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1. INTRODUCTION 

 
In this paper we present progress towards a 

coupled Mesoscale-to-Microscale modeling capability 
for the urban regime in which we will loosely couple 
the Weather Research and Forecasting (WRF) model 
to a high-resolution Computational Fluid Dynamics 
model using the Model Coupling Environmental 
Library (MCEL). The client/server, dataflow software 
model of MCEL provides the data transfer and data 
filter capability that both models may use to perform 
both upscale (CFD to WRF) and downscale (WRF to 
CFD) data transfer. Potential benefits of this coupling 
include improved high-resolution wind, turbulence and 
contaminant fields in the urban area through the use 
of downscaled data, as well as potential 
improvements at the mesoscale by using an improved 
urban characterization through upscaled data. 
Previous studies [Coirier, et al., 2006] have shown a 
quantifiably improved accuracy of urban area 
transport and dispersion modeling by the use of a file-
based coupling to downscale data from WRF to a 
high-resolution CFD model. The work being 
undertaken here is intended to provide a more useful 
capability by coupling the models loosely in the MCEL 
environment, whereupon we may evaluate the 
potential improvements at both scales, as well as 
evaluate different techniques to perform the upscale 
and downscale data. 

In order to achieve this coupled capability, 
modifications to both WRF and the MCEL library are 
being made, and a special-purpose CFD model is 
being developed to be run within this coupled 
environment. In this paper we outline the coupling 
approach using the MCEL library and demonstrate 
the generation of downscaled data from WRF using a 
hindcast model run corresponding to a particular 
Intensive Operating Period (IOP) of the Joint Urban 
2003 (JU2003) field test conducted in Oklahoma City 
[Allwine and Flaherty, 2006]. The new, high-resolution 
urban CFD model being developed for this study is 
described and preliminary model validation study 
results using the new model are shown. This CFD 
model is designed to be run in a parallel computing 
environment using the PETSc parallel sparse matrix 
library, and solves the fully-coupled, low-Mach 
number preconditioned, Reynolds-Averaged Navier-

Stokes (RANS) equations using a Finite-Volume 
scheme. In the final coupling configuration, 
downscaled data obtained from WRF through the 
MCEL  will be used to apply boundary conditions for 
the CFD model, which then cycles to a new, quasi-
steady state, and then performs an upscale data 
transfer to WRF through MCEL. Here, we 
demonstrate the ability to downscale through the 
software framework by using WRF computations 
corresponding to a particular Intensive Operating 
Period (IOP) of the Joint Urban 2003 (JU2003) field 
test conducted in Oklahoma City. 

 
2. MCEL COUPLING FRAMEWORK 
 

The Model Coupling Environmental Library, 
MCEL, utilizes a data flow approach where coupling 
information is stored in a centralized server and flows 
through processing routines called filters to the 
numerical models which represent the clients.  The 
communication is handled by the Common Object 
Request Broker Architecture (CORBA), where the 
flow of information is fully controlled by the clients, 
and  stores and retrieves are initiated by the clients. 
MCEL has been successfully demonstrated coupling 
WRF to other applications representing a relatively 
wide range of spatial and temporal scales with 
irregular data-driven interactions [Michalakes et al., 
2003]. WRF has been coupled as part of a four-model 
simulation of a high-wind event in the Yellow Sea that 
resulted in a ferry accident in November 1999, where 
WRF provided low-level winds and wind stress to the 
ADCIRC Ocean and SWAN wave models which, in 
turn, provided forcing to LSOM, sedimentation and 
optics model used to simulate diver visibility. It should 
be noted that ADCIRC uses an unstructured mesh, 
and that MCEL automatically handled exchange and 
interpolation of data between ADCIRC and the other 
three structured-grid components without 
modification. When running the coupled system on 
the maximum number of processors for each 
application, the cost of coupling was well under 5 
percent of the cost of the run. Another added benefit 
regarding MCEL is that it is public-domain software, 
and is presently being used under multiple 
government contracts. 

