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Main idea

Connect

Coupled pattern methods and multivariate regression

Results
I Pattern methods diagonalize the regression.

I Diagonal regression easy to understand.
I Different pattern methods diagnose different properties.

I Pattern methods are SVDs of the regression.
I Different methods = different norms.
I Changing norm = linear transformation of data.

Known for CCA.
New for MCA, RDA, PPA.
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Coupled pattern methods

Two data sets. (x and y )
Optimally decompose the data.

I CCA – canonical correlation analysis
Components with maximum correlation.

I MCA – maximum covariance analysis.
Components with maximum covariance.

Predictor and predictand. (asymmetric)

I RDA – redundancy analysis.
Predictor components that explain the most variance.

I PPA – principal predictor analysis
Predictor components that explain the most standardized
variance.
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Multivariate regression

y = Ax , A = 〈yxT 〉〈xxT 〉−1 = regression coefficients

How to diagnose the regression?
Diagonalize A. A is not square. SVD of A:

A = USV T m × n

= [u1, . . . , um]diag(s1, s2, . . . , sp)[v1, . . . , vn]
T

=

p∑
i=1

siuiv
T
i

U, V are orthogonal. S is diagonal. s1 ≥ s2 ≥ . . . sp ≥ 0.
Regression is diagonal in the basis of the columns of U and V

Avj =

p∑
i=1

siui vT
i vj = sjuj



Multivariate regression

y = Ax , A = 〈yxT 〉〈xxT 〉−1 = regression coefficients

How to diagnose the regression?
Diagonalize A. A is not square. SVD of A:

A = USV T m × n

= [u1, . . . , um]diag(s1, s2, . . . , sp)[v1, . . . , vn]
T

=

p∑
i=1

siuiv
T
i

U, V are orthogonal. S is diagonal. s1 ≥ s2 ≥ . . . sp ≥ 0.
Regression is diagonal in the basis of the columns of U and V

Avj =

p∑
i=1

siui vT
i vj = sjuj



Multivariate regression

y = Ax , A = 〈yxT 〉〈xxT 〉−1 = regression coefficients

How to diagnose the regression?
Diagonalize A. A is not square. SVD of A:

A = USV T m × n

= [u1, . . . , um]diag(s1, s2, . . . , sp)[v1, . . . , vn]
T

=

p∑
i=1

siuiv
T
i

U, V are orthogonal. S is diagonal. s1 ≥ s2 ≥ . . . sp ≥ 0.
Regression is diagonal in the basis of the columns of U and V

Avj =

p∑
i=1

siui vT
i vj = sjuj



Multivariate regression

y = Ax , A = 〈yxT 〉〈xxT 〉−1 = regression coefficients

How to diagnose the regression?
Diagonalize A. A is not square. SVD of A:

A = USV T m × n

= [u1, . . . , um]diag(s1, s2, . . . , sp)[v1, . . . , vn]
T

=

p∑
i=1

siuiv
T
i

U, V are orthogonal. S is diagonal. s1 ≥ s2 ≥ . . . sp ≥ 0.
Regression is diagonal in the basis of the columns of U and V

Avj =

p∑
i=1

siui vT
i vj = sjuj



Multivariate regression

y = Ax , A = 〈yxT 〉〈xxT 〉−1 = regression coefficients

How to diagnose the regression?
Diagonalize A. A is not square. SVD of A:

A = USV T m × n

= [u1, . . . , um]diag(s1, s2, . . . , sp)[v1, . . . , vn]
T

=

p∑
i=1

siuiv
T
i

U, V are orthogonal. S is diagonal. s1 ≥ s2 ≥ . . . sp ≥ 0.
Regression is diagonal in the basis of the columns of U and V

Avj =

p∑
i=1

siui vT
i vj = sjuj



Multivariate regression

y = Ax , A = 〈yxT 〉〈xxT 〉−1 = regression coefficients

How to diagnose the regression?
Diagonalize A. A is not square. SVD of A:

A = USV T m × n

= [u1, . . . , um]diag(s1, s2, . . . , sp)[v1, . . . , vn]
T

=

p∑
i=1

siuiv
T
i

U, V are orthogonal. S is diagonal. s1 ≥ s2 ≥ . . . sp ≥ 0.
Regression is diagonal in the basis of the columns of U and V

Avj =

p∑
i=1

siui vT
i vj = sjuj



Multivariate regression

y = Ax , A = 〈yxT 〉〈xxT 〉−1 = regression coefficients

How to diagnose the regression?
Diagonalize A. A is not square. SVD of A:

