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ABSTRACT

The relationship between severe storm type and severe storm forecast skill is an issue 
never before resolved in the research community.  Storms from eight tornado outbreaks were
classified and correlated with tornado warnings and severe thunderstorm warnings.  These 
warnings were verified, missed, or shown to be false alarms by relating them with storm reports 
that match temporally and spatially with those in the Storm Prediction Center’s database.  
Certain forecast parameters, including the critical success index (CSI), probability of detection
(POD), false alarm ratio (FAR), and warning lead time are calculated for each storm type and for 
each type of warning.  Because it was not practical to manually classify these storms (~50,000 
entities), a decision tree was trained on a subset of manually classified storms using Quinlan’s 
C4.5 algorithm.  The decision tree was then used to automatically classify storms as being of one 
of four types: supercellular, linear, pulse or unorganized.

  The amount of forecast skill required to issue tornado and severe thunderstorm warnings 
is closely related to the type of storm that causes the severe weather.  It was found that both 
tornado warnings and severe thunderstorm warnings issued for isolated supercells and 
convective line storms have higher CSI, higher POD, and lower FAR scores than those issued for 
pulse and non-organized storms.  Lead times were consistently longer for supercell and line 
storms, while usually very short for pulse and non-organized storms.  It is concluded that 
measures of forecast skill are particularly sensitive to the type of storm. Thus, any measurement 
of forecast skill, such as the year-over-year skill measure of an individual forecast office, has to 
take into account the types of storms in that office’s warning area in the time period considered.
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1. INTRODUCTION

A. Research Motivation

Verifying that a tornado or severe thunderstorm which had a warning issued for it did in 

fact occur assures a forecaster that he/she made the right decision in a dangerous situation.  

Conversely, issuing a tornado or severe thunderstorm warning when conditions seem imminent, 

and having no such event occur can baffle a forecaster many times during his/her career.

Although studies have shown that storm warnings have improved since the introduction of the 

WSR-88D (Simmons and Sutter 2005), lives are still lost and property still destroyed as a result 

of warning errors that still occur.  This raises the question if other factors aside from 

technological limitations are responsible for the quality of tornado and severe thunderstorm

warnings.  

It is hypothesized that the type of storm that spawns these tornadoes or becomes severe

makes it easier or more difficult to warn for them.  Surely, the presence of forecast parameters 

such as vertical wind shear, instability, and lift are key players in tornado and severe 

thunderstorm development.  However, do certain parameters carry more weight than others, and 

if so, do their individual values vary in magnitude depending on the type of storm in question?  

In order to tackle such questions, this paper will first define and analyze certain types of 

storms and their parameters from observed radar data and subsequent algorithms currently in 

operational use by the National Weather Service.  It will then establish a methodology to 

automatically classify storms for the purpose of identifying different storm types in a timely 
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manner for a large data set.  It will conclude with an examination of types of storms that spawn 

tornadoes or become severe that are either easier or more difficult for which to warn.

2.  STORM-TYPE CLASSIFICATION

In order to find a relationship between forecast skill and storm type, a specific storm 

classification system had to be defined.  For the sake of simplicity, four different storm types 

were identified.  The first is “isolated supercell”, defined simply as a thunderstorm with a 

rotating updraft. (Browning 1977) (Doswell and Burgess 1993).  Second was a “convective line”

of storms, defined by Doswell (2001) as two or more cells that are close enough together to 

produce one single outflow boundary.  It should be noted that the presence of said outflow 

boundary in the radar reflectivity field is not the primary trait for identification of convective 

lines – instead we looked for cells that were close together.  The third examined type was “pulse 

storms”, defined for this study as any thunderstorm that is strong or severe but does not possess a 

mesocyclone and rotating updraft.  Such a storm could expect to produce a landspout tornado 

(Lee 1997).  Lastly, any storm that does not meet the previous criteria was classified as a “non-

organized storm”.  Originally, the storm-type “convective line” was to be further delineated into 

“embedded supercells” and “squall line,” however this distinction was abandoned for the sake of 

simplicity.