The coupling approach invisioned for coupling 
the WRF and new CFD models is illustrated in the 
diagram shown in Figure 2.1. Both models, WRF and 
the CFD model, operate independently of one 
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another, and upon completion of a cycle, send data to 
the central MCEL Server (shown in the middle of the 
diagram). Upon initiating a new cycle, each 
component (CFD or WRF) queries for either upscale 
data (WRF) or downscale data (CFD) from the server 
through a data filter, which lies between the server 
and the client application. The intent of the filter is to 
perform all data manipulation outside of the client. 

 

 
Figure 2.1: WRF-MCEL-CFD Coupling 

Conceptual: Initial Model. 
 

The MCEL framework is being used in a slightly 
different fashion to couple the WRF and CFD models. 
The CFD model uses an adaptive octree/quadtree-
prismatic mesh and has associated C++ classes and 
namespaces that are specialized to operate upon it. 
Since the coupled models will require both 
downscaling (WRF-to-CFD interpolation) and 
upscaling (CFD-to-WRF agglomeration and/or 
integration), we have decided to move the downscale 
and upscale filters into the CFD solver itself. This runs 
counter to the preferred approach proposed by the 
MCEL concept, where the filters lie outside of all 
solvers. We prefer this technique in order to take 
advantage of the specialized in-solver methods and 
classes to perform the downscaling and upscaling 
data processing, and to provide a cleaner interface to 
the MCEL framework. 

 
3. WRF-MCEL-CFD INTEGRATION 

 
Configured to operate much like an output 

format, the WRF model dumps a subcube of the 
innermost/finest domain to MCEL at 5-min intervals 
that spans the CFD domain containing 3-D wind, 
temperature, pressure, TKE and TKE dissipation rate. 
The particular subcube (or potentially subcubes for 
multiple, concurrently running CFD models),  is 
obtained so that it completely encloses the CFD 
domain. The MCEL data model associates a single 
array with each grid, whose length is determined by 
the grid dimensions. For a logically ordered 
(structured) grid of dimension IxJxK, this implies that 
arrays of I*J*K length may be passed through MCEL, 
as they are associated with this registered grid. Since 

WRF uses a staggered grid scheme, which uses data 
stored at cell faces and cell centers which have 
correspondingly different length arrays, the actual 
subcube dimensions are increased in order to provide 
enough room to store all the data.  

As noted above, we have moved the functionality 
of the MCEL data filters into the CFD model itself, in 
order to take advantage of the in-core CFD model 
data processing capability. The diagram shown in 
Figure 3.1 illustrates the integration of the CFD model 
into the MCEL framework, where the top-level data 
processing approach taken within the CFD solver is 
noted in the process diagram on the left. Note that 
during the boundary condition definition phase within 
a given CFD model cycle, data is pulled from the 
MCEL server, through the MCEL integration class 
library/namespace,  and downscaled. After the CFD 
cycle is completed, upscaling is performed in-core, 
again using this class library, and sent to the MCEL 
server. 

 

 
Figure 3.1: CFD-MCEL Integration. 

 
This MCEL communcation class library and 

associated C++ namespaces have been created to 
contain classes that communicate with the MCEL 
server, load up and provide downscaling interpolation 
capability to the CFD model and provide upscaling 
capability from the CFD model dataspace to the 
MCEL server itself. As noted in Figure 3.2, this 
namespace contains classes which communicate 
directly with the MCEL server (“MCEL 
Communicators”), store data upon logically structured 
grids corresponding to the donor WRF data (“MCEL 
GridNVars”), and perform the actual downscaling and 
upscaling (“MCEL DownScaler” and “MCEL 
UpScaler”), using various interpolation schemes using 
the CFD mesh connectivity and data framework (“Pnt 
Interpolators”). These are all built upon a library of 
“baseTypes”, which are derived from the C++ std 
namespace vector class and contain many useful 
functions and features, including i/o to a local 
database using the NetCDF library. Built over this 
baseTypes library is a specialized library and 
namespace that is used to read  and write CFD data, 
such as meshes and the solutions upon them, in an 
easy to use framework called a wind library. 

 



 
Figure 3.2: CFDRC MCEL Class Library 

Components. 
 

