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1. Introduction

Global Spectral models have gained almost univer-
sal acceptance in the last several decades. However,
drawbacks of high-resolution spectral models in terms
of operation counts and communication overheads on
massive parallel processors have led, in recent years,
to the development of new types of grid-point global
models discretized on geodesic grids [see, e.g., Tomita
et al. (2001)]. Among those, the icosahedral grid is at-
tractive because it achieves quasi-uniform coverage of
the globe with minimal regional variations in the shape
of grid cells. If configured as a grid consisting of a
large number of hexagonal cells (with 12 embedded
pentagons), the icosahedral grid is particularly suitable
for finite-volume numerics in which conventional finite-
difference operators are replaced by numerically ap-
proximated line integrals along cell boundaries.

Williamson (1968) and Sadourny et al. (1968) were
the first to solve shallow-water equations on icosahe-
dral grids using finite-difference formulations. More
recently, Colorado State University modelers (Heikes
and Randall 1995; Ringler et al. 2000) developed
an icosahedral-hexagonal shallow-water model (SWM)
based on finite-volume numerics. The German
Weather Service is currently using an icosahedral-
hexagonal model for operational global weather predic-
tion (Majewski et al. 2002). A Japanese group (Tomita
et al. 2004) has developed a nonhydrostatic general
circulation model (GCM) formulated on an icosahedral-
hexagonal grid.

A flow-following finite-volume icosahedral model
(FIM) is currently under development in the Global Sys-
tems Division of NOAA’s Earth System Research Lab-
oratory, with assistance from the Environmental Mod-
eling Center (EMC) at the National Centers for En-
vironmental Prediction (NCEP). The model combines
a finite-volume icosahedral SWM solver with a “flow-
following” vertical coordinate whose surfaces may de-
form freely according to air flow. Aloft, the flow-
following coordinate is isentropic, which reduces spu-

rious nonphysical entropy sources in adiabatic flow
(Johnson (1997)), while near the surface the coordi-
nate surfaces are terrain-following. The coordinate is
an improved version of the hybrid σ-θ coordinate suc-
cessfully used in atmospheric and ocean models such
as RUC (Rapid Update Cycle) and HYCOM (HYbrid
Coordinate Ocean Model).

2. Model Descriptions

Denote the spatial coordinate by (x, y, s) where x, y
are the common horizontal coordinates and s is an ar-
bitrary but monotonic function of height, subject only to
the requirement that the bottom and top of the model
atmosphere are s surfaces. The physical dimensions
of s are arbitrary; in fact, s can be chosen to be a con-
tinuous rendering of the coordinate surface index.

Let v be the horizontal velocity vector; ∇s the 2-D
gradient operator at s = const; Π = cp(p/p0)

R/cp the
Exner function; θ = cpT/Π the potential temperature,
M = gz + Πθ the Montgomery potential; ζ the vertical
component of the velocity curl vector; θ̇ the net dia-
batic heating; and F the sum of frictional forces. The
set of dynamic equations solved in FIM can then be
formulated as follows [see Kasahara (1974) and Bleck
(1978a) for detailed derivations]
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These equations are solved with finite-volume nu-
merics which define model variables as mean quanti-
ties over each grid cell (van Leer (1977)). In the hor-
izontal, equations are discretized on the icosahedral
grid with conservative finite-volume operators including
the curl, divergence, and gradient operators formulated
as line integrals along the perimeter of each grid cell.
On unstructured grids this approach ensures rigorous
compliance with laws regarding global conservation of
angular momentum, total mass, and pressure torques.

There are no explicit lateral mixing terms in the
equations. The terms F in the first equation represents
vertical momentum mixing, while the diabatic source
term θ̇(∂p/∂s) in the third equation above includes the
effect of vertical mixing on potential temperature.