In order to properly classify these storms manually in the training cases, several variables 

and radar algorithms were used for identification purposes.  The most obvious variables are radar 



4

reflectivity and velocity data, used in this study in the beam scan at the lowest altitude (0.5 

degree beam tilt).  However, these two raw data sources alone were not enough to draw 

conclusions necessary for the storm type classification system.  Thus, many experimental WSR-

88D and multi-sensor algorithms were incorporated to distinguish storm-type.  Perhaps most 

important is the 0 – 3 kilometer merged azimuthal shear, a three-dimensional wind parameter 

calculated by using a linear, least squares mathematical process blended together from multiple 

radars (Smith and Elmore, 2004).  Such a parameter allows us to easily pick out low-altitude 

rotation and thus determine if the storm has rotation associated with it.  Almost as important for 

manually classifying these storms is the thirty minute rotation track, allowing us to easily 

classify storms that have a history of rotation.

Other necessary radar algorithms include two hail parameters, POSH (Probability of 

Severe Hail) and MESH (Maximum Expected Size of Hail) also proved invaluable in identifying 

storm types manually (Witt et al. 1998).  High values of POSH and MESH almost always 

coincide with high values of merged azimuthal shear and thirty minute rotation track values, 

further supporting distinctions between isolated supercells and single-cell pulse storms.  It is 

intuitive that the largest hail exists in the strongest updraft, and a supercell thunderstorm 

possesses the strongest updraft of any thunderstorm.  Lastly, the VIL (Vertically Integrated 

Liquid) also plays a key role in storm cell identification (Green and Clark 1972).  Large values of 

VIL imply large hail and/or very heavy rain, both distinctive qualities of most supercell 

thunderstorms.
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3. DESCRIPTION OF DATA

Because this type of research had never before been established, the data set used was not 

finalized until the methodology was confirmed to yield good results.  All of the radar data was 

collected from the CONUS WDSS-II system – a multi-radar, multi-sensor severe weather 

applications package (Lakshmanan et al. 2007).  Although this system is not yet in operational 

use in National Weather Service offices and is strictly a beta-version, there were no inherent 

problems with the coding that would contribute to faulty results.  In addition, its user-friendly 

interface allowed for easy manual classification of storms and correlation with storm report data.  

The data cases were taken from the National Severe Storms Laboratory internal server from 28 

March 2007, 5 May 2007, 23 May 2007 (for the training data set) 21 April 2007, 10 May 2006, 

14 May 2006, (for the testing data set) 2 January 2006 and 13 January 2006.

The eight days combined made up the complete research data set, approximately 

50,000 storm entities.  These days were chosen because of the high number of tornadoes that 

were observed (263 total reports) and the knowledge that days of tornado outbreaks are equally 

plentiful with severe thunderstorms (1,531 total reported).  It is important to note that the sample 

size was not constrained to any one region of the United States, consisting of forty-five different 

forecast offices geographically located from the Plaines to the Mid-West to the Southeastern 

United States.  The verification data was taken from the Storm Prediction Center’s Local Storm 

Report website (http://www.spc.noaa.gov/climo/).  Although its reports are considered to be 

preliminary, they were sufficient for what was trying to be accomplished.
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4. METHODOLOGY

A.  Polygon Identification and Computer Training

Three cases of tornado outbreaks were initially chosen to be manually classified as the 

training data set for this project: 28 March 2007, 5 May 2007, and 23 May 2007.  Utilizing the 

variables listed in section two from the radar data, storm-type polygons (colored boxes drawn 

with a mouse that correspond to particular storm types) were manually drawn around each 

individual storm cell.  Each polygon corresponded to a specific type of storm, thus completing 

the classification of each storm in range of the radar (FIGURE 1 TOP A).  For each of the three 

days in this data set, this was done every one to two hours of the available radar data (31 images 

total).  Once the manual classification was completed, the unmodified original radar images (no 

