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1.  INTRODUCTION  
 
 Transport and dispersion models are 
important tools for predicting the impact of a 
chemical, biological, radiological, or nuclear 
(CBRN) release. In an emergency situation local 
authorities require a fast and accurate forecast of 
the dispersion of the harmful contaminant so as to 
alert or evacuate the residents of the threatened 
area. To produce such forecasts, transport and 
dispersion models need accurate information on 
source characteristics and various meteorological 
fields. The source information, i.e. source location 
and strength, is complicated to determine. In 
contrast, meteorological information, such as wind 
direction and speed is routinely available from land 
surface stations or numerical weather prediction 
(NWP) models. The meteorological data is, 
however, likely to be sparse or inaccurate because 
of low monitoring network densities, observational 
errors and the finite grid resolution of NWP 
models. Therefore, emergency managers need to 
use all of the data available, both meteorological 
and concentration data, to produce a better 
forecast of the dispersion of the hazardous 
contaminant. Data assimilation provides a 
methodology for this class of problem. With data 
assimilation we can combine all available 
multivariate information into a unified description 
of the coupled weather and concentration system 
and so improve the forecast model performance. 

The current study compares the 
performance of the conventional data assimilation 
techniques used in NWP applied in an 
unconventional framework introducing the 
assimilation of both wind and concentration 
observations. For this purpose a simple two-
dimensional wind model is coupled with a basic 
transport and dispersion model. The performance 
of the data assimilation techniques is assessed 
through a series of identical twin experiments. 
After the assimilation period, wind and 
concentration forecasts are compared for different 
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observational network setups and densities. The 
goal is to find a data assimilation method that 
improves the forecast not only of the hazardous 
contaminant but also of the wind field. Moreover, it 
must do so in a timely enough fashion to be of use 
in CBRN emergency situations. 

The performance of atmospheric transport 
and dispersion models highly depends on the 
quality of the driving meteorological fields. Thus, 
there are several approaches to improve the 
concentration forecast. Davakis et al. (2007) used 
a multivariate optimal interpolation scheme 
(Gandin 1963) to assimilate wind velocity 
observations into a diagnostic meteorological 
model. Davakis reported an improvement in the 
performance of the transport and dispersion model 
driven by the wind field output of this diagnostic 
model. Other approaches directly assimilate 
concentration observations into the dispersion 
model. Constantinescu et al. (2007) used an air 
quality model and the ensemble Kalman filter to 
improve the concentration fields of both directly 
observed and unobserved chemical species. 
Daley (1995) used a different approach to improve 
the performance of transport and dispersion 
models, showing that it is possible to recover the 
wind field directly from chemical constituent 
observations. Daley used the extended Kalman 
filter and a one dimensional constituent transport 
model coupled to a linear wind model. The 
forecast performance was improved, provided that 
the concentration observations were sufficiently 
accurate and frequent. Stuart et al. (2007) studied 
the ensemble Kalman filter in the context of a two 
dimensional sea breeze model directly coupled 
with chemical tracer transport. The ensemble 
Kalman filter did not only improve the forecast of 
the constituent but also the wind field.  
 These studies demonstrate that 
concentration assimilation can be implemented 
successfully in coupled dispersion and wind model 
systems. However, these studies worked with a 
continuous concentration field and so were subject 
to computational dispersion of their advective 
scheme, and to additional computational cost 
compared to the entity based concentration 
assimilation system discussed here.  
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 Emergency response situations place 
harder constraints on dispersion models than air 
quality applications (Fast et al. 1995). In a CBRN 
release the constituent plume or puff is more 
localized. Most of the observation stations report 
zeros. Emergency managers are also under a time 
constraint. The current study uses data 
assimilation to try to improve the forecast not only 
of a hazardous contaminant but also of the wind 
field under the given constraints. 
 In Section 2 the model used as a test bed 
will be discussed. The experimental setup and the 
data characteristics are provided. Section 3 lays 
out the main characteristics of the data 
assimilation techniques to be tested. Section 4 
details the results. The conclusions and 
implications are discussed in Section 5. 
 