In order to provide accurate downscaling 
interpolation, we store the donor data received from 
WRF upon logically ordered, structured grids that are 
constructed to lie coincidently with the “native” donor 
spatial locations. This is necessary since WRF uses a 
staggered grid arrangement which stores the  velocity 
field (u, v and w) at different locations from the cell-
centered data, such as thermodynamic and other 
state fields. These 4 grids (u-, v-, w- and cell centers)  
are constructed using the coordinates stored in the 
subset grid sent by WRF to the MCEL server, and 
provide for a consistent and accurate interpolation 
stencil which is used in the downscaling. Furthermore, 
in order to provide a consistent upscaling model, we 
construct a single grid which is comprised of the 
control volumes which WRF would use, if it’s 
numerics are considered in a finite-volume 
framework.  

 
4. DOWNSCALING DEMONSTRATION 
 

The first coupled model runs we intend to make 
correspond to the time period during Intensive 
Operating Period 6 (IOP 6) of the Joint Urban 2003 
Field Test, conducted in July, 2003 in Oklahoma City, 
OK [Allwine and Flaherty, 2006]. The 
WRFV2.2/Noah/UCM modeling system incorporating 
anthropogenic heating has been used to simulate the 
JU2003 IOP06 [Chen et al., 2006]. Model integration 
starts at 1200UTC 16JUL2003 (0700CDT) and 
performs 12-hour forecast with 5 two-way nested 
domains with the following grid spacing and number 
of grids: D1: 40.5km( 90x90x38), D2: 
13.5km(100x100x38), D3: 4.5km (100x100x38), D4: 
1.5km (100x100x38), and D5: 0.5km (100x100x38). 
Dudhia shortwave radiation scheme, RRTM longwave 
radiation scheme, MYJ PBL scheme, WSM 6-class 
graupel scheme and Noah land surface model with 
one-layer urban canopy model are used for all 
domains, Kain-Fritsch cumulus parameterization 
scheme for D1 and D2.  

MCEL provides a data caching capability, 
wherein all the data sent to the server may be stored 
on disk (cached) and used subsequently by other 
models. We have used this capability here to test the 
downscaling coupling approach by using cached 

WRF-MCEL data to perform downscaling onto the 
actual CFD model grids, and have cycled within the 
solver itself in order to test the downscaling 
interpolation. At this point in time, the CFD solver is 
not complete, so this demosntration only tests the 
interpolation technique. Figure 4.1 shows a particular 
timestamp where the WRF data has been 
downscaled to an adaptive quadtree/prismatic grid 
through the (cached data) downscaler. 

  

 
Figure 4.1: Downscaled WRF data upon the CFD 

mesh for a particular time during IOP6 of the JU2003 
Test. 

 
5. CFD MODEL DESCRIPTION 
 

The CFD model under development solves the 
Reynolds-Averaged Navier-Stokes (RANS) equations 
discretized in a cell-centered, finite volume framework 
using an implicit, fully-coupled, low-Mach number 
preconditioned approach. We solve the equations 
fully-coupled via a parallelized Newton-Krylov (NK) 
procedure that is contained within the PETSc parallel, 
sparse matrix library. PETSc (Portable, Extensible 
Toolkit for Scientific computation) [PETSc] provides 
data structures and routines for scalable (parallel) 
solution of scientific applications modeled by partial 
differential equations. The routines and class-like 
structures provided with PETSc consist of linear and 
nonlinear solvers, preconditioners, time stepping for 
solving time-dependent PDEs, and many others.   

In order to take advantage of this powerful library, 
we have designed the CFD solver from the beginning 
to be PETSc-compliant, where we use the SNES 
(Scalable Non-linear Equations Solver) routines to 
solve the fully-coupled equations. We have designed 
the flow solver data structures, memory access, 
connectivity ordering and loop coloring to reduce 
cache misses using data interleaving, and embed the 
PETSc classes and constructs within the C++ classes 
used to develop the core CFD solver routines. 

Based upon our experiences with pressure-
based and characteristics-based parallel CFD solvers 
we have concluded that a fully-coupled, low-Mach 
number preconditioned approach, using the parallel 
NK strategy, shows the greatest promise to achieve 
the scalability and rapid cycling rates required by the 



coupled models. The low-Mach number 
preconditioning approach alleviates the stiffness of 
the coupled equations caused by the differences in 
the acoustic eigenvalues, by scaling (preconditioning) 
the wave speeds of a modified system of equations. 
This, in essence, degrades time-accuracy in 
exchange for rapid steady-state convergence, 
although high-order time accuracy can be easily 
recovered using a dual time stepping approach. This 
preconditioned characteristics-based approach is 
surmised to be more efficient than a pressure-
correction based approach, which requires iterative 
Poisson/elliptic equations solves which often do not 
scale well.  