polygons drawn on them) were processed with a “k-means” clustering program (Lakshmanan et 

al. 2003) in order to identify storms at different resolutions (FIGURE 2).  The k-means program

looks for “k” number of clusters at various resolutions of radar reflectivity to identify the 

location and size of individual storm cells.  Various statistical properties, such as the minimum, 

average and maximum values of other gridded fields (POSH, MESH, azimuthal shear, etc.) were 

computed within each cluster. These clusters were then overlaid with the radar images containing

the manually drawn polygons to compare which resolution of the k-means cluster identification 

performed the best in identifying storm clusters.  Cluster attributes at the desired scale (160 and 

480 square kilometers for this study) were then used to classify the storms automatically

(FIGURE 3 TOP A) using a decision tree.
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FIGURE 1.  Illustration of the manual classification of storms and the different parameters used 
to classify them.  Storms over central Kansas at 5:02:01 UTC on 6 May 2007:
Top A: Reflectivity at lowest altitude and hand-drawn polygon of storms
Top B: Grid hand analysis of storms
Top C: Max MESH over 30 minute interval
Middle A: Merged 0-3 km Azimuthal Shear
Middle B: Merged Reflectivity Composite
Middle C: MESH
Bottom A: POSH
Bottom B: 30 min rotation track
Bottom C: VIL
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FIGURE 2. The different scales of k-means as they correspond to the radar reflectivity.  Storms 
in Texas panhandle at 5:58:00 UTC on 6 May 2007:
A: Reflectivity at Lowest Altitude
B: K-means scale 0 (20 square kilometer resolution)
C: K-means scale 1 (160 square kilometer resolution)
D. K-means scale 2 (480 square kilometer resolution)
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FIGURE 3. Storms classified by the decision tree and the variables used to classify them. 
Storms in Texas panhandle at 5:58:00 UTC on 6 May 2007:
TOP A: Reflectivity at lowest altitude and unbiased automated storm-type 
classification at storm centroid by decision tree (“L” stands for convective line, “S” 
stands for supercell thunderstorm)
TOP B: Reflectivity at lowest altitude and hand analysis of storms
TOP C: Max MESH over 30 minute interval
MIDDLE A: Merged 0-3 km Azimuthal Shear
MIDDLE B: Merged Reflectivity Composite
MIDDLE C: MESH
BOTTOM A: POSH
BOTTOM B: 30 min rotation track
BOTTOM C: VIL



10

Quinlan’s C4.5 algorithm for creating decision trees was used in this project (Quinlin 

1996), an algorithm that was decided specifically for classification purposes.  It examines the 

cluster attributes of the data one-by-one and picks the cluster attribute and threshold at which the 

information gain is maximized (Kullback and Leibler 1951).  Intuitively, this step can be thought 

of as finding the attribute that will separate the training dataset into two parts, such that the two 

parts are as difference from one another as possible.  The training set is then divided into two 

parts based on this attribute and threshold and the C4.5 algorithm is applied recursively to each 

part. The algorithm stops when all the samples at any leaf of the tree correspond to the same 

storm type.   In this study, a randomly chosen 10% of the training samples were kept behind as a 

validation set.  The decision tree extracted from 90% of the training set was pruned (branches cut 

off) based on this validation set (i.e. any branch of the decision tree that gave the wrong result for 

the storm type was pruned to prevent over fitting of the decision tree to the training data).  

If the decision tree was over fit to the data, it would imply that the decision tree is too 

tailored to the training data set and would not properly classify storms from other data sets (or in 

real time).  Each node of the pruned decision tree provides the storm type corresponding to the 

majority of the samples from which the node was trained.  Although the storms classified by the

decision tree would not always be labeled correctly (the decision tree did not have a 100% 

success rate when classifying these storms), one must keep in mind that on any single radar 

image, usually containing in upwards of fifty storms, very few of these actually spawned a 

tornado or became severe at any particular time.