Discretization in the vertical is accomplished by in-
tegrating prognostic variables, as well as the equa-
tions governing their evolution, over individual layers
bounded by s surfaces. Tendency terms in the prog-
nostic equations are approximated by the explicit 3rd

order Adam-Bashforth time differencing scheme.
FIM belongs to the class of layer models in which

the vertical spacing of layer interfaces is variable in
space and time, with interface movement controlled
primarily by the convergence and divergence of lateral
mass fluxes in each layer. To assure the numerical
integrity of a layer model, mass fluxes must be con-
structed with strong emphasis on positive-definiteness
and monotonicity. The scheme chosen for this purpose
is the Flux-Corrected Transport (FCT) scheme (Zale-
sak 1979), extended to multiple time levels for use with
the 3rd order Adam-Bashforth scheme. Physical pa-
rameterizations in FIM match those used operationally
by the Global Forecast System (GFS) at NCEP.

3. Horizontal Grid

The icosahedral geodesic grid is generated from an
icosahedron which has 12 vertices and 20 equilateral
spherical triangles with 30 edges. Each edge is pro-
jected onto the sphere enclosing the icosahedron and
hence becomes a segment of a great circle. The
icosahedral grid provides quasi-uniform coverage of
the sphere and allows hierarchical refinements of grid
spacing. To increase grid resolution, each triangle is
successively split into four smaller ones by bisecting
each triangle edge. The corners of the new triangles
are then projected onto the surface of the sphere en-
closing the icosahedron. The more the triangles are
split, the better the approximation of the polyhedron to
the sphere. The total number of grid points, n, and the
number of divisions, G, are connected through

n = 10
[

(2G)2
]

+ 2

The number of divisions G is referred to as the icosa-
hedral grid level. For example, for the lowest grid level
G = 0, the total number of grid points is n = 12, i.e.,
the original 12 icosahedral points. Fig. 1 shows the
icosahedron with grid level G from 0 to 3. We have
successfully tested FIM up to G 9 where the average
mesh size is 15 km.

All variables are carried at hexagon/pentagon cen-
ters, mimicking the Arakawa A grid. Interpolation to the
cell perimeter for evaluating line integrals is 2nd order
accurate.

4. Vertical Grid

The thickness of each coordinate layer in FIM is al-
lowed to vary in space and time. Since the prognostic
equations resemble the shallow-water equations, layer
models are also referred to as stacked SWMs.

The hybrid grid in FIM resembles that of RUC (Bleck
and Benjamin 1993; Benjamin et al. 2004). However,
since the vertical staggering of variables in RUC is not
conducive to formulating rigorously conservative finite-
difference equations, FIM staggers variables in a man-
ner analogous to the hybrid-isopycnic ocean model HY-
COM (Bleck 2002). In other words, u, v, θ, q, M are
treated as layer variables while p, gz, ṡ∂p/∂s are car-
ried on interfaces.

Layers in FIM conform to isentropic layers except in
locations where the latter intersect the earth’s surface.
There, layers are locally redefined as terrain-following
(σ coordinate) layers. An individual coordinate layer
can be isentropic in one geographic region and terrain-
following in another.

The hybridization concept employed here and in
RUC differs from schemes developed elsewhere
(Bleck 1978b; Konor and Arakawa 1997; Pierce et al.
1991; Zapotocny et al. 1994) in that it relies on local
adjustment of the vertical grid spacing rather than on
a fixed formula typically consisting of a weighted av-
erage of two or more “pure” coordinate choices. The
present scheme adds one important element to the
original Arbitrary Lagrangian-Eulerian (ALE) technique
of Hirt et al. (1974): it provides a mechanism for keep-
ing coordinate layers aligned with their designated tar-
get isentropes wherever possible. The original ALE
scheme only concerned itself with the maintenance of
nonzero grid spacing in Lagrangian coordinate simu-
lations. While the flexibility of coordinate placement
in ALE-type schemes is disconcerting to some users
because grid point location in model space cannot be
expressed in terms of a simple analytic formula, it al-
lows the model designer to maximize the size of the
isentropic domain. The reasoning underlying this as-
sertion is that ALE sets the height above ground of the
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Figure 1: Icosahedral grid generation from grid level 0 to grid level 3

σ − θ coordinate transition in each grid column sep-
arately, i.e., unencumbered by global considerations.
For additional details, see the draft FIM documentation
at http://fim.noaa.gov.