There are many different types of preconditioners 
being advanced, which can be shown to all be some 
variant of Chorin’s scheme [Chorin]. The approach we 
use here is based upon the preconditioner proposed 
by Weiss and Smith [Weiss, et al., 1996], which casts 
the conservation form of the Navier-Stokes equations 
as: 
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where instead of conserved variables, we use 
primitive variables (Q), consisting of (P,u,v,w,T). For a 
non-preconditioned system, the matrix pre-multiplying 
the time-derivative is simply the Jacobian 
transformation from conserved to primitive variables. 
The key to the preconditioning approach is to instead 
substitute a preconditioning matrix,Γ , whose 
elements are altered in order to scale (precondition) 
the eigenvalues of the hyperbolic system. We use the 
preconditioning matrix according to Weiss and Smith 
[Weiss, et al., 1996], also noted in Merkle [Merkle, et 
al., 1996], as: 
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According to Weiss and Smith [Weiss, et al., 1996], 
the system of equations can be preconditioned for all 
Mach numbers using: 
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In [Weiss, et al., 1996] a variable reference speed is 
used, but we have found that in practice a constant 
reference speed is more robust. 

Since applying the preconditioning alters the 
hyperbolic system of equations wave speeds, care 
must be taken when using an upwind flux formulation 
for the convective terms in the Navier-Stokes 
equations. If untreated, these terms can introduce 
excessive dissipation at low Mach numbers. We use 
the approach outlined in [Weiss, et al., 1996], which 
constructs an upwind flux formula based upon Roe’s 
Flux Difference Splitting [Roe], using the properly 
scaled (preconditioned) eigenvalues and 

eigenvectors. Viscous fluxes are found using 
gradients constructed using adjacent cells for 
gradients normal to a given face, and centered 
differences for those lying along a face. These 
centered differences are found using a flux-based 
gradient reconstruction technique [Coirier, et al., 
1996]. We are presently implementing a k-� model 
variant in order to construct the RANS turbulent 
fluxes. 

After discretization using the finite-volume 
approach, the discrete system of equations to be 
solved is: 

nn RQ
Q
RV

t
=Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−Δ
Δ
Γ +1 (4) 

where the residual, nR , is the discrete, flux-based 
representation of the inviscid and viscous, turbulent 
fluxes of mass, momentum and energy. In order to 
maximize robustness and convergence rate, the 

Jacobian of the residual,
Q
R
∂
∂

, is formed to match as 

closely as possible the explicit residual. Care is taken 
to properly represent the boundary conditions 
implicitly, and to include stabilizing terms from the 
viscous fluxes. The resulting coupled system of 
equations is solved using a Newton-Krylov approach 
via the PETSc SNES system. This Newton-based 
iteration uses a preconditioned Krylov solver to solve 
the resulting sparse system of linear equations to 
obtain the update, 1+Δ nQ . 
 
6. VALIDATION RESULTS 
 

To date we have run a limited series of laminar 
validation cases which are summarized here. The 
turbulence model is presently being integrated within 
the solver, and results from its validation will be 
reported in the future. The validation cases shown 
here correspond to the driven cavity results computed 
by Ghia [Ghia, et al., 1982] and the developing 
laminar flow over a flat plate [Schlichting]. 

 
6.1 Driven Cavity 
 

The driven cavity computations performed by 
Ghia [Ghia, et al., 1982] have been used quite 
extensively to validate CFD models, where profiles of 
velocity at various locations are provided for Reynolds 
numbers based upon lid length and speed that range 
from 100 to 10,000. Figure 6.1 below shows contours 
of velocity magnitude computed for a Re=1000 driven 
cavity. 

 



 
Figure 6.1: Velocity Magnitude Contours for a 

Re=1000, Driven Cavity. 
 