2.  EXPERIMENTAL DESIGN  
 
 The Gaussian Puff model (Arya 1999) for 
an instantaneous release suggests itself for initial 
testing of the different assimilation techniques as it 
is the most basic time-dependent ensemble-
averaged dispersion model. It requires a minimum 
of input information, is easily implemented, and 
treats the release as a computationally efficient 
single entity. To drive the Gaussian Puff model a 
reduced gravity two dimensional shallow water 
model (Holton 1992) is chosen, again due to its 
simplicity and straightforwardness. TusseyPuff 
couples these two model elements and provides a 
basic but comprehensive test environment. 
 
2.1. The TusseyPuff System 
 

The shallow water model is based on the 
following equations of motion: 
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Where, u is the zonal velocity component, v is the 
meridional velocity component, g’ is the reduced 
gravitational acceleration ,TTgg /' ∆= ρ is the 
density and h is the depth of the fluid layer being 
modeled. The stress at the bottom of the layer Bτ  
is parameterized as:  
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where is the drag coefficient, taken here to be 
0.02.  

Dc

The model domain spans 9 km x 9 km, with 30 x 
30 grid points, yielding a grid spacing of 300 m in 
both the x- and the y-direction. The mean fluid 
depth of the layer is chosen to be 500 m, the 
temperature of the layer T is 300 K and the 
temperature discontinuity above the layer ∆T is 
chosen to be 12 K, resulting in a gravity wave 
speed hgU '= of approximately 14 ms-1.  
 A centered in time and centered in space 
(leapfrog) finite differencing scheme (Pielke 1984) 
is used to approximate equations (1)-(3). The 
leapfrog scheme was chosen because it is simple 
to implement and it is linearly stable (Pielke 1984). 
All three model variables (u, v and h) are diffused 
in space as shown in equation (5) (Pielke 1984).  
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Furthermore, to prevent time splitting of the 
solution, every 10 time steps an Asselin time filter 
(Asselin 1972) is employed. The variables are 
averaged in time to assure that even and odd time 
steps remain consistent with each other. 

For simplicity, periodic boundary 
conditions are imposed in both the x and y 
direction (Pielke 1984). Topography is introduced 
into the model to create a more diverse and 
chaotic wind field. The model is initialized with a 
small fluid height perturbation, the simplest 
possible mesoscale weather system. Figure 1 
shows the shallow water domain with the 
topography at the initial time.  

The Gaussian Puff model computes a 
concentration field of a dispersed contaminant C, 
depending on the emission rate Q of the 
contaminant, the distance between receptor 
location and the puff center )( xx −  and )( yy − , 
and the puff spread σ (Beychok 1995). 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−⋅= 2

2

2

2

2 2
)(exp

2
)(exp

2 σσσπ
yyxx

H
QC   (6) 

The puff spread σ is obtained by converting the 
Pasquill Gifford dispersion coefficients into 
analytical equations (Beychok 1995). This study 
uses Turner’s equation for σ (McMullen, 1975): 

)))(ln()(ln(exp( 2XKXJI ⋅+⋅+=σ            (7) 
where X is the downwind distance to the receptor 
from the source (in km) and I, J and K are 
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constants that are functions of the atmospheric 
stability class provided by McMullen. This equation 
can be written in prognostic form by replacing X 
with U·t and taking the derivative with respect to t. 
The puff center location is predicted via advection. 
The puff advection equations and the equation for 
the puff spread (7) are discretized with a simple 
forward in time scheme (Pilke 1984). The resulting 
model equations are: 
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For some data assimilation techniques, such 

as 4D-Var and the extended Kalman filter, it is 
necessary to derive the tangent linear model, L, 
and the adjoint model,  (Kalnay 2003). In this 
study the tangent linear model and the adjoint 
model are constructed directly from the discretized 
Tusseypuff model equations. However, using an 
adjoint model derived from the leapfrog finite 
difference approximation can cause an oscillatory 
computational mode resulting from the 
computational mode of that leapfrog scheme 
(Sirkes and Tziperman 1997).  Therefore, a 
forward in time – centered in space finite 
differencing scheme is used and the tangent linear 
and adjoint model derived will only be 
approximations. This is sufficient for the scope of 
this study, because even with an approximate 
adjoint model successful error propagation can be 
achieved (Schiller and Willebrand 1995).  