The decision tree that was automatically extracted was then analyzed to ensure that the 

embedded logic was reasonable. One branch of the decision tree logic regarding low
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FIGURE 4. Visual representation of low precipitation branch of the decision tree used to 
automatically classify storms

precipitation storms is represented by a flow chart (FIGURE 4).  If the mean reflectivity within 

the cluster is less than 48 dBZ, the decision tree moves on to the storm area parameter.  If the 

mean reflectivity is above this value, the decision tree moves on to the aspect ratio parameter.  If 

the aspect ratio is below 3.6, the decision tree yields a convective line storm.  If the aspect ratio
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is above 3.6 however, the decision tree yields a supercell storm.  This process continues through 

all of the available variables until every identified storm is classified.  It is important to note that

one of the most influential parameters in the decision tree when identifying a convective line of 

storms is the aspect ratio.  In addition, although some of these traits are not accurate for all 

storms (i.e. dBZ can be quite low in a low-precipitation supercell) the decision tree was built 

such that the traits are correct in the gross statistical sense.

B. Warning Verification

With the decision tree trained, the test data set was run through the tree’s automated 

classification to see how computer performed.  A testing data was also needed to be absolutely 

sure the tree was not over fit to the training data.  Thus, three additional cases from 21 April 

2007, 10 May 2006 and 14 May 2006 were manually classified (as a source of verification data) 

and run through the decision tree’s automated classification scheme.  The classified storm data 

was then overlaid with the tornado warning polygons issued by the respective National Weather 

Service Forecast Offices for that particular area, in addition to the local storm reports taken from 

the Storm Prediction Center’s database.  Note that a tornado was considered warned if its 

touchdown coincided both temporally and spatially with a warning polygon.  Conversely, if a 

tornado touched down and no warning was issued, the tornado was considered “missed.”  

Furthermore, if a warning was issued and no tornado occurred, the warning was considered a 

“false alarm.”  The same method was used for severe thunderstorm warnings, using a hail report, 
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a high wind report, a tornado report, or a combination of these three to confirm the occurrence of 

a severe thunderstorm.

The forecast skill of a set of warnings is measured in terms of the Critical Success Index 

(CSI), Probability of Detection (POD) and False Alarm Ratio (FAR). 

The CSI is equal to:  _______       hits__________
 hits + misses + false alarms

The POD is equal to: _____hits_____
   hits + misses

The FAR is equal to: ____      hits_____
 hits + false alarms

The automated classification creates multi-category results.  The skill of the classifier can 

be measured in terms of category-by-category accuracy. The overall skill can be measured using 

the True Skill Statistic (TSS) (Woodcock 1976), which acts as an absolute measure based on 

these contingency tables.

The TSS is equal to: _____hits_____  -                false alarms_________
   hits + misses        false alarms + correct negatives

4. RESULTS

A. Decision Tree Results

A multi-category classification decision tree was generated from the manually classified 

images to automatically classify storms in a much bigger data set.  The training set consisted of 
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28 snapshots (1,356 storms) chosen from 28 March 2007, 5 May 2007 and 23 May 2007.  The 

three days worth of data to train this program resulted in hundreds of storms that were classified 

manually.  The decision tree was able to capture the data set (TABLE 1).  Isolated supercells 

were identified correctly about 73% of the time, while convective lines were identified correctly 

80% of the time and pulse storms 72%.  The overall True Skill Statistic of the decision tree for 

the training set was 0.71.   FIGURE 3 TOP A illustrates the automated classification of storms 

from the decision tree.  Note that “L” stands for convective line, while “S” stands for supercell 

thunderstorm.  

Classified Non-
Organized

Classified
Supercell

Classified
Line

Classified
Pulse Accuracy

Observed Non-organized: 464 2 2 58 88.20%
Observed Isolated Supercell: 5 167 16 34 75.20%

Observed Convective Line: 8 47 122 31 58.70%
Observed Pulse Storm: 50 13 15 322 80.50%

Accuracy: 88.00% 72.90% 78.70% 72.40%

TABLE 1. Performance of decision tree based on training data set.