A = USV T m × n

= [u1, . . . , um]diag(s1, s2, . . . , sp)[v1, . . . , vn]
T

=

p∑
i=1

siuiv
T
i

U, V are orthogonal. S is diagonal. s1 ≥ s2 ≥ . . . sp ≥ 0.
Regression is diagonal in the basis of the columns of U and V

Avj =

p∑
i=1

siui vT
i vj = sjuj



Multivariate regression

y = Ax , A = 〈yxT 〉〈xxT 〉−1 = regression coefficients

How to diagnose the regression?
Diagonalize A. A is not square. SVD of A:

A = USV T m × n

= [u1, . . . , um]diag(s1, s2, . . . , sp)[v1, . . . , vn]
T

=

p∑
i=1

siuiv
T
i

U, V are orthogonal. S is diagonal. s1 ≥ s2 ≥ . . . sp ≥ 0.
Regression is diagonal in the basis of the columns of U and V

Avj =

p∑
i=1

siui vT
i vj = sjuj



SVD and optimization

SVD solves an optimization problem

s1 = max
v

‖Av‖
‖v‖

or

s1 = max
u,v

uT Av
‖u‖‖v‖

Usual vector norm ‖x‖2 = xT x .

If x is an initial condition, and y is a final condition,
s1 measures the maximum amplification.
Growth of instabilities, ENSO, ensemble perturbations (Farrell,
Penland, Palmer etc.).

Depends on two norms, one for x and one for y .
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Norms and changing variables

Usual vector norms

‖v‖2 = vT v , ‖u‖2 = uT u

New norms

‖v‖2
x ≡ vT LT Lv = ‖Lv‖2

‖u‖2
y ≡ uT MT Mu = ‖Mu‖2

New variables Lv and Mu.

‖old variables‖new = ‖new variables‖old

New norms are norms if L and M are invertible.
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SVD, norms and changing variables

SVD with new norm

max
v

‖Av‖y

‖v‖x
= max

v

‖MAv‖
‖Lv‖

= max
v ′

‖MAL−1v ′‖
‖v ′‖

(v ′ = Lv )

SVDnew norms(A) = SVDold norms(MAL−1)

MAL−1 is the regression matrix between Lx and My .

My = MAx =
(
MAL−1) Lx

SVDnew norms(x → y) = SVDold norms(Lx → My)
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Norms for the regression matrix

What norms (change of variables) make the SVD of A
measure:

I Correlation.
I Explained variance.
I Standardized explained variance.
I Covariance.
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Univariate regression

y = ax a = 〈yx〉/〈x2〉

New variables: x ′ = lx and y ′ = my
New regression: y ′ = a′x ′ where a′ = mal−1

Correlation
I x ′ = x/

√
〈x2〉, y ′ = y/

√
〈y2〉

a′ = a
√

〈x2〉
〈y2〉 = 〈xy〉√

〈x2〉〈y2〉

Square-root of explained variance
I x ′ = x/

√
〈x2〉

a′ = a
√
〈x2〉 = 〈xy〉√

〈x2〉

Covariance
I x ′ = x/〈x2〉

a′ = a〈x2〉 = 〈yx〉
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Multivariate

Claim: multivariate = replace variances by covariances.

CCA

x → 〈xxT 〉−1/2x = Lx , y → 〈yyT 〉−1/2y = My
(replace data by PCs, “whitening”, unit variance, uncorrelated)
Proof 1: new norm SVD → CCA eigenvalue equations.

max
v

‖Av‖2
y

‖v‖2
x

= max
v

‖MAv‖2

‖Lv‖2 = max
v

‖〈yyT 〉−1/2Av‖2

‖〈yyT 〉−1/2v‖2

= max
v ′

‖〈yyT 〉−1/2A〈xxT 〉1/2v ′‖2

‖v ′‖2

= max
v ′

‖〈yyT 〉−1/2〈yxT 〉〈xxT 〉−1/2v ′‖2

‖v ′‖2

= max
v ′

v ′T 〈xxT 〉−1/2〈xyT 〉〈yyT 〉−1〈yxT 〉〈xxT 〉−1/2v ′

v ′T v ′

Eigenvalues of 〈xxT 〉−1〈xyT 〉〈yyT 〉−1〈yxT 〉 = CCA



Multivariate

Claim: multivariate = replace variances by covariances.