TL

 The tangent linear and adjoint model 
equations are derived following Giering and 
Kaminski (1998). The model equations are first 
discretized and then nondimensionalized. The 
nondimensionalization eliminates the need for ad 
hoc scaling and guarantees a dimensionally 
consistent adjoint model. The tangent linear 
equations of the TusseyPuff system can be written 
in a form such that an initial perturbation evolves 
in time as follows: )()( 0txLtx δδ = . The adjoint 
equations can be put in matrix form in a similar 
manner, so that a perturbation at time t is 
propagated backwards in time: . 
For the propagation of perturbations over multiple 
time steps the tangent linear and the adjoint model 
matrices are multiplied (Kalnay, 2003). 
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2.2. Data Characteristics 
 

The TusseyPuff model is used for the data 
assimilation tests as well as the generation of the 
observations used for the data assimilation. This 
identical twin approach is advantageous for a test 
environment, because it allows us to compare the 
performance of the different data assimilation 
schemes with a known ‘truth’.  
 The ‘truth’ is created by first initializing 
TusseyPuff with a uniform wind field and a small 
fluid-height perturbation. After a startup time, 
during which the model is run forward to achieve 
consistent velocity and height fields, the 
contaminant puff is released. The release location 
was chosen such that the puff trajectory passes 
through the terrain driven flow. 
 The resulting data fields are then used to 
derive the observations used by the data 
assimilation. A variable number of observation 
stations are set up randomly in the model domain. 
The observation stations are located at model grid 
points, for simplicity, so no interpolation is 
necessary. The same setup of stations is used for 
all test scenarios. The sensors record wind 
velocity and direction, the concentration of the 
contaminant, or both, depending on the 
experimental setup, every ten model time steps. A 
random normal error of 5% of the value is added 
to the observational fields.  

To decrease the size of the forecast error 
covariance matrix and to minimize computer run 
time, this study does not assimilate the continuous 
concentration fields, but rather the four puff 
parameters, the puff center x  and y , the puff 
spread σ and the puff concentration amplitude Q. 
These puff parameters are derived from the 
continuous concentration field by fitting a 
Gaussian distribution (6) to the observations. 
While computationally more efficient than 
assimilating the continuous concentration 
observations, this approach adds uncertainty 
when the puff is still small and only a few sensors 
are hit. 
 
2.3. Modeling 
 

Figure 2 shows a diagram outlining the 
experimental setup. At the time t=0 the 
contaminant is released. TusseyPuff assimilates 
observations over two thirds of the post-spin up 
run and continues in forecast mode hereafter. 
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Other inputs required by some of the 
assimilation schemes include the background or 
forecast error covariance matrix (P) and the 
observation error covariance matrix (R). The initial 
forecast error covariance matrix P is assumed to 
be known from previous forecasts. The 
observational error, however, has to be estimated. 
It is assumed to be uncorrelated in space, 
resulting in a diagonal error covariance matrix R. 
For this study the expected observational error for 
the velocity fields is fixed in time and estimated to 
be 10% of the mean value of the observation. The 
expected errors of the puff parameters are 
estimated by running an ensemble of 500 different 
realizations of the puff parameter fitting process 
described above and comparing these realizations 
with the truth. 
 Three different assimilation test scenarios 
are each tested at varying sensor densities. In the 
first test scenario only concentration data is 
assimilated into the TusseyPuff model. In the 
second test scenario only wind observations are 
used in the assimilation. For the third test scenario 
both wind and concentration observations are 
assimilated.  
 
