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1. INTRODUCTION 
 

Polarimetric radar is uniquely suited for 
discriminating between different classes of 
meteorological and nonmeteorological echo. Currently 
used classification algorithms are based on the 
principles of fuzzy logic and utilize multiparameter radar 
measurements with certain weight assigned to each 
radar variable to account for its classification efficiency 
(Zrnic and Ryzhkov 1999; Vivekanandan et al. 1999; Liu 
and Chandrasekar 2000; Zrnic et al 2001; Keenan 2003; 
Lim et al. 2005). However, no objective justification has 
ever been given for the choice of these weights in the 
polarimetric classification scheme. 

In this study, we introduce the matrix of weights 
which characterizes classification power of each 
variable with respect to every class of radar echo and 
suggest a methodology for optimizing such a matrix. 

The data from several storms observed with the 
polarimetric prototype of the WSR-88D radar in 
Oklahoma are used to optimize the matrix of weights in 
the classification algorithm which is planned for 
implementation on polarimetric NEXRAD. 
 
2. NEXRAD CLASSIFICATION ALGORITHM 
 

The classification algorithm distinguishes between 
10 classes of radar echo: (1) ground clutter / anomalous 
propagation (GC/AP), (2) biological scatterers (BS), (3) 
dry aggregated snow (DS), (4) wet snow (WS), (5) 
crystals of different orientation (CR), (6) graupel (GR), 
(7) “big drops” (BD), (8) light and moderate rain (RA), 
(9) heavy rain (HR), and (10) rain / hail mixture (RH). 
The algorithm utilizes six radar variables: radar 
reflectivity at horizontal polarization Z, differential 
reflectivity ZDR, cross-correlation coefficient ρhv, specific 
differential phase KDP, and the texture parameters of 
radar reflectivity SD(Z) and differential phase SD(ΦDP). 

The aggregation values or scores for each of 10 
classes are determined as 
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where MF(i)(Vj) is a membership function of the jth 
variable for ith class, Wij is a weight between 0 and 1 
assigned to the ith class and jth variable, and Qj is an 
element of the confidence vector characterizing  
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instrumental quality of the measurement of the jth 
variable. The type of radar echo is identified by the 
maximal aggregation value.  

Matrix of weights W characterizes classification 
efficiency of each variable with respect to a particular 
class. For each pixel or gate, every radar variable is 
supplemented with its confidence factor Qj depending on 
its vulnerability to (a) attenuation, (b) effects of 
nonuniform beam filling, (c) magnitude of ρhv (which 
determines statistical measurement errors of all 
polarimetric variables), (d) signal-to-noise ratio SNR.  

 More details on the definition of vector Q, the use 
of information about the melting layer height, accounting 
for radar beam broadening, etc., can be found in 
Ryzhkov et al. (2007). 

 
 
3. DETERMINATION OF THE MATRIX OF WEIGHTS. 
THEORY 
 

It is intuitively obvious that the radar variable Vj with 
heavily overlapped membership functions MF(i)(Vj) for 
different classes should be given lower weight in the 
fuzzy logic classification algorithm. Different overlap 
measures can be used to quantify the degree of 
overlapping. One of them was suggested by Cho et al. 
(2006) for discrimination between weather echoes and 
ground clutter /AP using single-polarization radar. In 
their study, Cho et al. (2006) utilize the classification 
rule 
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where the elements of the vector of weights W are 
determined as 

 
∑ −

=
1

jj

j
AA

1W   (3) 

In (3), Aj is the overlapping area between normalized 
probability density functions P(1)(Vj) and P(2)(Vj) 
characterizing distributions of the variable Vj for two 
classes (Fig. 1). 

In the case of M classes, we suggest determining 
the elements of the matrix of weights as follows: 
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In (4), Eik
(j) is a classification efficiency of the variable Vj 

with respect to classes i and k. The latter is defined as 
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Fig. 1.  Illustration of different definitions of the overlap 
measure  
 
where OMik

(j) is the overlap measure related to classes i 
and k and variable Vj. In this study, we use three 
different definitions of the overlap measure.  

The first definition is similar to the one utilized by 
Cho et al. (2006): 
  , (6) )j(
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(j) is the overlapping area between normalized 
probability density functions (PDF) P(i)(Vj) and P(k)(Vj).  

According to the second definition, the intersection 
and union of the functions P(i)(Vj) and P(k)(Vj) are 
determined and the overlap measure is calculated as 
the ratio of the corresponding integrals (see e.g., Crum 
et al. 2006): 
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Finally, we introduce the third overlap measure 

defined as 
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The parameter σi,k means the standard deviation of the 
probability density function P(I,k)(Vj) if the latter is normal. 
In a general case of PDF, σi,k is determined as a half of 
the difference between the 84% and  16% percentiles of 
the cumulative distribution 

         (9) jj

jX

)k,i(
j

)k,i( dV)V(P)X(F ∫
∝−

=

(see Fig. 2). If the PDFs P(i)(Vj) and P(k)(Vj) are totally 
identical (100% overlap), then according to all three 
definitions, OMik

(j) =1 and Eik
(j) = 0. If the PDFs do not 

overlap at all, then OMik
(j) =0 and Eik

(j) = 1. 
 