CCA

x → 〈xxT 〉−1/2x = Lx , y → 〈yyT 〉−1/2y = My
(replace data by PCs, “whitening”, unit variance, uncorrelated)
Proof 1: new norm SVD → CCA eigenvalue equations.

max
v

‖Av‖2
y

‖v‖2
x

= max
v

‖MAv‖2

‖Lv‖2 = max
v

‖〈yyT 〉−1/2Av‖2

‖〈yyT 〉−1/2v‖2

= max
v ′

‖〈yyT 〉−1/2A〈xxT 〉1/2v ′‖2

‖v ′‖2

= max
v ′

‖〈yyT 〉−1/2〈yxT 〉〈xxT 〉−1/2v ′‖2

‖v ′‖2

= max
v ′

v ′T 〈xxT 〉−1/2〈xyT 〉〈yyT 〉−1〈yxT 〉〈xxT 〉−1/2v ′

v ′T v ′

Eigenvalues of 〈xxT 〉−1〈xyT 〉〈yyT 〉−1〈yxT 〉 = CCA



Multivariate

Claim: multivariate = replace variances by covariances.

CCA

x → 〈xxT 〉−1/2x = Lx , y → 〈yyT 〉−1/2y = My
(replace data by PCs, “whitening”, unit variance, uncorrelated)
Proof 1: new norm SVD → CCA eigenvalue equations.

max
v

‖Av‖2
y

‖v‖2
x

= max
v

‖MAv‖2

‖Lv‖2 = max
v

‖〈yyT 〉−1/2Av‖2

‖〈yyT 〉−1/2v‖2

= max
v ′

‖〈yyT 〉−1/2A〈xxT 〉1/2v ′‖2

‖v ′‖2

= max
v ′

‖〈yyT 〉−1/2〈yxT 〉〈xxT 〉−1/2v ′‖2

‖v ′‖2

= max
v ′

v ′T 〈xxT 〉−1/2〈xyT 〉〈yyT 〉−1〈yxT 〉〈xxT 〉−1/2v ′

v ′T v ′

Eigenvalues of 〈xxT 〉−1〈xyT 〉〈yyT 〉−1〈yxT 〉 = CCA



Multivariate

Claim: multivariate = replace variances by covariances.

CCA

x → 〈xxT 〉−1/2x = Lx , y → 〈yyT 〉−1/2y = My
(replace data by PCs, “whitening”, unit variance, uncorrelated)
Proof 1: new norm SVD → CCA eigenvalue equations.

max
v

‖Av‖2
y

‖v‖2
x

= max
v

‖MAv‖2

‖Lv‖2 = max
v

‖〈yyT 〉−1/2Av‖2

‖〈yyT 〉−1/2v‖2

= max
v ′

‖〈yyT 〉−1/2A〈xxT 〉1/2v ′‖2

‖v ′‖2

= max
v ′

‖〈yyT 〉−1/2〈yxT 〉〈xxT 〉−1/2v ′‖2

‖v ′‖2

= max
v ′

v ′T 〈xxT 〉−1/2〈xyT 〉〈yyT 〉−1〈yxT 〉〈xxT 〉−1/2v ′

v ′T v ′

Eigenvalues of 〈xxT 〉−1〈xyT 〉〈yyT 〉−1〈yxT 〉 = CCA



Multivariate

Claim: multivariate = replace variances by covariances.

CCA

x → 〈xxT 〉−1/2x = Lx , y → 〈yyT 〉−1/2y = My
(replace data by PCs, “whitening”, unit variance, uncorrelated)
Proof 1: new norm SVD → CCA eigenvalue equations.

max
v

‖Av‖2
y

‖v‖2
x

= max
v

‖MAv‖2

‖Lv‖2 = max
v

‖〈yyT 〉−1/2Av‖2

‖〈yyT 〉−1/2v‖2

= max
v ′

‖〈yyT 〉−1/2A〈xxT 〉1/2v ′‖2

‖v ′‖2

= max
v ′

‖〈yyT 〉−1/2〈yxT 〉〈xxT 〉−1/2v ′‖2

‖v ′‖2

= max
v ′

v ′T 〈xxT 〉−1/2〈xyT 〉〈yyT 〉−1〈yxT 〉〈xxT 〉−1/2v ′

v ′T v ′

Eigenvalues of 〈xxT 〉−1〈xyT 〉〈yyT 〉−1〈yxT 〉 = CCA



Multivariate

Claim: multivariate = replace variances by covariances.