2.4. Validation 
 

The performance of the data assimilation 
technique is assessed by comparing the model 
results to the identical twin from which the 
observations were obtained. To compare the puff 
trajectories throughout the model run, the root 
mean squared distance error (RP) of the puff 
center locations ),( yx  is calculated.   
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where t denotes the known ‘truth’, f denotes the 
forecast and T is the number of time steps. The 
root mean squared error of the final wind forecast 
(RW) is calculated as follows: 
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where t again denotes the ‘truth’, f denotes the 
forecast and N is the number of grid points. The 
final concentration forecast is evaluated by 
calculating the root mean squared error of the final 
concentration field, using equation (15) and 
normalizing by the RC value of the model run 
without data assimilation. 
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The last factor that is taken into account in the 
evaluation of the performance of the data 
assimilation methods is the computer run time 
(CRT). 
 
3.  DATA ASSIMILATION  
 

Some of the more advanced, frequently 
used data assimilation techniques in NWP 
applications include optimal interpolation (Gandin, 
1963), three-dimensional (Sasaki, 1970) and four 
dimensional variational analysis (3D and 4D-Var) 
(Lewis and Derber, 1985), extended Kalman 
filtering (Kalman and Bucy, 1961), ensemble 
Kalman filtering (Houtekamer and Mitchell, 1998), 
and Newtonian relaxation (Data Nudging) (Hoke 
and Anthes, 1976). For our purposes, i.e. the 
prediction of transport and dispersion of a CBRN 
release, a flexible assimilation method is needed, 
not only to improve the accuracy of a forecast with 
time dependent observational data, but also to use 
the CBRN concentration data to modify and 
correct the predicted wind field and vice versa. 
Both of the Kalman filter techniques, 4D-Var, and 
Nudging are structured to fit our needs. Therefore, 
these four data assimilation techniques are 
discussed below and then tested with the 
TusseyPuff model.  
  
3.1. Nudging 
 

Nudging is a computationally efficient 
technique that relaxes the model state toward the 
observations by adding an artificial tendency term 
to the prognostic equations (Stauffer and Seaman, 
1993).  
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Equation (16) provides an example, 
implemented as the last term in the zonal 
momentum equation in TusseyPuff. A similar term 
is added to the meridional momentum equation, 
the equation for the location of the puff center, the 
equation for the puff spread σ and the equation for 
the puff concentration amplitude Q. The weighted 
increment - the difference between observation 
and forecast - is subtracted at each time step. The 
relaxation time scale ,τ  which acts as a 
proportionality constant for the nudging term, is 
always positive and is chosen based on scaling 
arguments so that the nudging tendencies are 
relatively small compared to the other terms in the 
prognostic equations (Stauffer and Seaman, 
1993). The relaxation timescale is fixed in time at 
a value of 0.01. 
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Nudging is simple to implement but it can 
assimilate only those variables that are explicitly 
modeled, which is a disadvantage when only 
concentration observations are available. To 
overcome this limitation and bridge the gap 
between the concentration observations and the 
wind model, Feature Extraction is used. At each 
time step the advective error is estimated from the 
gradient of the concentration error. The difference 
in the forecast and the observed concentrations 
fields is calculated. The strongest gradient in this 
difference field is scaled and becomes the new 
wind vector, which is used in the next assimilation 
step to nudge the TusseyPuff system.  
 To improve the Nudging performance the 
relaxation term is spatially weighted with a 
Cressman weighting function (Cressman, 1959), 
so that the wind field is nudged not only at one 
grid point at every assimilation step, but over an 
area of grid points surrounding each observation. 
The radius of influence for this weight function is 
chosen to be one grid point. This provides an area 
with a diameter of five grid points to nudge over. 
 
3.2. Kalman Filter 
 

As with Nudging, the Kalman filter 
technique assimilates the observations 
sequentially each time step during the model run 
(Caya et al, 2005). However, instead of 
subtracting a fixed fraction of the model error at 
each assimilation step, the weight for the 
increment is calculated so it minimizes the 
forecast error (Kalman and Bucy, 1961). 

