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1. INTRODUCTION 
 

A common problem in atmospheric dispersion 
is identifying and characterizing the source of an 
atmospheric contaminant.  Such characterizations 
have been important in quantifying the emissions 
from sources, in spite of the fact that the 
contaminant transport and dispersion may occur 
over a regional domain.  Such problems range 
from identifying the source of particulates through 
attributing one region’s pollution problem to 
sources upstream.   

A recent application of source characterization 
is in the context of homeland and defense 
security. In the event of the release of a hazardous 
contaminant (either accidentally or intentionally), 
decision makers are responsible for appropriate 
action, which might include evacuation, protection, 
and mitigation procedures, as well as summoning 
medical help.  

Various groups have been devising 
techniques to assimilate concentration data in 
order to characterize the source of the 
contaminant. Such techniques include Bayesian 
approaches, Monte Carlo Markov Chain methods, 
four dimensional variational and adjoint 
assimilation methods, Kalman Filter, and statistical 
learning approaches, among others. Rao (2007) 
has recently reviewed some of the techniques. His 
primary categorization is in terms of forward 
models that predict primarily from the source to 
the receptor versus backward techniques that 
invert from the receptor to the source. This present 
work takes a different point of view: we break the 
stages of the source estimation process into the 
elements that are necessary for all algorithms to 
accomplish the same goal. We then build a matrix 
of what type of algorithm or data fills the role of 
each element for source characterization 
techniques found in the literature.  
_____________________________________ 
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The goal of this paper is to compare and 
contrast the different formulations and to outline a 
general paradigm that encompasses all the 
methods.  This paradigm is developed in section 
2, which also presents how the various methods 
fulfill each of the primary elements of the 
paradigm.  Section 3 discusses some of the issues 
that must be considered when tuning each 
technique and discusses the problem of 
confounding variables more deeply. Section 4 
gives a detailed example of the method formulated 
by the authors. Finally, conclusions are made in 
section 5. That section also summarizes and 
discusses how the segments of the different 
methods might be combined to optimize the 
process. We conclude with an analysis of the 
prospects for accurately characterizing sources of 
contaminant. 
 
2. PROBLEM DEFINITION 
 
2.1  The Paradigm 
 

Certain elements of the source 
characterization process is common to all 
techniques.  These elements appear in Figure 1. 
Some methods explicitly treat the problem as one 
in optimization, while for others, the parallel with 
an optimization problem is inferred.  The key 
aspect is to obtain both field monitored 
concentrations and estimates of the predicted 
concentrations at common times and locations.  
Sometimes interpolation is necessary to get the 
data on a common grid. The field monitored data 
is obtained from sensor(s) located in the field.  The 
estimated predicted concentration is produced by 
a dispersion model.  That model requires input 
parameters including source information and 
meteorological data.  Since source information is 
typically what the entire method is designed to 
compute, it is necessary to make “guesses” at 
such data to obtain a concentration estimate.  The 
atmospheric transport and dispersion (AT&D) 
models also require information about the 
meteorological conditions as well as information 
about the site (terrain, land usage, etc.)  Although 
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such data are often assumed to be known, the 
AT&D model can be quite sensitive to errors or 
changes in those conditions as discussed later.   
 The difference between the predicted 
concentrations and those observed are compared 
quantitatively in a cost function. This explicit 
comparison guides the algorithm to generate new, 
better guesses at the input data.  The ways to 
produce these new estimates are the primary 
differences in the various source estimation 
methods. Each method includes some algorithm to 
generate these improved source parameters.  One 
can further break down this “inner” paradigm, but it 
is beyond the scope of this present analysis. 
 

 
 

Figure 1. Flowchart of source inversion process. 
  
2.2 Comparison of Techniques 
 
 Quite a few research groups have 
formulated and tested methods for characterizing 
source variables for dispersion based on 
downwind concentration measurements. Table 1 
(see end of paper) delineates how each of these 
methods fills the elements of the paradigm 
presented above.  That table lists which of the 
source and other parameters are sought, the 
AT&D model used to produce predicted 
concentrations, the inversion techniques, and the 
concentration data used for comparison.  There is 
a wide range of complexity in the methods to 
match the range of applications.  Some methods 
invert for only source strength but on a regional 
scale with sparse field data while others seek 
several meteorological variables in addition to 
characterizing source strength, location, and time 
of release but on a small scale construed grid in 
the context of an identical twin numerical 
experiment (that is, synthetic test data is created 
using the same model filling the role of the AT&D 
model in the algorithm).  The AT&D models range 