This decision tree was then tested on an independent testing set consisting of 22 

snapshots (1,069 storms) chosen from 21 April 2007, 10 May 2006 and 14 May 2006.  The 

decision tree had an overall True Skill Statistic of 0.58 (TABLE 2), indicating it did much better 

than pure chance would have to classify storms.  It should be noted that the decision tree is 

unbiased on all four categories. For example, supercells are correctly identified 63% of the time 

while 61% of all storms that are identified as supercells are truly supercells.  For the final 
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statistical output, two more cases were added: 2 January 2006 and 13 January 2006.  This 

brought the final tornado count to 263.

Classified Non-
Organized

Classified
Supercell

Classified
Line

Classified
Pulse Accuracy

Observed Non-organized: 498 0 3 68 87.50%
Observed Isolated Supercell: 2 82 14 33 62.60%
Observed Convective Line: 4 28 41 22 43.20%
Observed Pulse Storm: 57 24 25 168 61.30%
Accuracy: 88.80% 61.20% 49.40% 57.70%

TABLE 2. Performance of decision tree based on testing data set.

B. Tornado Warning Forecast Skill Parameters

Certain tornado warning diagnostic parameters were computed for the entire data set, 

such as Critical Success Index (CSI), Probability of Detection (POD) and False Alarm Ratio 

(FAR) (Donaldson et al. 1975).  These three parameters are computed by using the data for hits, 

misses, and false alarms for each individual storm type, yielding insightful information regarding 

tornado warning skill and tornado warning shortcomings with respect to the type of storm that 

spawns them.  It is important to note that the sample size consisted of 45 different forecast

offices geographically located from the Plaines to the Mid-West to the Southeastern United 

States.

FIGURE 5 summarizes the results regarding these forecast parameters.  Overall, 

tornadoes spawned by isolated supercells received the best forecast skill ratings, with an over 

45% critical success index and a less than 50% false alarm ratio.  However, the data clearly
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Tornado Warning Forecast Skill by Storm Type
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FIGURE 5. Critical success index, probability of detection, and false alarm ratio for tornado 
warnings broken down by type of storm

 shows that as tornadic storm type became less obvious (an isolated supercell is more likely to 

spawn a tornado than a pulse storm), forecast skill became progressively worse.  Although

convective line-induced tornadoes had a probability of detection slightly higher than that of 

isolated supercells (82%) they also had a significantly lower CSI (~ 36%) and higher FAR (~

61%).  This trend continued with pulse storms, having a lower CSI (~ 20%), lower POD (~48%) 

and higher FAR (~ 74%).  Non-organized storm tornadoes had the worst CSI (~ 19%) and 

highest FAR (~ 77%), while possessing a slightly higher POD than pulse storms (~ 54%).
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Confidence intervals for these forecast parameters were calculated using the statistical 

method of bootstrap tilting (Hjorth 1994).   It was found that for isolated supercells, one can say 

with 95% confidence that CSI will be at least 50.2%, POD will be at least 86.3% and FAR will 

be at least 54.9%.  For convective line storms, one can say with 95% confidence that CSI will be 

at least 45.1%, POD will be at least 90.4% and FAR will be at least 69.6%.  For pulse storms, 

one can say with 95% confidence that CSI will be at least 27.8%, POD will be at least 59.9% and 

FAR will be at least 81.2%.  Non-organized storms at the 95% confidence level will have a CSI 

at least 33.7%, a POD at least 74.7% and an FAR at least 87.7%.  Thus, the average values 

appear to be supported by this bootstrapping technique.

Further statistics can be done through permutation tests (Hjorth 1994) to see if the

difference between forecast parameters is statistically significant.  For the data set, it can be said

with 95% confidence that forecasters do better (on the order of 25% difference in CSI)  when 

predicting tornadoes that come out of convective lines or supercells than they do on tornadoes in 

pulse storms or "non-organized" storms.  In addition, forecasters seem to have better 

performance (on the order of a 9% difference in CSI) on isolated supercells than on line storms, 

but that difference is not statistically significant at the 95% confidence level.