The filtering process consists of a forecast 
step and an analysis step (Kalnay, 2003). In the 
forecast step the TusseyPuff model M produces a 
forecast xf with the analysis xa of the previous time 
step.  
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In the analysis step the forecast xf is updated with 
the increment weighted with the 
Kalman gain matrix, K. H is the forward-
interpolation matrix from the model grid to the 
observational grid.  
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The Kalman gain matrix represents the optimal 
weight that minimizes the analysis error (Kalnay, 
2003). The Kalman gain matrix for time i is: 
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 where R is the observation error covariance and 
fP is the forecast error covariance matrix. Hi 

represents the linearized Jacobian  which 

is identical to H, because H is an identity matrix in 
TusseyPuff. 
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 Two Kalman filters are tested in 
TusseyPuff, the extended and the ensemble 
Kalman filter.  These two approaches differ in how 
the forecast error covariance matrix P is 
estimated. 
 
3.2.1. Extended Kalman Filter 
 

The extended Kalman filter is a variant of 
the Kalman filter that can be used for nonlinear 
problems (Miller et al. 1994) and is hence suitable 
for transport and dispersion applications.  
Equations (16) – (18) describe the Kalman filtering 
process (Kalnay 2003). In the extended Kalman 
filter the forecast error covariance is estimated 
using the model itself. In the forecast step the 
forecast error covariance Pa of the previous time 
step is advanced in time using the tangent linear 
model L and the adjoint model Lt.  
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A small model error η with the covariance matrix Q 
is added to the forecast error covariance (Kalnay 
2003). The initial forecast error covariance Pa(t0)  
is assumed to be known. In the analysis step not 
only the forecast xf but also the forecast error 
covariance matrix Pf are updated. 
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Depending on the complexity of P, the matrix 
multiplications in equations (19), (20) and (21) can 
dominate the computational cost. In our case the 
matrices P and L have  elements. This 
makes the extended Kalman filter computationally 
expensive. The situation would be exacerbated if 
continuous concentration fields were used instead 
of the puff parameters. 
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3.2.2. Ensemble Kalman Filter 
 

A promising simplification of the extended 
Kalman filter is the ensemble Kalman filter 
(Kalnay, 2003). In this approach an ensemble of 
data assimilation cycles is carried out 
simultaneously. The ensemble Kalman filter does 
not specifically integrate the forecast error 
covariance forward in time, but instead computes 
it diagnostically from the spread of the model 
states across the ensemble (Houtekamer and 
Mitchell, 1998). Again the filtering process consists 
of a forecast step and an analysis step. In the 
forecast step an ensemble of k state vectors 

 from the previous time step is integrated 
forward in time.  
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This study uses k=5 ensemble members. The 
ensemble is built manually with different initial 
wind conditions to span the space of expected 
uncertainty. The source characteristics stay 
unchanged across the ensemble. At each forecast 
step, the forecast error covariance Pf is estimated 
from the difference of each ensemble 
member and the ensemble meanf

kx fx . 
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In the analysis step the ensemble of forecasts is 
updated with the increment weighted with the 
Kalman gain matrix (18). 
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Again, H is the forward-interpolation matrix from 
grid to observation network. For the ensemble 
Kalman filter the expected errors in the 
observation error covariance R are inflated by a 
factor of five. This ensures that the ensemble does 
not converge too quickly to the observations and 
that the ensemble spread stays sufficiently large. 
 The ensemble Kalman filter approach 
avoids complicated matrix operations, because the 
forecast error covariance is not advanced in time 
using the tangent linear and adjoint model. So, the 
ensemble Kalman filter is computationally less 
expensive than the extended Kalman Filter, even 
thought the model has to run several times 
according to the number of ensemble members. 
 
3.2.3. 4D-Var 
 

Unlike the Kalman filters and Nudging, 
four-dimensional variational analysis (4D-Var) 
does not assimilate observations sequentially 
each time step. 4D-Var tries to find the optimal 
analysis  that best fits the background field 
and all the observations by minimizing a scalar 
cost function (Lewis and Derber, 1985). The 
TusseyPuff prediction model is used as a strong 
constraint. The cost function (37) consists of two 
parts: the difference between the analysis and the 
background x
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where B is the background error covariance, R is 
the observation error covariance at time i and H is 
again the forward-interpolation matrix. For the 
identical twin experiment the cost function is 
simplified as follows (Li et al 2000): 
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To minimize this cost function, its gradient is 
calculated with the help of the adjoint model . TL
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With the initial conditions xa(t0) the TusseyPuff 
model is run forward and the forecast  and the 
adjoint model L