5. Numerical Results

FIM has been evaluated in the 2-D context with
the idealized cases of Williamson et al. (1992) for
SWM flow on the sphere, and in the 3-D context with
multi-month simulations of thermally forced mid lati-
tude moist flow dominated by baroclinic instability over
variable topography. Recently, we have started real
data simulations. In this study, FIM was initialized with
GFS initial condition for 00 UTC on October 9, 2003 on
a G-5 grid which has an approximate mesh size of 250
km. In the vertical, there are 25 layers with target θ
coordinate values covering the entire troposphere and
lower stratosphere up to the model top at 20 mb.

Figures 2 and 3 show, respectively, FIM real-data
initial conditions and 6-day model simulations. Fig. 2
shows the initial θ field superimposed by zonal wind
isotachs in a vertical cross section along longitude
110oW. Model layer interfaces in Fig. 2 are depicted
by solid contours with embedded squares. In the free
atmosphere, θ is typically constant between two in-
terfaces. The zonal wind cross section clearly shows
mid latitude Jets near 200 mb and upper-level easter-
lies in the tropics. Note that layer interface spacing de-
creases near strengthening Jets, depicting increased
stratification. This allows FIM to better resolve upper-
level fronts and associated wind shears. Layer thick-
ness near the ground, especially over mountains, is
much smaller than in the free atmosphere. This, of
course, is a matter of minimum layer thickness choice
in the hybrid-isentropic “grid generator”. Fig. 3 is the
same as Fig. 2 except that it shows 3- and 6-day fore-

casts. Fig. 3a, the 3-day forecast, shows that mid lat-
itude Jets in both hemispheres are strengthening at
that longitude compared to the initial condition. The
isentropes underneath the northern hemispheric (NH)
Jet are moving closer and increase their slope in re-
sponse to the strengthening Jet. However, layer thick-
ness remains finite and shows no small-scale noise,
demonstrating the numerical resiliency of FIM. Fig. 3b,
the 6-day forecast, shows that the strength of the NH
Jet remains about the same, while the southern hemi-
spheric (SH) Jet intensifies further during the last 3
days. Again, this is accompanied by reduced spac-
ing and increased tilt of isentropes. These results,
confirmed in runs at twice the vertical resolution (not
shown here), indicate that the FCT scheme used in the
mass continuity equation in FIM is able to handle tight
interface spacing resulting from free interface move-
ment without creating negative thickness values.

6. Summary and Outlook

A hydrostatic flow-following finite-volume icosahedral
model, FIM, has been developed. The model has been
evaluated with analytical test cases (not shown in this
study) for two-dimensional flows as well as a real data
case for three-dimensional flows. FIM is a global model
free from pole problems typically seen in models based
on spherical discretization. It makes use of positive-
definite and monotonicity-preserving transport opera-
tors for mass and tracers, such as potential tempera-
ture and moisture, and uses curl, divergence, and gra-
dient operators guaranteeing adherence to global con-
servation laws regarding angular momentum, mass,
and pressure torques. In this study, we show that FIM
is extraordinarily stable in real data simulations, requir-
ing no explicit mixing/dissipation terms on time scales
relevant to NWP. Results also confirm that FIM appears
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to be free of potential numerical problems associated
with flow-following coordinates, such as the dramatic
thinning of coordinate layers near midlatitude Jets as-
sociated with upper-level frontogenesis. Results ob-
tained at higher resolution, such as G7 (60 km mesh
size) and 50 vertical layers, will be shown in the con-
ference. The verification of FIM with reanalysis data in
terms of vertical profiles and precipitation is currently
underway. Plans for the future include a conversion of
FIM’s dynamic core to nonhydrostatic dynamics. More
model information including technical details may be
found at the FIM website at http://fim.noaa.gov.

References

Benjamin, S., G. Grell, J. Brown, T. Smirnova, and
R. Bleck, 2004: Mesoscale weather prediction with
the ruc hybrid isentropic-terrain-following coordinate
model. Mon. Wea. Rev., 132, 473–494.

Bleck, R., 1978a: Finite difference equations in gener-
alized vertical coordinates. part i: Total energy con-
servation. Beitr. Phys. Atm., 51, 360–372.

