Regression-based methods for finding
coupled patterns

Michael K. Tippett!  Timothy DelSole?
Simon J. Mason!  Anthony G. Barnston®

Linternational Research Institute for Climate and Society
The Earth Institute, Columbia University
2George Mason University
Center for Ocean-Land-Atmosphere Studies (COLA)

88th AMS Annual Meeting



Main idea

Connect

Coupled pattern methods ‘ and\ multivariate regression




Main idea

Connect

Coupled pattern methods ‘ and\ multivariate regression

Results
» Pattern methods diagonalize the regression.



Main idea

Connect

Coupled pattern methods ‘ and\ multivariate regression

Results
» Pattern methods diagonalize the regression.
» Diagonal regression easy to understand.



Main idea

Connect

Coupled pattern methods ‘ and\ multivariate regression

Results
» Pattern methods diagonalize the regression.

» Diagonal regression easy to understand.
» Different pattern methods diagnose different properties.



Main idea

Connect

Coupled pattern methods ‘ and\ multivariate regression

Results
» Pattern methods diagonalize the regression.

» Diagonal regression easy to understand.
» Different pattern methods diagnose different properties.

» Pattern methods are SVDs of the regression.



Main idea

Connect

Coupled pattern methods ‘ and ’ multivariate regression

Results
» Pattern methods diagonalize the regression.

» Diagonal regression easy to understand.
» Different pattern methods diagnose different properties.

» Pattern methods are SVDs of the regression.
» Different methods = different norms.



Main idea

Connect

Coupled pattern methods ‘ and ’ multivariate regression

Results
» Pattern methods diagonalize the regression.

» Diagonal regression easy to understand.
» Different pattern methods diagnose different properties.

» Pattern methods are SVDs of the regression.

» Different methods = different norms.
» Changing norm = linear transformation of data.



Main idea

Connect

Coupled pattern methods ‘ and ’ multivariate regression

Results
» Pattern methods diagonalize the regression.

» Diagonal regression easy to understand.
» Different pattern methods diagnose different properties.

» Pattern methods are SVDs of the regression.

» Different methods = different norms.
» Changing norm = linear transformation of data.

Known for CCA.
New for MCA, RDA, PPA.
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Coupled pattern methods

Two data sets. (x and y)
Optimally decompose the data.

» CCA - canonical correlation analysis
Components with maximum correlation.

» MCA — maximum covariance analysis.
Components with maximum covariance.

Predictor and predictand. (asymmetric)

» RDA — redundancy analysis.
Predictor components that explain the most variance.

» PPA — principal predictor analysis
Predictor components that explain the most standardized
variance.
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y =Ax, A= (yx")(xx")~1 = regression coefficients

How to diagnose the regression?
Diagonalize A. A is not square. SVD of A:

A=USV'T mxn

= [ug,...,um]diag(ss, sz, - --,Sp)[V1, - - -, Va]"
p

= s’
i—1

U, V are orthogonal. S is diagonal. s; > s, > ...sp > 0.
Regression is diagonal in the basis of the columns of U and V

p
i=1
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SVD solves an optimization problem

"
1 = Max
v v
or
st — max uT Av
1= e
uv - [[ul[fjv]]

Usual vector norm ||x||2 = xTx.

If X is an initial condition, and y is a final condition,

S; measures the maximum amplification.

Growth of instabilities, ENSO, ensemble perturbations (Farrell,
Penland, Palmer etc.).

Depends on two norms, one for x and one fory. ‘
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Norms and changing variables
Usual vector norms
IVI[FP=vTv, [ul®=uTu
New norms
IVIZ=v L Lv = |Lv|?
Hqu, =u"M"Mu= HMuH2
New variables Lv and Mu.

||old variables||new = ||new variables||qg

New norms are norms if L and M are invertible.
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SVD, norms and changing variables

SVD with new norm

Avily _ o IMAVEE - IMAL
- = ma ,
VooV v kvl v/l

(v =Lv)

SVDnew norms(A) = SVDoId norms(MAL_l)

MAL™1 is the regression matrix between Lx and My.

My = MAx = (MAL™!) Lx

SVDnew norms(X — Y) = SVDod norms(LX — My)
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Norms for the regression matrix

What norms (change of variables) make the SVD of A
measure:

» Correlation.

» Explained variance.

» Standardized explained variance.
» Covariance.
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y=ax a=(yx)/(x?

New variables: x’=Ix andy’ = my
New regression: y’ = a'x’ where a8’ = mal !

Correlation
> X' =x//(X2),y =y/\/({y?)
a—=a @ _ (xy)

bE T Voeayy?)
Square-root of explained variance
> X' =x//(x?)
a/ —a X2 — <Xy>
VX =75

Covariance

> X' =x/(x?)
a’ = a(x?) = (yx)
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Multivariate
Claim: multivariate = replace variances by covariances.
CCA
x = (xxT)"Y2x = Lx,y — (yyT) "2y = My
(replace data by PCs, “whitening”, unit variance, uncorrelated)

Proof 1. new norm SVD — CCA eigenvalue equations.
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Multivariate
Claim: multivariate = replace variances by covariances.
CCA
X — (xxT)712x = Lx, y — (yyT)"Y?y = My

(replace data by PCs, “whitening”, unit variance, uncorrelated)
Proof 1. new norm SVD — CCA eigenvalue equations.
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 max YO 20T yy T) T yx T o) 2y

IAVIG - IMAVIE iy T) A

= max
V/

v/ V’TV’

Eigenvalues of (xxT)~1(xyT)(yyT)~(yxT) = CCA
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Proof 2: SVD of transformed regression MAL~! maximizes
correlation.

A= (yx")xxT)1 M = (yy") 2 L= (xxT) 712

uTMAL-1v uT (yyT)=1/2 [yxT)| (xxT) =12y
maX ——— = maX
uv.lulfv]] uv [Jul[{v]]
u’m <yxT>v’

max
u’ v’ \/u/T <ny>u/\/V/T <XXT>V,
u’:(ny)‘1/2u,v’:(xxT>_1/2v
cov(uTy,v/'Tx
= max Uy, )
wy' oy /var(u'Ty)y/var(v/Tx)
= max correlation (u""y,v'Tx)
u’,v

Finds projections of the data that maximize correlation. ‘
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Summary

>

Common coupled pattern methods are SVDs of the matrix
of regression coefficients.

Different pattern methods correspond to SVD with different
norms — measure different properties of the regression.

If a complete set of patterns are used, all methods give the
same prediction model.

One method can be transformed to another by
transforming the data.

MCAX,Y] = SVD[(yx")]

CCAX,Y] = MCA[(xxT)~2/2x, (yyT)~1/2y]
RDAX,Y] = MCA[(xxT)"1/2x, y]
PPA[X,Y] =

MCA[(xxT)~%/2x, (Diag{yy))~*/?y]