a
ix

i
T are calculated. Throughout the 

time steps the adjoint model matrices are 
continuously multiplied according to equation (12). 
The gradient is calculated at each time step and 
summed up throughout the model run. With the 
adjoint model the analysis errors are propagated 
backward in time to the release time (t=0). 
Furthermore, the adjoint model connects the 
concentration field to the wind field, so, as with the 
Kalman filter, the 4D-Var scheme can assimilate 
modeled and non-modeled variables. At the end of 
the model run, a simple steepest descent method 
is used to compute the change in the initial 
conditions xa(t0) (Kalnay, 2003).  
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The factor a is chosen arbitrarily. The initial 
conditions are adjusted accordingly and the 
procedure is repeated for twenty iterations. 
 4D-Var is computationally expensive, 
because the adjoint model matrix LT is multiplied 
every time step and the procedure is repeated 
multiple times. 

 
4.  RESULTS  
 
 The performance of the data assimilation 
techniques is studied for the TusseyPuff model 
using observations from 200, 100, 50 and 10 
observation stations randomly located in the 
model domain. Figure 3 compares the forecast 
without data assimilation to the identical twin 
results. It is evident that the initial wind conditions 
and hence the puff trajectory vary widely. The 
errors of the run without data assimilation serve as 
reference values for the following comparisons of 
data assimilation methods. The root mean 
squared error of the location of the puff center 
(RP), the root mean squared error of the final wind 
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field (RW), the normalized root mean squared 
error of the final concentration field and the 
computer run times (CRT) can be found in Table 
1. 

In the first scenario tested, only 
concentration data is assimilated into the 
TusseyPuff model. Table 2 shows the results for 
the four different data assimilation techniques and 
for the four different sensor densities.  
 The most significant improvement of the 
wind and the concentration field are achieved by 
the extended Kalman filter. However, the 
computer run time (CRT) of the extended Kalman 
filter is approximately ten hours1, so it may not be 
applicable in a CBRN emergency response 
situation on the current platform. This is also the 
case for 4D-Var with a CRT of over 24 hours. 
Nudging, with a model run time of only three 
minutes, is by far the fastest method tested.  
However, the Nudging technique, while enhancing 
the concentration prediction, cannot successfully 
improve the wind forecast for this test scenario. 
Figure 4 shows the Nudging results for 200 
observation stations for all four scenarios. Figure 
4a indicates that the final wind forecast shows no 
improvement over the run without data 
assimilation (Figure 3). This result occurs because 
the concentration field provides only one wind 
observation, but yields an analytic estimate of the 
entire concentration field via equation (6). 

As the number of concentration 
observations decreases so does the quality of the 
puff parameter estimates, because there are fewer 
observations in the puff upon which to base the 
estimates. With a further decrease in the number 
of observation stations, the odds of the puff even 
hitting the sensor begin to fall. Thus, with a 
sufficiently low observational network density, the 
puff observations become more and more 
infrequent, as the chances of the puff hitting a 
sensor decrease.  In the case of ten observation 
stations, only one observation of the puff is 
available throughout the whole assimilation period. 

The ensemble Kalman filter provides a 
good compromise between computer run time 
(CRT) and forecast improvement. For a large 
number of observation stations the ensemble 
Kalman filter improves both the concentration and 
wind forecast considerably with a run time of less 
than 15 minutes. The ensemble Kalman filter is 
also not as strongly dependent on the number of 
observation stations as Nudging, and therefore, 
may meet the needs of emergency response 
                                                 