The average lead times for tornadoes also illustrate a significant difference between storm 

types. There are two ways to calculate lead times (Bieringer and Ray 1995): the method utilized 

by the National Weather Service (missed tornado warnings equal zero lead time) and calculating 

lead time based on verified warnings only (FIGURE 6).  The National Weather Service (NWS) 

method for tornadic isolated supercell average lead time was slightly less than 17 minutes.  

However, if considering only the hits (that is, the confirmed tornado warnings) then lead time
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Tornado Warning Lead Time by Storm Type
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FIGURE 6. National Weather Service method of calculating lead times (0 sec lead time on 
missed warnings) vs. calculating lead times based upon the warned storms only, 
broken down by storm type for tornado warnings

increases to almost 20.5 minutes.  For all convective line storms, average NWS method lead time

dropped to just over 15 minutes, but for the confirmed warnings it was still a respectable 18.6 

minutes.  All pulse storms calculated by the NWS method had average lead times of just over 7.5

minutes, while the warned pulse storms had average lead times of 16 minutes.  Non-organized

storms performed the worst of the four storm types, yielding an average NWS method lead time 

for all of the storms of just over 6 minutes.  The non-organized storms that were warned

possessed a lead time of less than 12 minutes.  To verify if this data set is large enough to 
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represent all tornado warnings, the NWS and hits only method of calculating lead times was 

computed for all storms in the set and compared to the average of all tornado warning lead times

since the introduction of the WSR-88D network (early 1990s).  For the NWS method, an average

lead time of 14.43 minutes was calculated, while the average value since the early 1990s is 13 

minutes (Erickson 2007).  This data yields an average lead time of 19.37 minutes using the hits 

only method, while the average value since the early 1990s is 18.5 minutes (Erickson 2007).  

These values are both quite close; therefore the conclusion that this data is representative enough 

to make conclusions for all tornado warnings is acceptable

  

C. Severe Thunderstorm Warning Forecast Skill Parameters

FIGURE 7 summarizes the results regarding these forecast parameters.  Overall, forecast 

skill parameters for severe thunderstorm warnings improved for all storm types over their 

respective tornado warning parameters.  Isolated supercells that had a severe thunderstorm 

warning issued for them had the best forecast skill ratings, with an over 52% critical success 

index and a less than 40% false alarm ratio.  Their probability of detection was also a solid 80%.  

Convective line severe thunderstorm warnings also performed well, with a 41% CSI and FAR 

just below 50%.  Pulse storms and non-organized storms again performed the worst, with pulse 

storms possessing a low CSI (~ 32%), low POD (~ 59%) and highest FAR (~ 59%).  Non-

organized storms had the lowest CSI (~ 31%), lowest POD (~ 54%) and high FAR (~ 57%).  

Still, these values of forecast skill by storm type are still better than their tornado warning 

counterparts.
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Severe Thunderstorm Warning Forecast Skill by 
Storm Type
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FIGURE 7. Critical success index, probability of detection, and false alarm ratio for severe 
thunderstorm warnings broken down by type of storm.

Confidence intervals for these forecast parameters were also calculated through the 

bootstrap tilting statistical method.  It was found that for isolated supercells, one can say with 

95% confidence that CSI will be at least 55.2%, POD will be at least 82.5% and FAR will be at 

least 42.2%.  For convective line storms, one can say with 95% confidence that CSI will be at 

least 44.6%, POD will be at least 72.0% and FAR will be at least 52.8%.  For pulse storms, one 

can say with 95% confidence that CSI will be at least 34.8%, POD will be at least 63.2% and 

FAR will be at least 62.9%.  Non-organized storms at the 95% confidence level will have a CSI 
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at least 35.9%, a POD at least 60.3% and an FAR at least 62.6%.  Again, the average values 

appear to be supported by this bootstrapping technique.

