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1. INTRODUCTION* 

 
 Although radial velocity measured by 
WSR-88Ds has been extensively used for forecast 
and researches, its application to turbulence seems 
very limited. Following the method and procedures 
given by Fang and Doviak (2005), one can obtain 
analytical relation among mean Doppler velocity 
and its steady and turbulent components. That is  
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where  is the radar measured radial velocity, 

 the radial component of steady flow and 

 the radial component of turbulent flow. The 

over bars denote the integral volumetric mean, and 
superscript (e) indicates an effective beam pattern 
has to be used for a scanning beam. In order to 
isolate the turbulent component of the radial 
velocity and investigate turbulence, the radial 
component of the steady flow, v
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s, needs to be 
removed. In this study, we present three algorithms 
that are designed to remove the steady flow for 
different weather phenomena to obtain spatial 
spectra. 
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2.1  VAD Method 

                                                        
* Corresponding author address: Ming Fang, 120 David L 
Boren Blvd., Norman, OK 73072; email: 
ming.fang@noaa.gov 

2.1.1 Retrieval of Horizontal Wind and 

Profiles sv̂

 Inside a large area of stratiform rain or snow, 
steady flow is approximately horizontally uniform. 
A vertical profile of the steady flow in this kind of 
precipitation can be used to remove the radial 
component of steady flow at each range gate. A 
wind profile obtained from routine daily soundings 
could be a source of this measurement, but it is too 
coarse in time to represent the reliable wind above 
radar site. Thus removing steady flow using daily 
sounding data may not give us an accurate result. 
The best choice is a direct retrieval of wind profile 
using the radial velocity field obtained by radar 
itself. The Velocity Azimuth Display (VAD) 
provides us with a powerful tool for this purpose.  
 Browning and Wexler (1968) suggested 
that radar sensed radial velocity, of a horizontally 
linear wind field, can be decomposed into three 
harmonics. The zeroth harmonic comes from 
divergence and the hydrometer’s fall speed; the first 
harmonic is attributed to horizontally uniform wind, 
and the second harmonic is due to shearing and 
stretching deformations. That is 
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where rh is the horizontal distance from the radar, Vp 
is the volumetric mean fall speed of hydrometers in 
V6, Vh is the mean horizontal wind, φw is the 

azimuth angle of the wind, 0θ  is the zenith angle 

of the beam axis, Vx0 is the easterly component of 
the mean wind, and Vy0 is the northerly component 
of the mean wind.  

Contrary to the convention used by Browning 
and Wexler (1968), here, the radial velocity, i.e. 

, is positive away from radar, and Vmv̂ p is negative 

downward. The steady flow in this study is defined 
as the expected mean value of horizontal wind. If 
the velocity field is statistically stationary and the 
time series of velocity at a point is infinite, then the 
time average of the velocity, i.e. the ensemble 
average, should be a horizontal wind. Thus, 
divergence and deformation are associated with 
large scale turbulence and not the components of 
steady flow. Thus, the estimate of steady flow is 
just the first harmonic obtained from a VAD 
analysis.  

Browning and Wexler (1968) suggested that 
the optimum range to conduct VAD should be 
confined in 20 km from radar and the optimum 
elevation angle should be below 20o and 9o 
respectively in snow and rain. The VAD scheme 
proposed by Browning and Wexler (1968) requires 
radial velocity to be evenly spaced. However, this 
requirement could be violated due to the existence 
of echo-free regions. Furthermore, radials are not 
strictly evenly spaced. In order to overcome this 
problem, Rabin and Zrnić (RZ) (1980) proposed an 
algorithm which implements a Fourier least square 
fitting to the discrete velocities. The RZ method 

does not require samples being evenly spaced. To 
obtain the vertical profile of Vh, a VAD needs to be 
performed at many circles at different heights. 
Because of the statistical fluctuation associated with 
weather signals and the random fluctuations of the 
turbulent field, a VAD performed on different sets 
of circles will give us a slightly different profile.  
In order to reduce statistical fluctuation and obtain a 

reliable profile of , this study performs a VAD at 

each elevation angle and range gate between 5 and 
20 km wherever there are at least 240 radial 
velocities available on the range gate circle. The 
VAD performed at each eligible range gate gives a 
couple of V

sv̂

h and φw, and therefore we get a a series 
of Vh and φw estimates at different heights. 