CCA

x → 〈xxT 〉−1/2x = Lx , y → 〈yyT 〉−1/2y = My
(replace data by PCs, “whitening”, unit variance, uncorrelated)
Proof 1: new norm SVD → CCA eigenvalue equations.

max
v

‖Av‖2
y

‖v‖2
x

= max
v

‖MAv‖2

‖Lv‖2 = max
v

‖〈yyT 〉−1/2Av‖2

‖〈yyT 〉−1/2v‖2

= max
v ′

‖〈yyT 〉−1/2A〈xxT 〉1/2v ′‖2

‖v ′‖2

= max
v ′

‖〈yyT 〉−1/2〈yxT 〉〈xxT 〉−1/2v ′‖2

‖v ′‖2

= max
v ′

v ′T 〈xxT 〉−1/2〈xyT 〉〈yyT 〉−1〈yxT 〉〈xxT 〉−1/2v ′

v ′T v ′

Eigenvalues of 〈xxT 〉−1〈xyT 〉〈yyT 〉−1〈yxT 〉 = CCA



Multivariate

Claim: multivariate = replace variances by covariances.

CCA

x → 〈xxT 〉−1/2x = Lx , y → 〈yyT 〉−1/2y = My
(replace data by PCs, “whitening”, unit variance, uncorrelated)
Proof 1: new norm SVD → CCA eigenvalue equations.

max
v

‖Av‖2
y

‖v‖2
x

= max
v

‖MAv‖2

‖Lv‖2 = max
v

‖〈yyT 〉−1/2Av‖2

‖〈yyT 〉−1/2v‖2

= max
v ′

‖〈yyT 〉−1/2A〈xxT 〉1/2v ′‖2

‖v ′‖2

= max
v ′

‖〈yyT 〉−1/2〈yxT 〉〈xxT 〉−1/2v ′‖2

‖v ′‖2

= max
v ′

v ′T 〈xxT 〉−1/2〈xyT 〉〈yyT 〉−1〈yxT 〉〈xxT 〉−1/2v ′

v ′T v ′

Eigenvalues of 〈xxT 〉−1〈xyT 〉〈yyT 〉−1〈yxT 〉 = CCA



Multivariate

Claim: multivariate = replace variances by covariances.

CCA

x → 〈xxT 〉−1/2x = Lx , y → 〈yyT 〉−1/2y = My
(replace data by PCs, “whitening”, unit variance, uncorrelated)
Proof 1: new norm SVD → CCA eigenvalue equations.

max
v

‖Av‖2
y

‖v‖2
x

= max
v

‖MAv‖2

‖Lv‖2 = max
v

‖〈yyT 〉−1/2Av‖2

‖〈yyT 〉−1/2v‖2

= max
v ′

‖〈yyT 〉−1/2A〈xxT 〉1/2v ′‖2

‖v ′‖2

= max
v ′

‖〈yyT 〉−1/2〈yxT 〉〈xxT 〉−1/2v ′‖2

‖v ′‖2

= max
v ′

v ′T 〈xxT 〉−1/2〈xyT 〉〈yyT 〉−1〈yxT 〉〈xxT 〉−1/2v ′

v ′T v ′

Eigenvalues of 〈xxT 〉−1〈xyT 〉〈yyT 〉−1〈yxT 〉 = CCA



Multivariate

Claim: multivariate = replace variances by covariances.

CCA

x → 〈xxT 〉−1/2x = Lx , y → 〈yyT 〉−1/2y = My
(replace data by PCs, “whitening”, unit variance, uncorrelated)
Proof 1: new norm SVD → CCA eigenvalue equations.

max
v

‖Av‖2
y

‖v‖2
x

= max
v

‖MAv‖2

‖Lv‖2 = max
v

‖〈yyT 〉−1/2Av‖2

‖〈yyT 〉−1/2v‖2

= max
v ′

‖〈yyT 〉−1/2A〈xxT 〉1/2v ′‖2

‖v ′‖2

= max
v ′

‖〈yyT 〉−1/2〈yxT 〉〈xxT 〉−1/2v ′‖2

‖v ′‖2

= max
v ′

v ′T 〈xxT 〉−1/2〈xyT 〉〈yyT 〉−1〈yxT 〉〈xxT 〉−1/2v ′

v ′T v ′

Eigenvalues of 〈xxT 〉−1〈xyT 〉〈yyT 〉−1〈yxT 〉 = CCA



Multivariate

Claim: multivariate = replace variances by covariances.