— 1978b: On the use of hybrid vertical coordinates
in numericali weather prediction models. Mon. Wea.
Rev., 106, 1233–1244.

— 2002: An oceanic general circulation model framed
in hybrid isopycnic-cartesian coordinates. Ocean
Modelling, 4, 55–88.

Bleck, R. and S. Benjamin, 1993: Regional weather
prediction with a model combining terrain-following
and isentropic coordinates. part 1: model descrip-
tion. Mon. Wea. Rev., 121, 1770–1785.

Heikes, R. H. and D. A. Randall, 1995: Numerical inte-
gration of the shallow-water equations on a twisted
icosahedral grid. i. basic design and results of tests.
Mon. Wea. Rev., 123, 1862–...

Hirt, C. W., A. A. Amsden, and J. L. Cook, 1974: An
arbitrary langrangian-eulerian computing method for
all flow speeds. J. Comput. Phys., 14, 227–253.

Johnson, D. R., 1997: ”general coldness of climate
models” and the second law: Implications for model-
ing the earth system. J. Climate, 10, 2826–2846.

Kasahara, A., 1974: Various vertical coordinate sys-
tems used for numerical weather prediction. Mon.
Wea. Rev., 102, 509–522.

Konor, C. S. and A. Arakawa, 1997: Design of an amo-
spheric model based on a generalized vertical coor-
dinate. Mon. Wea. Rev., 125, 1649–1673.

Majewski, D., D. LierMann, P. Prohl, B. Ritter, M. Buch-
hold, T. Hanisch, G. Paul, and W. Wergen, 2002:
The operational global icosahedral-hexagonal grid-
point model gme: Description and high-resolution
tests. Mon. Wea. Rev., 130, 319–338.

Pierce, R., D. Johnson, F. Reames, T. Zapotocny, and
B. Wolf, 1991: Numerical investigations with a hybrid
isentropic-sigma model, part i: Normal mode char-
acteristics. J. Atmos. Sci., 48, 2005–2024.

Ringler, T. D., R. P. Heikes, and D. A. Randall, 2000:
Modeling the atmospheric general circulation using
a spherical geodesic grid: A new class of dynamical
cores. Mon. Wea. Rev., 128, 2471–2490.

Sadourny, R., A. Arakawa, and Y. Mintz, 1968: Integra-
tion of the non-divergent barotropic vorticity equation
with an icosahedral-hexagonal grid for the sphere.
Mon. Wea. Rev., 96, 351–356.

Tomita, H., M. Satoh, and K. Goto, 2004: A new dy-
namical framework of global nonhydrostatic model
using the icosahedral grid. Fluid Dyn. Res., 34, 357–
400.

Tomita, H., M. Tsugawa, M. Satoh, and K. Goto,
2001: Shallow water model on a modified icosahe-
dral geodesic grid by using spring dynamics. J. Com-
put. Phys., 174, 579–613.

van Leer, B., 1977: Towards the ultimate conserva-
tive difference scheme. iii. upstream-centered finite-
difference schemes for ideal compressible flow. J.
Comput. Phys., 23, 263–275.

Williamson, D., 1968: Integration of the barotropic vor-
ticity equation on a spherical geodesic grid. Tellus,
20, 642–653.

Williamson, D., J. B. Drake, J. J. Hack, R. Jakob, and
P. N. Swarztrauber, 1992: A standard test set for nu-
merical approximations to the shallow water equa-
tions in spherical geometry. J. Comput. Phys., 102,
221–224.

Zalesak, S., 1979: Fully multidimensional flux-
corrected transport algorithms for fluids. J. Comput.
Phys., 31, 335–362.

Zapotocny, T., D. Johnson, and F. Reames, 1994: De-
velopment and initial test of the university of wiscon-
sin global isentropic-sigma model. Mon. Wea. Rev.,
122, 2160–2178.

4



Figure 2: Initial condition for θ and u on the vertical cross section along the longitudinal at 110o

(3a) (3b)

Figure 3: Same as Fig. 2 except for model 3-day forecast at (3a) and 6-day forecast at (3b)
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