We assume that Vh and φw  are only functions 
of height, and use a sixth order polynomial to make 
a least square fitting those a1s and b1s. That is 
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where h represents the height above ground, Ai  and 
BBi (i = 0, 1…6) are coefficients that need to be 
determined. Each performed VAD will give us a 
couple of equations through Eq. (3). If n VADs are 
performed, we then get two systems of equations. In 
the form of matrix they can be written as 

A = V    (4a) (HT H)−1HT

and 

B Φ              (4b) = (HT H)−1HT

where 
A=(A0,A1,A2,A3,A4,A5,A6)T   (4c) 
B=(B0,B1,B2,B3,B4,B5,B6)T   (4d) 

V=(Vh1,Vh2,…Vhn)T    (4e) 

Φ=( 1wϕ  2wϕ … wnϕ )T   (4f) 
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where HT  is the transpose of matrix H, and 
 is the reverse of matrix (HT H)−1 HT H . The 

number of effective velocity samples on a circle 
where VAD is performed must be larger or equal to 
240 to ensure there are a sufficient number of 
samples for a VAD analysis. Otherwise a VAD will 
not be performed on that circle. After coefficients Ai  

and BBi (i = 0, 1…6) are determined, one obtains the 

profiles of Vh and φw given through Eq. (3) that are 
functions of height. From Eq. (2.1a) we know that 
the radial component of steady flow can be 
expressed as 

ϕϕ sincosˆ 11 bavs +=    (5). 

After calculating a1 and b1 using Eqs. (2.1c) and 
(2.1d), one can calculate the Vs at different heights 
using Eq. (5). In order to isolate the turbulent 

velocity using Eq. (1), we next compute 
(e)

)(rvs  

at each gate using vs obtained from Eq. (5). 
 

2.1.2  Calculation of 
(e)

)(rvs  and Isolating 

(e)
),( nt trv  

 Eq. (1) indicates that, in order to isolate the 

turbulent velocity, i.e. 
(e)

),( nt trv , the volumetric 

mean of steady flow, i.e. 
(e)

)(rvs , must be 

subtracted from . The analytical expression 

of  
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By assuming a locally uniform reflectivity filed, 
that is uniform in V6, one can rewrite the above 
equation in the form of summation. That is, 
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and we have used the approximation that iθcos  

and rk are constants in V6e which denotes a effective 
pulse volume. The summation is over V6e. Eq. (7) 

makes it possible for us to compute the volumetric 
mean of radial component of steady flow using the 
summation, and vs obtained from Eq. (5). For the 
case presented in this chapter, Ni, Nj and Nk in Eq. 
(7) are each set to two. For the sake of reducing 
computational time Ni, Nj and Nk in Eq. (7) are each 
set to two, but to better capture the effective 
weighting function more grids are required. 
However, tests show that there is no significant 
difference between the results from Ni = Nj = Nk = 2 
and Ni = Nj = Nk = 10.  

Fig.1 shows the isolated volumetric mean 

turbulent velocity, i.e. 
(e)

),( nt trv . The data 

shown in Fig 1 were collected by KOHX radar in a 
stratiform rain at 10 km range gate at 3.3o elevation 
angle. 

Volumetric Mean Turbulent Velocity In A Stratiform Rain    VAD
KOHX  01/24/1997   08:58:39   Elevation = 3.3   Slant = 10 km
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Fig. 1.  The dependency of isolated turbulent 
velocities on azimuth obtained at the 10 km range 
gate.