1 Computations were performed on a single thread of a 
3.2 GHz dual core processor machine running Matlab. 

modeling, particularly if implemented in a compiled 
language on a multiprocessor system. 
 In the second test scenario, only wind 
observations are assimilated into the TusseyPuff 
system. Table 3 provides the errors of the data 
assimilation runs for the different observation 
sensor densities. Again, the most significant 
improvement of the concentration field is achieved 
by the extended Kalman filter. The extended 
Kalman filter is not strongly affected by the 
number of observation stations. Nudging produces 
the best wind forecast, with the lowest root mean 
squared error of the wind field (see Figure 4b). 
The larger wind error of the extended Kalman filter 
can be explained by the fact that the tangent linear 
model and the adjoint model do not incorporate 
topographical effects. Nudging also has the 
shortest model run time, but the results are again 
strongly dependent on the number of observation 
stations. The ensemble Kalman filter performs 
well, especially for the low observational density. 
However, the CRT of the ensemble Kalman filter 
increases compared to the first scenario due to the 
larger sizes of the observation error covariance 
matrix and the Kalman gain matrix.  
 In the third test scenario, both wind 
observations and puff parameters are assimilated 
into the TusseyPuff system. Table 4 shows the 
results for the four different data assimilation 
techniques, again for the four different sensor 
densities. For this scenario the concentration and 
wind observations were taken at the same sensor 
sites. However, it was found that the performance 
of the data assimilation techniques is similar in the 
case of not collocated the observation stations.  
 As before, the extended Kalman filter 
produces the best concentration forecast. 
However, compared to scenario 2, Nudging 
improves the concentration forecast even further 
(see Figures 4c and 4d). In combination with the 
excellent wind forecast for a large number of 
observation stations and with the shortest model 
run time, Nudging is computationally the least 
expensive data assimilation method. 
 
5.  CONCLUSIONS 
 

In the event of a CBRN release a fast and 
accurate dispersion model forecast could help 
emergency managers in their decision making and 
save time and lives. Transport and dispersion 
models would require not only accurate 
information on source characteristics but also an 
accurate estimate of the wind fields. Sparse 
meteorological observations could lead to 
inaccurate initial wind fields and so produce to an 
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inaccurate concentration forecast. However, the 
assimilation of concentration and wind 
observations into a coupled NWP and dispersion 
modeling system could improve the forecast 
model performance. 
 This approach is demonstrated using a 
two-dimensional shallow water model coupled with 
a Gaussian Puff dispersion model to create a test 
environment for data assimilation techniques. Four 
continuous data assimilation methods: Nudging, 
extended Kalman filter, ensemble Kalman filter 
and 4D-Var are chosen and tested with this 
TusseyPuff model system in an identical twin 
experiment. Observations of wind and puff 
parameters from a different number of randomly 
located sensors are assimilated into the model 
and results for multiple data assimilation scenarios 
are compared. 

It is shown that wind and concentration 
fields can be successfully recovered from 
measurements of concentration provided that the 
observations are frequent and dense. So, the 
results in this study agree with those of Daley 
(1994). Furthermore, it is shown that assimilation 
of wind data alone, or in combination with the 
assimilation of sparse observations of contaminant 
concentration, can improve the concentration and 
wind forecast significantly. 
 The extended Kalman filter performed 
best throughout all of the tested scenarios. 
However, this technique is computationally 
expensive and therefore may not be appropriate 
for a rapid CBRN emergence response system. 
The ensemble Kalman filter and Nudging display 
good results, in both the error values and the 
computer run time and are therefore likely 
candidates for a CBRN emergency response 
system. Nudging the coupled model proved 
especially useful when only wind or a combination 
of wind and concentration data are available. The 
ensemble Kalman filter provides promising results 
when only concentration observations are 
available.  
 Before the assimilation of concentration 
and wind data into a coupled NWP and dispersion 
system can become a routine tool in CBRN 
emergency situations additional tests with more 
sophisticated models are necessary. Two 
intermediate steps present themselves for 
improving either one or the other of the models. 
First the two-dimensional multi-Puff model 
developed by Reddy et al. (2007) will be coupled 
with the 2-D shallow water model presented here 
to test the data assimilation techniques. The 
second approach involves coupling the basic 
Gaussian Puff model to a full mesoscale model. 