from simple back-trajectories and basic Gaussian 
plume models through high resolution 
Computational Fluid Dynamics (CFD) models.  
The inversion techniques themselves tend to be 
quite innovative.  The main inversion categories 
include: 1) Bayesian methods coupled with 
statistical sampling; 2) adjoint and variational 
methods that use a tangent linear version of the 
AT&D model; 3) Kalman Filter and similar analytic 
update approaches; and 4) statistical learning 
techniques such as genetic algorithms and 
simulated annealing.  Each method has its own 
system for evolving better solutions to the 
nonlinear problem without falling prone to finding 
the incorrect local minima to the problem.  In fact, 
such systems constitute an “inner paradigm” that 
will be discussed in future papers. 
 
3. CROSSCUTTING ASPECTS 
 
3.1 Identifying the Issues 
 
 As seen above, we can define a general 
paradigm for the source characterization process. 
There are, however, various “cross-cutting” issues 
that must be addressed by each of the methods. 
These crosscutting aspects represent problems 
that can make the inversion process difficult.  The 
outlook on these issues constitutes the rationale 
for many of the differences in the algorithms.  
Some of those issues are discussed in general 
here to pave the way for understanding the 
rationale behind the decisions made by the 
algorithm developers.  Many of the differences are 
in these details.  

The cross-cutting issues include: 
• Some source variables are coupled, making 

the characterization problem ill-posed. 
• There are various ways to formulate the cost 

function that can produce different 
convergence properties. 

• Sufficient data are required to accurately back-
calculate source variables. 

• Noise in the sensor data and in the modeled 
prediction can contaminate the results. 

• Constructing good verification methods that 
clearly quantify the error yet are sufficiently 
realistic is difficult. 

• There are confounding influences from 
nonlinear sensitivities to variables that may not 
be part of the optimization problem. 

 
3.2 Sensitivity to Meteorological Variables 
  
 We choose to elaborate on one very 
important cross-cutting issue, the final bullet. One 
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confounding issue is the fact that concentration 
predictions are quite sensitive to meteorological 
conditions.  It is typical for modelers to assume 
specific meteorological conditions for making the 
concentration prediction with the AT&D model.  
Meteorology, however, is highly influenced by 
local conditions such as variations in terrain and 
localized heat fluxes.  Errors in such variables can 
produce errors in wind speed and direction that, 
when used to drive an AT&D model, can make a 
large change in the predicted concentration field.  
In addition, there is an inherent uncertainty in the 
turbulence that drives dispersion.  The stochastic 
nature of turbulence makes it difficult to define a 
sufficiently accurate spatially and temporally 
varying wind field to characterize the actual AT&D.  
In addition, the actual AT&D is a single realization 
of an ensemble of possible realizations.  
Sensitivity to initial conditions of the nonlinear fluid 
transport problem makes this a formidable 
problem. 
 Krysta, et al. (2006) noted that, even in a 
wind tunnel environment, the wind variability can 
cause a plume prediction with the concentration 
peak phase shifted from that monitored.  Their 
solution was to make the wind components 
variables of the problem.  That approach produced 
a better match to the data.  That philosophy is also 
adopted by Allen et al. (2007), Haupt et al. (2007, 
2008), and Long et al. (2008) as described below.  
This approach is explicitly added to our paradigm 
flow chart in Figure 2. Note that the difference 
between this figure and Figure 1 is that now the 
meteorological data are also found by the 
inversion routine and used to update the next 
iteration of the concentration prediction. 
 

 
 

Figure 2. Flowchart of Paradigm augmented by 
characterizing meteorological data. 

    

 
4. AN EXAMPLE TECHNIQUE 
 
4.1 Model Formulation 
 

We describe here how one particular 
method fulfills the elements of the paradigm as 
well as how it deals with the confounding issue of 
sensitivity to meteorological variables.  We choose 
the genetic algorithm-based method developed by 
the authors and their students for further 
elaboration (Allen et al. 2007, Haupt et al. 2007, 
2008, Long 2007, Long et al. 2008). Each of the 
primary elements of Table 1 is described in more 
detail after an overview of some elements intrinsic 
to the model formulation. 

