is not included in the set of input variables for 
the fuzzy logic classifier. 

The aggregation values or scores for each of 10 
classes are determined as 
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where P(i)(Vj) is a membership function of the jth variable 
for ith class, Wij is a weight between 0 and 1 assigned to 
the ith class and jth variable, and Qj is an element of the 
confidence vector characterizing instrumental quality of 
the measurement of the jth variable. The type of radar 
echo is identified by the maximal aggregation value.  

Matrix of weights W characterizes classification 
efficiency of each variable with respect to a particular 
class. The procedure for determining the elements of 
matrix W is described in Park et al. (2007). 

For each range location, every radar variable is 
supplemented with its confidence factor Qj depending on 
its vulnerability to (a) attenuation, (b) effects of 
nonuniform beam filling, (c) magnitude of ρhv (which 
determines statistical measurement errors of all 
polarimetric variables), (d) signal-to-noise ratio SNR, 
and severity of the four mentioned factors. 

As an example, the ZDR component of the 
confidence vector can be expressed as  
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              (2) 
In (2), ΦDP is measured differential phase, ρhv is 
measured cross-correlation coefficient, snr = 100.1SNR is 
signal-to-noise ratio in linear scale, ΔZDR is the ZDR bias 
caused by nonuniform beam filling (NBF), and ΦDP

(Zdr), 
ΔZDR

(t), Δρhv
(1), snr(Zdr) are threshold parameters. The 

NBF-related ZDR bias is computed from gradient 
estimates as specified by Ryzhkov (2007). If the impact 
of attenuation and NBF is negligible (ΦDP and ΔZDR are 
low), ρhv ≈1, and SNR is high, then the value of QZdr is 
close to 1, i.e., ZDR can be used with full confidence. 
The confidence in the ZDR measurement decreases as 
ΦDP and ΔZDR increase and ρhv and SNR decrease. 

Because membership functions of some classes of 
liquid and frozen hydrometeors (such as rain and dry 
snow) heavily overlap, class designation should be 
contingent on the localization of the melting layer. The 
melting layer detection algorithm developed at NSSL 
determines the top and bottom of the melting layer as 
functions of azimuth for any given radar scan 
(Giangrande et al. 2007). The parameters of the melting 
layer are estimated from the measurements at higher 
elevations between 4 and 10º. 



Checking the consistency of the designated class 
with the location of the melting layer is important integral 
part of classification routine. The geometry of the radar 
beam with respect to the melting layer is illustrated in 
Fig. 1. Slant ranges Rb and Rt correspond to 
geometrical projections of the melting layer from the 
beam axis to the ground, and Rt – Rb indicates the 
range extent of the melting layer along an infinitesimally 
thin beam. In fact, mixed-phase hydrometeors may 
partially fill the radar resolution volume in a much 
broader interval of ranges (Rbb,Rtt) if the antenna beam 
has finite width. 

  
Fig. 1. The geometry of radar beam with respect to the 
melting layer. 
 
Certain subsets of classes are allowed within five slant 
range intervals shown in Fig. 1: 
 
0 < R < Rbb GC/AP, BS, BD, RA, HR, RH 

 
Rbb < R < Rb      GC/AP, BS, WS, GR, BD, RA, HR, RH
   
Rb < R < Rt GC/AP, BS, DS, WS, GR, BD, RH 

 
Rt < R < Rtt        GC/AP, BS, DS, WS, CR, GR, BD, RH 
 
R > Rtt  DS, CR, GR, RH 
 
For example, the highest aggregation score among the 
following 6 classes (GC/AP, BS, BD, RA, HR, RH) 
determines the class designation if R < Rbb (even if DS 
scores highest score among all 10 classes at the 
distance R). 

Additional routines in the classification algorithm 
include separation of convective and stratiform echo, 
“sanity” checks, and despeckling. Identifying convective 
and stratiform parts of radar echo helps to better 
discriminate between wet snow and melting graupel  
within the melting layer. The set of “sanity “checks or 
“hard-threshold” conditions is used to reduce the 
number of apparently wrong class designations, e.g., 
hail is definitely wrongly classified if Z < 30 dBZ, etc. 
Despeckling procedure reduces the noisiness in the 
fields of classification results. 

An example of the composite plot of Z, ZDR, ρhv, and 
results of classification for the most recent version of the 

proposed NEXRAD classification algorithm is shown in 
Fig. 2. 
 