Permutation tests were conducted on this data as well to calculate its statistical 

significance.  It can be said with 95% confidence that forecasters do better (on the order of 21% 

difference in CSI)  when predicting severe thunderstorms that come out of supercells than they 

do on severe thunderstorms in pulse storms or "non-organized" storms.  They also do better (on 

the order of 10% CSI) when predicting severe thunderstorms that come out of  convective line 

storms than they do on pulse or “non-organized” storms.  In addition, it can be said with 95% 

confidence that forecasters do better (on the order of 11% CSI) when issuing severe 

thunderstorm warnings that come out of supercells than they do on severe thunderstorm 

warnings in convective line storms.  This could not be said of the tornado warning data (due to

the much smaller data set).  The difference in CSI between pulse and “non-organized” storms is 

not significant at the 95% confidence level.

The average lead time for severe thunderstorm warnings is also insightful (FIGURE 8).  

Once again, calculated lead time by both the NWS method and the “hits only” (verified warnings 

only) method yielded insightful results.  For isolated supercells, the average lead time for a 

severe thunderstorm by the NWS method is 17.47 minutes, while it rises to over 21.84 minutes 

with the hits only method.  Convective line average lead times are also quite good, at 14.91 

minutes NWS and 21.91 minutes “hits only.”  Lead time dropped off for pulse storms and non-

organized storms, but not as severely as in tornado warnings.  That is, pulse storms had an NWS 

method average lead time of 11.24 minutes and a verified warning lead time of 19.09 minutes.  

Non-organized storms once again had the lowest NWS method average lead time (10.47
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Severe Thunderstorm Warning Lead Time by 
Storm Type
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FIGURE 8. National Weather Service method of calculating lead times (0 second lead time on 
missed warnings) vs. calculating lead times based upon the warned storms only, 
broken down by storm type for severe thunderstorm warnings

minutes), but surprisingly had a slightly higher verified warnings lead time than pulse storms 

(19.24 minutes).

The average size of the severe thunderstorm warning polygons by storm type is also 

insightful.  Isolated supercells had an average warning size of about 1,250 square kilometers, 

while convective line storm warnings were larger at about 1,525 square km.  Both pulse storm 

warnings and non-organized storm warnings were smaller than isolated supercell and convective 

line warnings in the data set, both at about 1,100 square kilometers.
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5. CONCLUSIONS

A. Data Analysis

Several conclusions can be drawn from the analysis of the data.  It is significant that 

tornadic isolated supercell thunderstorms and convective line storms possess higher CSI, higher 

POD, and lower FAR than pulse storms and non-organized storms.  This makes sense however, 

since pulse storms and non-organized storms do not have rotating updrafts (as do isolated 

supercells or embedded supercells in a line of storms), thus they are usually not expected to 

spawn a tornado.  In fact, many National Weather Service forecast offices are unaware of a pulse 

or non-organized storm spawning a tornado until after a trained spotter has reported a tornado on 

the ground.  Thus, the tornado warning can be much delayed and negatively affect the forecast 

office’s respective CSI, POD, and FAR scores.  

Comparison of the tornado warning lead times by storm type also yields insightful 

results.  Isolated supercells and convective line storms, regardless of the method used to calculate 

tornado warning lead times, have the highest lead times of any storm type (at least 15 minutes).  

This makes sense considering that forecasters do better recognizing tornadic traits in both 

isolated supercells and convective line storms  Conversely, pulse storms and non-organized

storms have the lowest lead times (below 7.5 minutes), which also makes sense considering 

forecasters have the most difficult time predicting tornadoes in storms with no rotating updraft.  

This difference is significant because individual forecast offices could potentially report very 

high CSI, POD, and low FAR scores for a certain tornado season, when in fact they only 
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received isolated supercells and convective line storms for the entire period.  These storms are 

statistically easier to issue warnings for, thus these forecast score values would not be a good 

representation of the skill exhibited by this particular forecast office.  On the other hand, a 

particular forecast office could report very low CSI, POD, and high FAR scores for a certain 

tornado season, when in fact they only received pulse storms and non-organized storms for the 

entire period.  These storms are statistically very difficult to issue warnings for, thus these 

forecast score values would also not be a good representation of the skill exhibited by this 

particular forecast office.