The core of the model is the comparison 
of the sensor data with the predicted 
concentrations in terms of a log-normal cost 
function formulation:  
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where: Cr= forecast concentration as predicted by 
the transport and dispersion model at receptor r,  

Rr=observed concentration retrieved from 
receptor r,  

TR is the total number of receptors, and  
a and ε are constants used to avoid taking 

the logarithm of zero (a = 1, here).   131 10ε −= ×
 
4.2 Sensor Data 
 

The applications tested by this technique 
have been in terms of identical twin experiments; 
that is, the transport and dispersion model used to 
optimize agreement with the sensor data is the 
same model that produces the synthetic sensor 
data. The identical twin approach is convenient for 
formulating and testing problems because it 
removes several of the sources of error from 
consideration: we no longer expect inherent 
fluctuations due to turbulence and we are assured 
that the sensor data is not contaminated with 
noise.  Since it allows us to compare to data that 
we know are exact, it allows evaluation of the 
inversion algorithm alone rather than the 
combination of model and data. The disadvantage, 
of course, is that a level of realism is lost in this 
approach.  Thus, the identical twin approach to the 
data element is best suited for algorithm 
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development and analysis rather than for 
estimating absolute performance of an algorithm in 
the real-world setting. As described below, these 
issues can be addressed by adding noise to the 
twin data – we still know the correct solution and 
can evaluate the algorithm. Current plans include 
testing the model with fraternal twin experiments 
(constructed test data with a more refined AT&D 
model) as well as with real sensor data. 
 
4.3 Concentration Prediction 
 

A Gaussian puff AT&D model is used to 
forecast the contaminant concentration. This 
model is used because it is an exact solution of 
the ensemble averaged diffusion equation. The 
problem is formulated in a Cartesian domain. Wind 
is assumed to blow in the positive x-direction (i.e. 
the domain is rotated to so that the x axis aligns 
with the direction of the wind).  This model is 
formulated as: 
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where:  Cr is the concentration at receptor r,  

(xr, yr, zr) are the Cartesian coordinates 
downwind of the puff,  
Q is the emission rate,  
∆t is the length of time of the release itself,  
t is the elapsed time since the release,  
U is the wind speed,  
He is the effective height of the puff 
centerline, and  
(σx, σy, σz) are the standard deviations of 
the concentration distribution in the x-, y-, 
and z-directions, respectively.  
The transport is in the x-direction at wind 

speed, U and the contaminant dispersed in the y- 
and z-directions with standard deviation of the 
spread given by the dispersion coefficients. The 
dispersion coefficients are computed according to 
Beychok (1994). 
 

[ ]{ }2exp ln( ) (ln( )I J x K xσ = + +              (3) 

 
where x  is the downwind distance (in km) and 

,  ,  d anI J K are empirical coefficients dependent 
on the Pasquill Stability Class, which characterizes 
the atmospheric turbulence scales. The 

coefficients are then looked up in tables to 
produce  and  Beychok (1994). The 

dispersed pollutant form the  of (2) and the 

monitored data, 

yσ zσ

rC

rR  are the concentration values 
that are compared in the cost function (1).  
 
4.4 Sensitivity to Meteorological Variables 
 
 As noted above, there is a recognized 
sensitivity of the concentration forecasts to errors 
in meteorological variables.  The approach to 
ameliorating this problem taken here is to address 
it directly by including those variables in the 
solution process.  Like Krysta et al. (2006), we 
formulate the problem to additionally solve for 
wind speed and wind direction.  Note that in other 
work, we study the value of adding more variables 
to the back-calculation, including atmospheric 
stability class (Haupt et al. 2008) and depth of the 
planetary boundary layer (Annunzio et al. 2008).  
For the work reported here, we concentrate on 
solving for six  variables: source location (x,y), 
source strength, time of release, wind speed, and 
wind direction. 
 
4.5 Solution Technique 
 

For this problem we chose a continuous 
parameter GA, that is, one in which the 
parameters are real numbers. Figure 1 flowcharts 
the GA solution process. The genetic algorithm 
starts with a population of random vectors (i.e. 
chromosomes) that are evaluated using the  
forward model and cost function (1). Here we use 
a uniform crossover scheme that blends all 
parameters, not just a single parameter at the 
crossover point. This blending scheme has the 
advantage of simultaneously changing all 
parameters, which can improve performance when 
the response of the cost function to some of the 
parameters is correlated. In this case, the 
response to source location and wind vector are 
highly correlated. The number of new 
chromosomes produced by mating is determined 
by the selection rate, which is the fraction of the 
population retained in each generation.  

A single guess of the variables to be 
optimized is placed in a row vector called a 
chromosome. The GA works with many such 
guesses at once, so a matrix of trial solutions is 
formed with chromosomes as the rows. Initially, all 
of the chromosomes in the population matrix 
contain random values taken from each variables 
physically possible range. This matrix is passed to 
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the cost function and a column vector of costs is 
returned.  