3. RADAR ECHO CLASSIFICATION AT C BAND 
 
3.1 Resonance scattering at C band 
 

If atmospheric hydrometeors were much smaller 
compared to the radar wavelength and behaved as 
Rayleigh scatterers both at S and C band, then the only 
difference between radar variables at the two 
wavelengths would be in KDP which is inversely 
proportional to the wavelength. However, at C band, 
raindrops with sizes exceeding 4.5 – 5 mm are large 
enough to cause pronounced effects of resonance 
scattering, i.e., they behave as Mie scatterers. Hence, if 
sufficiently large drops exist in the raindrop spectrum, 
then both radar reflectivity factor Z and differential 
reflectivity ZDR can be noticeably higher at C band than 
at S band.  

Our simulations based on DSD measurements in 
Oklahoma indicate that for the same rain the difference 
in Z between S and C band can be as high as 5 dB and 
the ZDR difference can exceed 3 dB. Theoretical values 
of the cross-correlation coefficient ρhv for the measured 
DSDs are always above 0.98 at S band and can drop as 
low as 0.93 at C band (Ryzhkov and Zrnic 2005). Such 
low values of ρhv at S band would most likely result in 
the nonrain class designation. 

 
3.2 Hail detection at C band 
 

At S band, hail is identified if high Z is accompanied 
by low ZDR or, in a more quantitative way, if the Hail 
Differential Reflectivity parameter HDR = Z – f(ZDR) 
exceeds certain threshold (Aydin et al. 1986). 

If large raindrops with very high ZDR at C band are 
mixed with hail whose intrinsic ZDR is close to zero, the 
resulting ZDR may remain quite high even if significant 
amount of hail is present in the mixture. Our detailed 
analysis of strong reflectivity cores in 11 summer storms 
observed in Southern Ontario and Alabama with C-band 
radars has not revealed any noticeable drop in ZDR in 
the areas of very high Z where hail was reported on the 
ground. It is likely that the HDR technique for 
discrimination between rain and hail proven efficient at 
S band might not be applicable at C band. 

Hail-bearing regions in the storms may produce 
anomalously high differential attenuation which results 
in a tremendous drop of ZDR on the rear side of hail cell, 
but if such differential attenuation is correctly accounted 
for, the unbiased ZDR remains high everywhere in the 
cell (Ryzhkov et al. 2007). It is possible that insufficient 
correction of ZDR for differential attenuation might have 
caused artificially large HDR (which is in fact quite low) 
in the past studies of polarimetric hail detection at C 
band.  

We speculate that the joint use of Z and KDP might 
be more efficient for hail detection at C band than the 
combination of Z and ZDR. This point is illustrated in Fig. 
2 and 3 where the scatterplots of ρhv, ZDR, and 
10log(KDP) versus Z are displayed for the cases of 
extended band of heavy rain with little hail and localized 
storm which produced golf ball size hail. Both  



 

 
Fig. 2. Composite plot of Z, ZDR, ρhv, and results of classification obtained from the polarimetric prototype of the WSR-
88D radar on 05/13/2005, 0659 UTC, El = 0.5º. Contours in the plots indicate slant ranges Rbb, Rb, Rt, Rtt as functions 
of azimuth. In the classification panel, GC stands for ground clutter, BS – for biological scatterers, DS – for dry snow, 
WS – for wet snow, CR – for crystals, GR – for graupel, BD – for “big drops”, RA – for rain (light and moderate), HR – 
for heavy rain, and RH – for rain / hail mixture. 
 
observations have been made in Ontario with the C-
band King radar. 

These scatterplots are very typical. Extended 
storms (e.g., squall lines, MCSs) producing plenty of 
rain usually contain large number of small drops, 
therefore their ZDR is quite low and ρhv is generally high 
(Fig. 3).  Occasional small hail in such storms may 
exhibit slight decrease in ZDR, ρhv, and KDP at high 
reflectivities (exceeding 50 dBZ). The corresponding 
values of ZDR and KDP apparently deviate from the major 
“rain” cluster confined between the boundaries in Fig. 3 
and 4 defined by equations  
 

2
DR Z00064.0Z012.004.0Z +−−=   (3) 

2
DR Z0011.0Z0066.056.0Z +−=   (4) 

Z926.09.42)Klog(10 DP +−=   (5) 

Z926.09.37)Klog(10 DP +−=  . (6) 
 

In the case of a localized storm which produced 
large hail, the drop in ρhv and KDP at Z > 45 dBZ is more 
dramatic (Fig. 4). On the contrary, ZDR substantially 
increases at high Z. Similar increase in ZDR in the 
periphery of strong hail cores is often observed at S 
band and is usually attributed to melting hail. The 
important difference between polarimetric hail 
signatures at C and S bands is that even in the middle 
of hail shaft large tumbling hail with intrinsic near-zero 
ZDR generally does not offset the contribution from  



  
Fig. 3. The scatterplots of ρhv, ZDR, and 10 log (KDP) 
versus Z at C band from the data collected with the King 
radar in Southern Ontario on 08/19/2005, 1730 UTC. 
Grey asterisks correspond to ρhv < 0.95. The storm 
caused flash flood in the Toronto area. 
 
smaller melting hail and large raindrops which produce 
anomalously high ZDR  at C band. 