The severe thunderstorm warning forecast skill calculations yield quite similar results to 

the tornado warning skill calculations.  That is, that isolated supercell and convective line severe 

thunderstorms have higher CSI, higher POD, and lower FAR scores than severe pulse storms or 

non-organized storms, thus making them statistically easier to issue warnings for.  This too 

makes sense, since an isolated supercell or convective line is usually much more intense than a 

pulse or non-organized storm, thus forecasters may pay more attention to it and issue a severe 

thunderstorm warning for it more easily.  The permutation tests confirm (due to a much larger 

data set) the significance of the difference in CSI scores (11%) between isolated supercell severe 

thunderstorms and convective line severe thunderstorms, which is interesting since this 

difference was only suggestive for the tornado warning skill scores.  Forecasters thus statistically 

have the easiest time issuing severe thunderstorm warnings for isolated supercells.
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B. Limitations

Although this study has yielded much insight into the ability of forecasters to issue timely 

tornado warnings based on the type of storm that spawned them, it is possible, but not likely, that 

certain limitations may have affected the results.  The sample size included only 263 tornado 

reports, with a total of 532 issued tornado warnings; in addition, although the sample size for 

isolated supercells was reasonable (299 storms), the number of other storm types may have been 

too low to draw absolute conclusions (89 convective line storms, 108 pulse storms, and 36 non-

organized storms).  However, the statistical tests (bootstrapping and permutation tests) indicate 

that the conclusions are statistically significant (at the 95% level) except for those differences in 

skill apparent between supercells and convective lines.

The same problem should not exist with our severe thunderstorm data due to its much 

larger sample size (1,531 storms, with 2,530 warnings issued).  All of the data cases were 

selected from tornado outbreaks, which may explain why the calculated tornado warning lead 

times are slightly higher than the national average (during an outbreak, a forecaster may have an 

easier time issuing a warning since tornadoes have already been reported).  Also, although the 

decision tree did a decent job classifying storms, it is indeed possible that some storms were 

misclassified, thus slightly modifying our results.  Even so, since the decision tree was not biased 

towards any particular storm type (See TABLE 2 and TABLE 3), any misclassifications should 

not introduce any systematic bias into our results.
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C. Future Work

The creation of an automatic classification algorithm of storms and the relationship

between severe weather warnings and storm type provides a plethora of options to pursue future 

work.  The most obvious of these is improvement of the storm-typing algorithm to incorporate 

more categories of storms.  Storm types such as tropical supercells and mini-supercells are 

particularly difficult to warn for, especially in the Southeast United States.  Such an 

improvement to the algorithm could probably reduce the false-alarm rate in that part of the 

country.  Range from the radar site should also be considered, since many storms far away from 

individual WRS-88D radars can be under the beam and not be properly detected.  Aziumuthal 

shear values only from zero to three kilometers in the vertical were used, thus mid-level rotation 

(higher than three kilometers) may not have been seen and thus misclassified by the decision 

tree.  Adding such a parameter most certainly will improve the algorithm’s accuracy.  Tornado 

warning lead time by storm type can also be calculated by eliminating subsequent warnings.  

Since warnings following the very first one tend to have lower lead times, it may be insightful to 

calculate lead times based on the first warning issued for a particular storm only.  

Population density should also be considered.  There are many tornadoes that never get 

reported because of a lack of people in the area calling in reports to their local WFOs.  More 

reports can significantly improve the CSI, POD, and FAR scores of an individual forecast office.  

Although the goal of this project was not to create a storm-type classification algorithm, it was 

certainly a useful result yielded from our methodology.  This algorithm can be used to assist in 

issuing severe weather warnings as an additional forecast tool.
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