Ultimately the most effective and efficient data 
assimilation methods should be tested in a 
coupled model including both a multi-puff 
dispersion component and a full mesoscale model. 
However, at that level of complexity, 
computational efficiency is likely to be critical. 
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7.  FIGURES AND TABLES 
 

 
Figure 1: Topography and initial fluid height of the two dimensional shallow water model.  
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Figure 2: Diagram describing the experimental setup. 

 

 
Figure 3: Wind field (arrows), puff concentration field (contours) and puff trajectory of the TusseyPuff 

model run without data assimilation (left) and the ‘truth’ model run (right). 
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Figure 4: Comparison of the Nudging results (black) to the known ‘truth’ (red): final wind forecast (blue 

arrows), final concentration forecast (contours) and puff trajectories (line) for assimilation of concentration 
data (a), assimilation of wind data (b), assimilation of concentration and wind data from collocated 

sensors (c) and assimilation of concentration and wind data measured at different locations (d) 
 
 
Table 1:  Error values of the forecast without data assimilation 

RP [m] RW [ms-1] RC CRT 

2725 0.54 1.0 121 s 
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Table 2  Summary of the results for scenario 1: assimilation of concentration data into TusseyPuff 

Nudging Extended Kalman 
Filter 

Ensemble Kalman 
Filter 4D-Var2# of 

obser- 
vation 

stations 
RP 
[m] 

RW 
[ms-1] RC RP 

[m] 
RW  

[ms-1] RC RP 
[m] 

RW  
[ms-1] RC RP 

[m] 
RW  

[ms-1] RC 

200 558 0.54 0.70 443 0.28 0.41 327 0.32 0.19 2534 0.53 0.95 
100 1480 0.54 0.83 508 0.27 0.50 303 0.30 0.25 2671 0.54 0.97 
50 1225 0.54 0.67 1682 0.42 0.93 975 0.40 0.71 2706 0.54 0.97 
10 2641 0.54 1.11 2509 0.54 0.98 1254 0.54 0.94 2710 0.53 0.99 

CRT 133 s 51700 s 700 s 322400 s 
 
 
Table 3  Summary of the results for scenario 2: assimilation of wind data into TusseyPuff 

Nudging Extended Kalman 
Filter 

Ensemble Kalman 
Filter 4D-Var # of 

obser- 
vation 

stations 
RP 
[m] 

RW 
[ms-1] RC RP 

[m] 
RW  

[ms-1] RC RP 
[m] 

RW  
[ms-1] RC RP 

[m] 
RW  

[ms-1] RC 

200 456 0.01 0.41 34 0.04 0.01 127 0.11 0.25 1984 0.38 0.91 
100 653 0.02 0.56 35 0.04 0.01 121 0.11 0.23 2453 0.44 0.98 
50 1008 0.04 0.72 33 0.04 0.01 146 0.11 0.27 2623 0.51 0.98 
10 1576 0.25 0.79 61 0.04 0.01 144 0.11 0.23 2751 0.54 1.00 

CRT 140 s 61300 s 5500 s 342500 s 
 
 
Table 4  Summary of the results for scenario 3: assimilation of concentration and wind data into 
TusseyPuff 

Nudging Extended Kalman 
Filter 

Ensemble Kalman 
Filter 4D-Var # of 

obser- 
vation 

stations 
RP 
[m] 

RW 
[ms-1] RC RP 

[m] 
RW  

[ms-1] RC RP 
[m] 

RW  
[ms-1] RC RP 

[m] 
RW  

[ms-1] RC 

200 206 0.01 0.04 45 0.04 0.01 138 0.11 0.19 2309 0.44 0.94 
100 511 0.02 0.32 38 0.04 0.01 116 0.11 0.15 2561 0.47 0.98 
50 650 0.04 0.29 45 0.04 0.01 115 0.11 0.21 2623 0.51 0.98 
10 1505 0.25 0.81 39 0.04 0.01 135 0.11 0.21 2734 0.54 0.99 

CRT 141 s 65100 s 6100 s 355500 s 

 

                                                 
2 The 4D-Var results shown are preliminary. The scheme will be re-examined in the future. 
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