CCA

x → 〈xxT 〉−1/2x = Lx , y → 〈yyT 〉−1/2y = My
(replace data by PCs, “whitening”, unit variance, uncorrelated)
Proof 1: new norm SVD → CCA eigenvalue equations.

max
v

‖Av‖2
y

‖v‖2
x

= max
v

‖MAv‖2

‖Lv‖2 = max
v

‖〈yyT 〉−1/2Av‖2

‖〈yyT 〉−1/2v‖2

= max
v ′

‖〈yyT 〉−1/2A〈xxT 〉1/2v ′‖2

‖v ′‖2

= max
v ′

‖〈yyT 〉−1/2〈yxT 〉〈xxT 〉−1/2v ′‖2

‖v ′‖2

= max
v ′

v ′T 〈xxT 〉−1/2〈xyT 〉〈yyT 〉−1〈yxT 〉〈xxT 〉−1/2v ′

v ′T v ′

Eigenvalues of 〈xxT 〉−1〈xyT 〉〈yyT 〉−1〈yxT 〉 = CCA



Multivariate

Claim: multivariate = replace variances by covariances.

CCA

x → 〈xxT 〉−1/2x = Lx , y → 〈yyT 〉−1/2y = My
(replace data by PCs, “whitening”, unit variance, uncorrelated)
Proof 1: new norm SVD → CCA eigenvalue equations.

max
v

‖Av‖2
y

‖v‖2
x

= max
v

‖MAv‖2

‖Lv‖2 = max
v

‖〈yyT 〉−1/2Av‖2

‖〈yyT 〉−1/2v‖2

= max
v ′

‖〈yyT 〉−1/2A〈xxT 〉1/2v ′‖2

‖v ′‖2

= max
v ′

‖〈yyT 〉−1/2〈yxT 〉〈xxT 〉−1/2v ′‖2

‖v ′‖2

= max
v ′

v ′T 〈xxT 〉−1/2〈xyT 〉〈yyT 〉−1〈yxT 〉〈xxT 〉−1/2v ′

v ′T v ′

Eigenvalues of 〈xxT 〉−1〈xyT 〉〈yyT 〉−1〈yxT 〉 = CCA



Multivariate

Claim: multivariate = replace variances by covariances.

CCA

x → 〈xxT 〉−1/2x = Lx , y → 〈yyT 〉−1/2y = My
(replace data by PCs, “whitening”, unit variance, uncorrelated)
Proof 1: new norm SVD → CCA eigenvalue equations.

max
v

‖Av‖2
y

‖v‖2
x

= max
v

‖MAv‖2

‖Lv‖2 = max
v

‖〈yyT 〉−1/2Av‖2

‖〈yyT 〉−1/2v‖2

= max
v ′

‖〈yyT 〉−1/2A〈xxT 〉1/2v ′‖2

‖v ′‖2

= max
v ′

‖〈yyT 〉−1/2〈yxT 〉〈xxT 〉−1/2v ′‖2

‖v ′‖2

= max
v ′

v ′T 〈xxT 〉−1/2〈xyT 〉〈yyT 〉−1〈yxT 〉〈xxT 〉−1/2v ′

v ′T v ′

Eigenvalues of 〈xxT 〉−1〈xyT 〉〈yyT 〉−1〈yxT 〉 = CCA



Proof 2: SVD of transformed regression MAL−1 maximizes
correlation.

A = 〈yxT 〉〈xxT 〉−1 , M = 〈yyT 〉−1/2 , L = 〈xxT 〉−1/2

max
u,v

uT MAL−1v
‖u‖‖v‖

= max
u,v

uT 〈yyT 〉−1/2 〈yxT 〉 〈xxT 〉−1/2v

‖u‖‖v‖

= max
u′,v ′

u′T 〈yxT 〉v ′√
u′T 〈yyT 〉u′

√
v ′T 〈xxT 〉v ′

u′=〈yyT 〉−1/2u,v ′=〈xxT 〉−1/2v

= max
u′,v ′

cov(u′T y , v ′T x)√
var(u′T y)

√
var(v ′T x)

= max
u′,v ′

correlation (u′T y , v ′T x)

Finds projections of the data that maximize correlation.
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Summary

I Common coupled pattern methods are SVDs of the matrix
of regression coefficients.

I Different pattern methods correspond to SVD with different
norms – measure different properties of the regression.

I If a complete set of patterns are used, all methods give the
same prediction model.

I One method can be transformed to another by
transforming the data.

MCA[X , Y ] = SVD
[
〈yxT 〉

]
CCA[X , Y ] = MCA

[
〈xxT 〉−1/2x , 〈yyT 〉−1/2y

]
RDA[X , Y ] = MCA

[
〈xxT 〉−1/2x , y

]
PPA[X , Y ] = MCA

[
〈xxT 〉−1/2x , (Diag〈yyT 〉)−1/2y

]
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