Ryzhkov et al. (2007) report anomalously high 
differential attenuation at C band which is commonly 
observed in the “hotspots” associated with hail. The C-
band algorithm for attenuation correction suggested by 
Ryzhkov et al (2007) estimates the ratio β of specific 
differential attenuation ADP and KDP in such “hotspots”. 
Since this ratio tends to increase in the presence of hail 
of larger size, the parameter β can be added to the set 
of polarimetric variables which are traditionally used for 
hydrometeor classification. 
 
3.3 Quality of polarimetric measurements at C band 
 

Such radar variables as Z, ZDR, and ρhv are more 
affected by attenuation and nonuniform beam filling at 
shorter radar wavelengths (Ryzhkov 2007). In addition, 
ρhv is generally lower at C band due to resonance 
scattering which results in increasing noisiness of all 
polarimetric variables.  These factors should be taken 
into account in defining the confidence vector Q  

 
Fig. 4. Same as in Fig. 3 but for the hailstorm observed 
in Ontario on 06/14/2005, 2220 UTC. The storm 
produced golf ball size hail. 
 
characterizing the quality of radar measurements in 
Eq(1).  

Generally speaking, KDP should be given larger 
classification role at shorter radar wavelength, because 
it is immune to attenuation. On the other hand, ZDR 
should be utilized more cautiously at C band because it 
is so much affected by effects of resonance scattering 
and differential attenuation.  

We also noticed stronger impact of NBF on the 
magnitude of ρhv at C band. Such an impact manifests 
itself as a significant drop in ρhv if the gradient of total 
differential phase is too high. Negatively biased ρhv 
detrimentally affects the quality of classification, 
therefore, the confidence factor for ρhv has to be 
lowered in the regions of pronounced NBF. 

 
3.4 Examples of classification at C band 
 

The S-band classification code has been adapted 
for C band following considerations described above. 
Numerous changes in the membership functions, matrix 
of weights, and confidence vector have been made. The 
classification algorithm has been extensively tested on  
 



 
Fig. 5. Composite plot of Z, ZDR, ρhv, and results of classification obtained from the C-band King radar on 04/23/2007, 
2020 UTC, El = 0.5º. Class notations are the same as in Fig. 2.  
 
the C-band data collected in Canada and Alabama. Two 
examples are provided to illustrate the algorithm skills.  

 

One example is an extended line of heavy rain 
sporadically mixed with hail observed in Ontario on 
04/23/2007. This storm produced tremendous 
attenuation (up to 40 dB) and differential attenuation (up 
to 13 dB) quantified in Ryzhkov et al. (2007). Hence, 
successful classification heavily relies on the adequate 
attenuation correction. The classification algorithm 
detects small areas of hail which was confirmed on the 
ground SE of the radar. The area of ground clutter 
associated with the ridge NW of the radar location is 
also correctly identified. 

Second example is presented for the devastating 
tornadic storm in Alabama on 03/01/2007. This storm 
caused horrendous destruction and loss of life in the city 
of Enterprise where the Sidpol C-band radar is located 
(Conway et al. 2007). Large-scale plots of radar 
reflectivity and results of classification are shown in Fig. 
6, whereas the corresponding images with higher 
resolution and smaller scale are presented in Fig. 7.  
Again, the classification code efficiently recognizes hail 
in the area of forward-flank downdraft in the supercell 

part of the storm and the echo from biological scatterers 
and ground clutter surrounding the radar. It is quite 
difficult to delineate the echoes from nonmeteorological 
and meteorological scatterers in the close proximity to 
the radar based on radar reflectivity only (Fig. 7). The 
classification routine clearly separates them. It is 
interesting that the algorithm identifies a tornadic debris 
echo associated with isolated spot of high reflectivity 4 
km west of the radar as nonmeteorological, namely, 
ground clutter.  

At the moment, we are hesitant to include a special 
class “tornadic debris” in the current version of our 
classification scheme because polarimetric 
characteristics of tornadic debris and ground clutter are 
very similar. The distinction between the two can be 
based on localization of the signature (hook echo), and 
on the analysis of Doppler variables such as mean 
Doppler velocity and Doppler vortex signature. In 
addition, other polarimetric signatures characterizing 
tornadic supercell storms should be taken into account 
(Kumjian and Ryzhkov 2007).  



 

 
 
Fig. 6. Composite plot of radar reflectivity and results of 
classification for the Enterprise tornadic storm on 
03/01/2007, 1908 UTC, El = 0.5º. Overlaid are contours 
of Z = 30 dBZ. 
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