We have performed the validation study using 
Reynolds numbers of 100, 400, 1000, 5000 and 
10,000, and compare our computed results with the 
published results as well as those produced using 
CFD-Urban/CFD-ACE+ [Coirier, et al., 2005, 2006.b, 
ACE+. 2003].  In order to stress test the low-Mach 
number preconditioning scheme, we have run the 
Re=100, 400 and 1000 cases at Mach numbers of 
0.25, 0.1, 0.01, 0.001 and 0.0001. All cases show an 
insensitivity of the results to Mach number, which 
validates the accuracy of the preconditioning scheme. 
The sections below illustrate the results where, unless 
noted otherwise, all results were computed using a 
second-order upwind reconstruction. Typically, 
convergence is achieved within 50 to 200 iterations, 
while for first-order upwind calculations convergence 
to machine zero was often achieved in 5 to 20 
iterations. This rapid convergence rate is one of the 
primary goals of using a fully-coupled approach. 

 
6.1.1: Re=100 Driven Cavity 
 

The computed results are compared to those of 
Ghia [Ghia et al., 1982] for a Re=100 based upon lid 
length and speed. The lid Mach number is varied by 
changing the laminar viscosity for the Mach numbers 
of 0.25, 0.1, 0.01, 0.001 and 0.0001.  For this 
Reynolds number, there is essentially no difference 
between the results shown for the different lid Mach 
numbers, as well as the results produced by CFD-
ACE+. For proper choices of reference velocity, the 
results were obtained faster than CFD-ACE+ by a 
factor of 2 to 10. 

 

 

 
Figure 6.2: Re=100 Driven Cavity Results. u-

velocity component vs. y (top) and v-velocity 
component vs x (bottom) midway through the cavity. 
 
6.1.2: Re=400 Driven Cavity 
 

The computed results are compared to those of 
Ghia [Ghia et al., 1982] for a Re=400 based upon lid 
length and speed. The lid Mach number is varied by 
changing the laminar viscosity for the Mach numbers 
of 0.25, 0.1, 0.01, 0.001 and 0.0001.  

 



 
Figure 6.3: Re=400 Driven Cavity Results. u-

velocity component vs. y (top) and v-velocity 
component vs x (bottom) midway through the cavity. 

 
6.1.3: Re=1000 Driven Cavity 
 

The computed results are compared to those of 
Ghia [Ghia et al., 1982] for a Re=1000 based upon lid 
length and speed. The lid Mach number is varied by 
changing the laminar viscosity for the Mach numbers 
of 0.25, 0.1, 0.01, 0.001 and 0.0001.  

 

 

 

Figure 6.4: Re=1000 Driven Cavity Results. u-
velocity component vs. y (top) and v-velocity 
component vs x (bottom) midway through the cavity. 
 
6.1.4: Re=5000 Driven Cavity 
 

The computed results are compared to those of 
Ghia [Ghia et al., 1982] for a Re=5000 based upon lid 
length and speed. For this case, we compare only for 
a single Mach number to Ghia’s results and to those 
computed with CFD-ACE+/CFD-Urban. 

  

 

 
Figure 6.5: Re=5000 Driven Cavity Results. u-

velocity component vs. y (top) and v-velocity 
component vs x (bottom) midway through the cavity. 
 
6.1.5: Re=10,000 Driven Cavity 
 

The computed results are compared to those of 
Ghia [Ghia et al., 1982] for a Re=10,000 based upon 
lid length and speed. For this case, we compare only 
for a single Mach number to Ghia’s results and to 
those computed with CFD-ACE+/CFD-Urban. We 
compute the solutions on two different grids in order 
to evaluate the effect of increased mesh resolution 
upon the solution quality. The two grids, and the 
contours of velocity magnitude, are shown below, 
where the coarse grid consisted of 5000 cells and the 
fine consisted of 10,000 cells.  



  
Figure 6.6: Coarse grid (left) and fine grid (right) 
velocity magnitude contours, Re=10,000. 

 

 

 
Figure 6.7: Re=10,000 Driven Cavity Results. u-

velocity component vs. y (top) and v-velocity 
component vs x (bottom) midway through the cavity. 