 
2.2 PATCH-AVERAGE 

FITTING ETHOD 
 

The VAD method introduced in section 2.1 is 
mainly applicable to large area of uniform 
precipitation and wind typical of stratiform rain and 
snow that covers the radar site. The Patch-average 
method is designed to be applied to the weather 
systems that are not over the radar site, and for 
which horizontal uniformity of vsh is locally applied, 
as with the VAD method described in Section 2.1.  
 Fig. 2a defines an M (gates) by N (radials) 
patch. Because wind could changes significantly 

with respect to the height, M should not be too large 
in order to keep the velocities at different range gates 
almost at same height. Firstly, we compute the mean 
radial velocity for each radial. That is 

∑=
M

i
mijj v

M
V 1

.  (8a) 

Secondly, we make a linear least square fitting to Vj 
and obtain an analytical expression for the estimate 
of steady flow which is a linear function of azimuth. 
That is 

BAvs += ϕˆ    (8b) 

where 
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(http://mathworld.wolfram.com/LeastSquaresFitting
.html). The estimated turbulent velocity is 

    (8e). smt vvv ˆˆˆ −=

Patch-average method is designed for storms, but it 
can also be applied to stratiform rain. Fig. 2b 
demonstrates the dependency of turbulent velocity 
on the azimuth for same case, same elevation angle 
and same range gate shown in Fig. 2b. M and N are 
set to 6 and 5 respectively. Comparing Fig. 2b and 
Fig. 2b, one can find that turbulent velocity obtained 
through VAD keeps larger scale turbulence. 

 
Fig.2a  A patch has M gates and N radials. 

Volumetric Mean Turbulent Velocity In A Stratiform Rain   Patch_average
KOHX  01/24/1997   08:58:39   Elevation = 3.3   Slant = 10 km
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Fig. 2b  The azimuth dependency of turbulent 
velocities calculated using the patch-average for 
the same case shown in Fig. 5b. 

 
2.3   ENHANCED PATCH-AVERAGE 

METHOD 
 

Wind usually changes abruptly across the 
squall line. If an abrupt change of velocity is within 
a patch, the patch-average method introduced in last 
section will not be applicable. An enhanced 
patch-average method is therefore designed to 
isolate turbulent velocities in squall lines. In order 
to define a patch inside squall line, firstly we draw a 
contour compassing interested part of the squall line; 
secondly an M (gates) * N (radials) patch is defined. 
Not like that defined in section 2.2, the start and 
ended gates at each radial are not necessarily at 
same range gate, The estimated mean radial 
component of steady wind over the patch at height 
H is simply the arithmetic average of all radar 

measured radial velocities , and turbulent 

velocity at each gate inside the patch is obtained by 

subtracting  from , That is 

mv̂

sv̂ mv̂
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where we have assumed that no velocity is censored 
inside the patch enclosed by the hand-drawn 
contour. Like the patch method introduced in 
section 2.2, M and N cannot be too large to ensure 
the steady horizontal wind is approximately uniform 
over in the patch. 
 
3. SPATIAL SPETRA 
 
 In Fig. 3, the blue curve shows a spatial 
spectrum obtained from measurements in stratiform 
rain observed by the KOHX radar in Nashville 
Tennessee on January 24th 1997, at 08:35:18 UTC. 
The shown spatial spectrum is not obtained from 
velocities along a single radial but is an average of 
360 spectra at 360 azimuths. The spectral density is 
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the median value of 360 spectral densities at that 
wave number. We use median values to get rid of the 
impact of outliers. This is also why the spectrum 
looks very smooth. The black dotted line in Fig. 3a 
indicates the theoretical noise level that relates to the 
measurement uncertainty or variance of Doppler 
velocity due to statistical fluctuations and was 
calculated using the formula given by Brewster and 
Zrnic (1986). The spatial spectrum shown in Fig. 3a 
is obtained from range gates between 21 and 31 km 
from radar at an elevation angle of 2.37o. The pink 
reference line has a slope of –5/3. Because 
observations were made at low elevation angles, the 
spatial spectrum shown in Fig. 3a is primarily 
contributed by the horizontal component of the 
turbulent flow. The scale at the small wave number 
end is 10 km. This scale is so large that we conclude 
that the turbulence in this case is anisotropic 
although the displayed spatial spectrum follows well 
the five-thirds power law. 
  