 
 
Fig. 2. Definition of the parameter σ 
 

Analytical expressions for the classification 
efficiencies Eik

(j) and the elements of W can be obtained 
assuming Gaussian shapes of P(i)(Vj) and P(k)(Vj) and 
using Eq (4), (5), and (8): 
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where xi and xk are modal values of the two PDFs. 
Next we illustrate determination of weights given by Eq 
(10) in three simple cases. In each case, we assume 
that the modal values xi are equal for all classes, i.e., 
the PDFs overlap substantially.  

Case 1. Three classes; σ1 = σ, σ2 = 2σ, σ3 = 3σ. 
According to (10), W1j = 0.65, W2j = 0.57, W3j = 0.62, i.e., 
the weights of the variable Vj are higher with respect to 
the classes with the most narrow and most broad PDF. 

Case 2. Three classes; σ1 = σ2 = σ, σ3 = 2σ. 
In this case, W1j = W2j = 0.3, W3j = 0.6. This means that 
if the PDFs of two classes are identical, then the 
corresponding weights become lower. 

Case 3. Four classes; σ1 = σ2 = σ3 = σ, σ4 = 2σ. 
Adding one more class with the same PDF causes 
further drop in the corresponding weights: W1j = W2j = 
W3j = 0.2, whereas the weight for the class with distinct 
(broader) PDF remains intact: W4j = 0.6. 
 
4. DETERMINATION OF THE MATRIX OF WEIGHTS. 
OBSERVATIONS 
 

“True” PDFs for each class and variable should be 
known in order to construct the matrix of weights W 
according to Eq (4) – (8). The PDFs for 10 classes and 
6 radar variables were estimated using the data 
collected with the polarimetric prototype of the S-band 
WSR-88D radar during 6 storms observed in Oklahoma. 
The dataset includes 29 hours of observations. 



Radar echo classification has been performed 
using the latest and most advanced version of the 
algorithm (Ryzhkov et al. 2007). The algorithm was run 
with an apriori matrix of weights which was constructed 
based on euristic considerations (i.e., to the best of our 
knowledge and intuition). The PPI and RHI fields of the 
radar variables and results of classification were 
carefully examined, so that only high-confidence class 
designations were utilized in making “true” PDFs for 
each class and variable. 

One-dimensional normalized frequency histograms 
which approximate PDFs for 10 classes and 6 variables 
are shown in Fig. 3. The matrix of weights was 
determined using Eq (4) for three different definitions of 
the overlap measure. The matrix W corresponding to 
the first definition of the overlap measure specified by 
Eq (6) is presented in Table 1. 
 

Table 1. Matrix of weights. 
 
 Z ZDR ρhv KDP SD(Z) SD(ΦDP) 
GC 0.59 0.56 0.85 0.42 0.68 0.85 
BS 0.68 0.56 0.90 0.43 0.38 0.84 
DS 0.66 0.62 0.52 0.38 0.20 0.44 
WS 0.65 0.53 0.76 0.40 0.19 0.68 
CR 0.73 0.54 0.47 0.38 0.23 0.40 
GR 0.82 0.49 0.47 0.36 0.24 0.45 
BD 0.61 0.49 0.55 0.39 0.23 0.41 
RA 0.59 0.45 0.50 0.36 0.19 0.42 
HR 0.87 0.75 0.56 0.75 0.20 0.41 
RH 0.91 0.47 0.52 0.62 0.22 0.39 
  

It is not surprising that higher matrix elements are 
associated with the most distinctive PDFs: Z and KDP 
have highest weights for rain / hail mixture (RH) and 
heavy rain (HR), ZDR is most informative for heavy rain 
(HR), whereas ρhv, SD(Z), and SD(ΦDP) exhibit highest 
classification capability for nonmeteorlogical scatterers 
(GC and BS). 

Overall classification power of a given variable can 
be estimated by finding the mean value in the 
corresponding column of the matrix of weights. 
According to this criterion, the 6 radar variables are 
ranked in a following order: Z (0.71), ρhv (0.61), ZDR 
(0.55), SD(ΦDP) (0.53), KDP (0.45), and SD(Z) (0.28). 

The matrices W estimated according to the other 
two definitions of the overlap measure exhibit the 
structures which are very similar to the one in Table 1 
but with slightly higher absolute values of the matrix 
elements (not shown). In other words, relative ratios of 
different elements of W are not very sensitive to the 
choice of the definition of the overlap measure.  
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Fig.3   Normalized frequency distribution of radar reflectivity factor Z, differential reflectivity ZDR, cross-correlation 
coefficient ρhv, specific differential phase KDP, and texture parameters SD(Z) and SD(ΦDP)  for 10 classes of radar 
echo. GC stands for ground clutter/AP, BS – for biological scatterers, DS  - for dry snow, WS – for wet snow, CR – for 
crystals, BD – for “big drops”, RA – for light and moderate rain, HR – for heavy rain, RH – for rain / hail. The 
normalized histograms are obtained from the data collected by the S-band polarimetric radar in central Oklahoma 
during 6 storms (29 hours of observations).  
 