 
6.2: Laminar Boundary Layer 
 

The developing laminar flow over a flat plate is 
also often used for CFD validation. The analytical 
solution is found by casting the momentum equations 
in terms of a stream function written in a similarity 
variable, which reduces the partial differential 
equations into a single ordinary differential equation, 
which is solved numerically. The tabular solution of 
the stream function and it’s 1st and 2nd derivatives 
are then used to compare the predicted to analytical 
solutions. This classical solution is often called the 

Blasius solution and can be found in many textbooks 
[Schlichting]. The validation study we conducted is for 
a Reynolds number based on plate length of 10,000. 
Immediately upstream of the plate is a symmetry 
boundary, and the flow upstream is at a constant 
velocity of 10 m/s. Using both first and second-order 
upwind schemes, we have computed the flow field, 
and compared the u- and v-components written in 
terms of similarity variables, shown in Figure 6.8. 

 

 

 
Figure 6.8: Comparison of analytical (solid line) 

and computed results for the streamwise (top) and 
vertical (bottom) velocity components. 

 
Figure 6.9 shows the convergence rate for both 

the first- and second-order upwind schemes using the 
fully-coupled, low-Mach number preconditioned 
approach. As is evident from the figure, when the 
implicit and explicit discretizations are matched, which 
is achieved when the first-order upwind scheme is 
used,  the convergence rate can be extremely fast. 
The first-order upwind discretization converged to 
machine zero in 12 iterations.  

 



 
Figure 6.9: Convergence histories for the flat 

plate study, first-order (black) and second-order (red) 
upwind schemes. 

 
7. PARALLEL SPEEDUP STUDY 
 

A limited parallel performance study has been 
performed on a 24 node dual processor linux cluster. 
The driven cavity flow at a Reynolds number of 1000 
has been solved to convergence on computational 
meshes of 40,000 and 160,000 cells. As noted in 
Section 5, we use PETSc’s SNES to solve the 
primitive variables in a fully-coupled implicit fashion. 
For the NK solve, we use a GMRES linear solver and 
a block Jacobi preconditioner.  

 

 
Figure 7.1: Parallel speed up study results. 

 
In this study, a sub-linear speedup (18 times 

speedup on 24 processors) has been observed for 
the total solve time for the finer mesh case, although 
a near perfect speedup is seen for the same number 
of processors for the smaller mesh case.. A tail off in 
speedup is observed for 48 processors. It is a known 
artifact of using MPI on multi-core architecture that all 
the cores on the chip use the same memory bus, 
thereby increasing the communication time. We 
surmise that this is happening here, as the tail-off 
begins at 24 processors (of our 48 processor cluster). 

We should note that at this time the code is still under 
construction and has not been optimized yet, and that 
better performance may be attained using a different 
matrix preconditioner. 

 
8. CONCLUSIONS 
 

In this paper we have presented progress 
towards the development of a coupled micro-to-
mesoscale modeling capability using the MCEL library 
to couple the WRF model and a new CFD model that 
is presently being developed. The Model Coupling 
Environmental Library, MCEL, utilizes a data flow 
approach where coupling information is stored in a 
centralized server and flows through processing 
routines called filters to the numerical models which 
represent the clients. In order to take advantage of 
the specialized data structures associated with the 
CFD solver, we have moved the filter between MCEL 
and the CFD model to lie within the CFD model itself.  

The CFD model solves the Reynolds-Averaged 
Navier-Stokes (RANS) equations discretized in a cell-
centered, finite volume framework using an implicit, 
fully-coupled, low-Mach number preconditioned 
approach. We solve the equations fully-coupled via a 
parallelized Newton-Krylov (NK) procedure that is 
contained within the PETSc parallel, sparse matrix 
library. The convective terms are discretized using a 
preconditioned variant of Roe’s Flux Difference 
Splitting, and the low Mach number preconditioning of 
Weiss and Smith is used to remove the stiffness 
associated with the disparate eigenvalues at low 
Mach numbers. 

The solver has been validated for a series of 
laminar, driven cavity flows at a range of Reynolds 
and Mach numbers, and has been shown to be 
accurate and efficient. We compare the computed 
results with the accepted computational results of 
Ghia, and to results computed by CFD-ACE+/CFD-
Urban. In general, the results are more accurate as 
well as more efficient then CFD-ACE+/CFD-Urban, 
and match very well with Ghia’s results. A parallel 
speedup study for the driven cavity shows reasonable 
scalability with some room for improvement. The 
scalability of the new solver is due to the choice of 
numerics, flow solver data structures and use of the 
PETSc framework.  
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