Two primary operations drive the solution 
to evolve toward the optimal solution: mating and 
mutation. The operation of mating combines the 
variable values from the best trial solutions to 
produce a new population of improved variable 
estimates. The GA is quite robust at solving 
difficult nonlinear coupled optimization problems 
with a multitude of local minima that are difficult for 
traditional techniques. More details of the GA 
technique are described by Haupt and Haupt 
(2004). 

The chromosome population is further 
modified through mutations. Mutations replace 
individual values with new random values. The 
mutation operator generates new solutions to 
maintain an adequate sampling of the parameter 
space, preventing premature convergence to a 
suboptimal set of parameter values. The number 
of mutations in each generation is controlled by 
the mutation rate. 

Each round of mating and mutating 
constitutes one GA generation. We run the GA for 
a pre-determined number of iterations, or until 
convergence has occurred.  We employ elitism, 
which prevents the best solution computed in each 
generation from being changed until it is 
supplanted.  
 

  
Figure 3. Flowchart of the continuous GA. 

 
We use a hybrid GA, which uses the GA 

to find the correct solution basin, then applies the 
Nelder-Meade Downhill Simplex (NMDS) method 
to complete finding the minimum point of that 
basin.  The rationale for this combination is that 
the GA is sufficiently robust to usually find the 
basin of the global minima.  Once that basin is 
identified, however, the NMDS finds the bottom of 

that basin more rapidly.  As demonstrated in in 
Allen et al. (2007), the NMDS method alone is not 
reliable for finding the global minimum. 
 
4.6 Evaluation 
 
 Since this model was formulated to 
develop academic insight, it has been tested in a 
multitude of formulations (Haupt 2005; Haupt et al. 
2006; Allen et al 2006, 2007; Haupt et al 2007; 
Long 2007; Long et al 2008) including in papers 
presented at this conference (Annunzio et al. 
2008, Rodriguez et al. 2008; Haupt et al. 2008; 
Long et al. 2008b).  For the six parameter version 
described here, see the results of Long et al 
(2008) and Haupt et al (2008). Its performance 
has been quantified by including a large number of 
Monte Carlo runs (Haupt et al. 2006, 2007, Long 
et al. 2008a).  We have included noise in the data 
to determine the ability of such a model to 
reconstruct the source and meteorological data in 
a realistic noisy scenario (Haupt et al. 2006, 2007, 
Long et al. 2008a).  We have even attempted to 
quantify how many sensors are necessary for a 
given level of noise in the data and a given 
correlation between the succeeding time steps 
(Long et al. 2008a, Haupt et al. 2008).  The reader 
is referred to those other works to see details of 
model performance.  
 
5.  CONCLUSIONS 
 
      This paper defines a paradigm for 
addressing the source characterization problem. 
Given field sensor data, various techniques have 
been developed to back-calculate source 
variables. Each of these techniques requires some 
method to predict concentrations to compare them 
to the measured sensor data, then to update the 
source variables to produce a better prediction.  
Table 1 delineates how each of those techniques 
fulfills the elements of the paradigm, including the 
inversion variables, an AT&D model, inversion 
technique, and test data that supply the sensor 
data.  Some cross-cutting issues are described 
and one specific issue that deals with the 
confounding effects of meteorological conditions is 
elaborated on. More details of a GA-based 
technique are used as an example of the 
paradigm. 

In future work, we plan to delve deeper 
into this paradigm by dissecting the inversion 
techniques. The inversion techniques themselves 
have several commonalities that are discerned by 
studying them in more detail. There are additional 
cross-cutting issues that are relevant at that level. 

 5



Again, each group of technique developers have 
devised ways to deal with those issues. 
 In summary, there are many ways to 
approach the source characterization problem.  
Various teams have developed viable solution 
methods.  Each of those methods displays 
strengths and limitations.  It is instructive to 
analyze their relative merits.  A “best” technique 
might combine the strengths of several of these 
techniques. 
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Table 1. Elements of Paradigm Model for development groups 
 

Who AT&D Model Application (data) Inversion 
Variables 

Inversion 
Technique 

Allen et al 2006 Source 
Strength  
Time of Release 

SCIPUFF Genetic Algorithm Dipole Pride 26 

Allen et al (2007) 
Haupt et al. (2007) 
Long et al. (2008) 
Haupt et al. (2008) 

Strength  
Location (x,y,z) 
Time of Release 
Wind speed 
Wind direction 
Stability category 

Gaussian Puff Genetic Algorithm Identical Twin Data with 
Noise 

Bergin&Milford 
(2000) 