 In Fig. 3b, the red and green curves are 
longitudinal and transverse spectra of turbulent 
velocities respectively obtained from a storm 
observed by the KTBW radar in Tampa Florida on 
March 9th 1998 at 07:47:49 UTC. The domain size 
is 28 gates (i.e. 7 km) * 40 radials, which generates 
38 longitudinal spatial spectra. The energy density 
at each wave number curve shown in Fig. 7.3 is the 
median value of 38 spatial spectra at the same wave 
number. Blue dashed and brown dot-dashed lines 
are fitted longitudinal and transverse spectra 
respectively. Blue and brown lines are almost 
perfectly parallel to the black reference line having 
-5/3 slope, and the ratio between fitted latitudinal 
and longitudinal spectrum at a certain wave number 
is 1.35 which is very close to 4/3. Thus, at first 
glance, one may expect that the spectra displayed in 

Fig. 3b could relate to three-dimensionally isotropic 
turbulence in an inertial subrange. However, the 
scale of turbulence at low wave number end is as 
large as 7 km kilometers. Such large scale makes us 
suspect that the turbulence is not really three 
dimensionally isotropic. Furthermore, the 
longitudinal spectrum shown in Fig. 3b is a filtered 
spectra. Brewster and Zrnić (1986) investigate the 
response function of beam filtering. Their 
calculation demonstrates that, for a 0.8o beam width 
at range 60 km, the response function is less than 
50% for all wavelengths under 3.8 km. Thus, if 
turbulence is three dimensionally isotropic, the 
filtered longitudinal spectrum should not follow the 
behavior of -5/3 law like that shown in Fig. 3b. Its 
corresponding unfiltered spectrum should deviate to 
higher values at the high wave number end. 
However, the longitudinal spectrum shown in Fig. 
3b is very close to the slope of -5/3. This indicates 
that turbulence relating to the spectrum in Fig. 3b is 
not three-dimensionally isotropic but probably 
anisotropic turbulence. 
 Fig. 3c shows a filtered spatial spectrum in the 
squall line for the same case shown in Fig. 3b but at 
a different time and different locations. The red 
dashed lines in Fig. 3c have a -9/4 slope from which 
Hogstrom et. al. (1999) infer internal waves. After 
censoring data below the theoretical noise level, we 
used a power law function to fit the remaining data 
and obtained the blue dashed line in Fig. 3c which 
has a -2.0 slope. Because the turbulence scale at low 
wave number end of the spectrum shown in Fig. 3c 
is as large as 17 km, and also because of the beam 
filtering effect stated in last section, the spatial 
spectrum could not be due to three-dimensionally 
isotropic turbulence. The -2.0 slope suggests that 
the anisotropic turbulence and/or internal gravity 
waves coexist in this squall line. 
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Spatial Spectra Between 21 and 31 km
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Fig. 3a The blue curve is the spatial spectra of 
turbulent velocities in stratiform rain; The pink line 
is a reference line having a -5/3 slope; The dotted 
line indicates the theoretical noise level. 

 
Fig. 3b.  Red and green curves are longitudinal and 
transverse spectra respectively obtained in a storm. 
Dashed blue and dot-dashed brown lines are fitted 
longitudinal and transverse spectra respectively. 
The black line is a reference line and has a -5/3 
slope. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3c Dashed blue line is the filtered longitudinal 
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spatial spectrum of turbulent velocities in a squall line. 
Black and short dashed red lines are reference lines 
and have slopes of -5/3 and -9/4 respectively. Samples 
under noise level have been discarded. 

 
4. CONCLUSIONS 
 

This study introduces three methods to isolate 
the turbulent component from radar sensed mean 
radial velocity. They are the VAD method, a 
patch-average method and an enhanced 
patch-average method. These methods were applied 
to stratifrom rain, storm and squall lines 
respectively. The obtained corresponding spatial 
spectra show that the turbulences are generally 
anisotropic.  
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