“uncertainty” of 
concentration  

Lagrangian 
photochemical 
air quality model

Bayesian Monte 
Carlo 

2 cases of 2-day ozone 
trajectories 

Bouquet & Krysta 
(2007) 
Bouquet (2005a,b) 

Activities (source 
strength) 

Eulerian 
dispersion model 
(Advection-
diffusion 

Maximum entropy Twin synthetic 

Brown, et al. 
(2005) 

Location (x,y,z) 
Mass 
Time 

SCIPUFF Adjoint/tangent 
linear 

DP26 

Camelli & Lohner 
(2004) 

Location (x,y) CFD 
FEFLO 

GA 1. 6 building simulated 
urban scenario 
-2. Subway station 

Chang, et al.  
(1997) 

Emission scaling 
factors 

Urban Airshed 
Model 

Kalman Filter Atlanta – 2 days Aug. ‘92 

Chow, et al (2007) Location (x,y) 
Release Rate 

3D CFD 
FEM3MP 

Stochastic 
Sampling (MCMC)
with Bayesian 
inference 

 2. JU2000 
1. Flow about cube 

Elbern, et al. 
(1997) 

Source strength 
(multiple sources) 

Regional 
chemical 
transport model 
(RADM2) 

4D variational/ 
Adjoint 

1. Simulated 
2. Real 

Haas-Laursen, et 
al. (1996) 

Sources and sinks 
of chemicals 
(flux) 

Effectively 
Sampled Region 
(ESR) 2D 
AT&D &chem 
model 

Kalman filter Synthetic 

Haupt (2005) 
Haupt et al. (2006) 

Source 
Strength (multiple 
sources) 

Gaussian Plume Genetic Algorithm Identical twin synthetic data 
with noise 

Hourdin & 
Talagrand (2006) 

Strength LMDZ – GCM 
w/ chemistry 
1D advection 

Adjoint ETEX 

Howeling, et al. 
(1999) 

Sources and sinks 
of methane (flux 
regions) 

Global transport 
3D model (TM2)

Adjoint NOAA cruise data 

Issartel (200% 
Issatel & Baverel 
(2003) 

Location 
Strength 
Time 

Advection 
equation 

Adjoint functions 
with illumination 

ETEX 
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Who Inversion 

Variables 
AT&D Model Inversion 

Technique 
Application (data) 

Kaminski & 
Hermann (1999) 

CO2 fluxes on grid 3D course grid 
transport model 

Bayesian synthesis Global CO2 observations 

Keats, et al. 
(2007a,b) 

Location (x,y,z) 
Strength 

Advection equation Bayesian 
inference & 
MCMC 

Urban field data  
(MUST & JU2003) 

Krysta, et al. 
(2006) 

Emission rate 
Wind (u,v) 

Gaussian Puff Variational - 
minimization 

Wind tunnel data – near 
nuclear plant 

Monache, et al. 
(2007) 

Location (x,y) 
Release Rate 

Lagrangian particle 
model 

Stochastic 
Sampling 
(MCMC) with 
Bayesian 
inference 

European release 

Pudykiewicz 
(1998) 

Strength 
Location (x,y,z) 
Time of release 

Advection eqn w/ 
Gaussian diffusion 

Adjoint Chernobyl nuclear accident

Robertson& 
Langner ((1998) 

Location (x,y,z) MATCH (off-line 
Eulerian) 

“poor mans” 
Variational 
Method 

ETEX 

Robins, Thomas, 
Rapley (2005a,b; 
2006) 

Mass 
Location (x,,y) 
Time of release 
Material type 

Gaussian Bayesian stats & 
Diff Evolution 
MC 

Simulated data 

Stohl, et al. (2002) Probability of 
initial location 

Lagrangian Particle 
Model(FLEXPART)

Back Trajectories 
and cluster 
analysis 

1. Synthetic lidar profiles 
2. synthetic surface 
concentration 

Sykes (2007) Mass(scaling) 
Location (x,y) 

HPAC Adjoint Method 1. ETEX 
2. Dugway ensemble expt: 
case 10 

Thomson, et al. 
(2007) 

Strength 
Position 

Gaussian plume Random search w/ 
simulated 
annealing 

Desert field data 

Wotawa, et al. 
(2003) 

Emission factors Conceptual 
(Lagrangian) 

Source Receptor 
Matrix 

Synthetic scenarios 

Vukicevic & Hess 
(2000) 

Transport 
(Sensitivity of 
mixing ration) 

Transport & Chem. 
Transformation 
model (HANK) 

Adjoint Chemical concentration at 
Hawaii -Field data 

 


