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1. INTRODUCTION 
 

A feed-forward, supervised, multi-layer perceptron 
Artificial Neural Network (ANN) was developed to test the 
following hypothesis: An ANN can be developed to 
successfully forecast thunderstorm activity up to 24 hours in 
advance, and with a spatial accuracy of 20-km, wherein ANN 
inputs include selected output from (1) deterministic 
mesoscale Numerical Weather Prediction (NWP) models, and 
from (2) selected sub-grid scale data that contributes to 
convective initiation, or CI (Collins and Tissot, 2007, 
hereafter CT07.) We are not aware of any other project 
involving the use of both NWP output and sub-grid scale data, 
as inputs into an ANN, with the desire to forecast 
thunderstorm activity with an accuracy of 20-km. The 
underlying logic of this novel hypothesis is that the NWP 
model output provides a forecast of whether the larger 
mesoscale environment is conducive to CI while the sub-grid 
scale data determines the extent to which convection could be 
triggered at a particular location. The ANN serves as a means 
to map the highly non-linear relationship between the 
foregoing inputs and thunderstorm occurrence; an ANN 
model to forecast thunderstorms would result. This represents 
a paradigm shift away from the sole use of high-resolution 
(horizontal grid spacing ≤ 4-km) NWP models to forecast 
thunderstorms, which, as suggested by Elmore et. al. (2002), 
may not be a reliable strategy. Results from CT07 were 
mixed: The model’s ability to forecast thunderstorm activity 
was encouraging, yet the number of false alarms was high. It 
was surmised that false alarms can be reduced by 
incorporating more relevant sub-grid scale data, and 
increasing the number of relevant NWP parameters that 
contribute to CI. This study represents such an attempt to 
improve the ANN’s performance. In Section 2, we discuss 
ANNs in a general sense. In Section 3, we describe the 
framework used to develop this ANN model. Section 4 
contains a detailed description of the specific data inputs. In 
particular, we discuss how each parameter is related to 
thunderstorm development, and the specific data processing 
methods. In the final sections, the results (Section 5) and 
discussion and conclusions (Section 6) are presented. Portions 
of sections 2 and 4 contain information incorporated from our 
earlier study (CT07.)  

2. ARTIFICIAL NEURAL NETWORKS  

An Artificial Neural Network (ANN) is a computational 
model that attempts to account for the parallel nature of the 
human brain. Specifically, it is a network of highly 
interconnecting processing elements (neurons) operating in  
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parallel (Figure 1). An ANN can be used to solve problems 
involving complex relationships between variables. The 
particular type of ANN used in this study is a supervised one, 
wherein the observation (target) is specified, and the ANN is 
trained to minimize the error between the ANN output and the 
target, resulting in an optimal solution (assuming the global 
minimum is reached.) This is accomplished by adjusting the 
connections between the elements, which involves an 
adjustment to the weights (w1

1,1…w1
1,z in figure 1.) In theory, 

this adjustment process can be viewed as a form of ‘learning’. 
Thus, the ANN is considered to be a form of artificial 
intelligence (AI). ANNs were selected for this study owing to 
their ability to model non-linear relationships. The 
relationship between the input and output parameters in this 
study is highly non-linear. Additional information on 
Artificial Neural Networks can be found in references such as 
Beale (1990) and Hagan et al. (1996).  

 
Figure 1: A 2-layer ANN with multiple inputs and single 
hidden and output neurons 

3. ANN FRAMEWORK  
 
3.1 ANN Domain 

A grid of 13 x 22 equidistant points (20-km grid spacing) 
was developed which covers a region slightly larger than the 
County Warning and Forecast Area (CWFA) responsibility of 
the National Weather Service (NWS) forecasters in the 
Weather Forecast Office (WFO) in Corpus Christi Texas 
(CRP). These points create 286 square regions (hereafter 
referred to as ‘boxes’), each of which defines an area of 400 
km2 (figure 2).  A 2-layer (one hidden layer, and one output 
layer), feed-forward, supervised ANN was utilized in this 
study. A framework was established (using MATLAB® 
software) to train 286 separate ANNs (one for each box 
region) to predict thunderstorm occurrence within each box. 
With respect to the forecasting of thunderstorms 3 to 24 hours 
in advance, NWS forecasters issue public forecasts on the 
probability of precipitation from thunderstorm activity. 
However, the highest forecast resolution for the NWS Zone 
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Figure 2: ANN Grid of 13 x 22 equidistant points. Northern (Southern) light blue box is labeled 238 (104). 

 
Forecast is the county level. The median surface area of the 
15 counties in the WFO CRP CWFA is approximately 2256 
km2. Thus an accuracy of 400 km2 would be a significant 
improvement. For this study, only one box is examined – an 
inland region which includes Victoria, Texas (box 238 in 
figure 2).  
 
3.2 ANN Target and Inputs 
 
The model was developed based on data obtained from the 
period 1 June 2004 through 31 October 2007. Cloud-to-
ground lightning data served as the proxy for thunderstorm 
activity and was also the target. The ANN input variables 
were chosen based on their physical relationship to 
thunderstorm development/dissipation. With respect to NWP 
model output, before 20 June 2006, the hydrostatic Eta was 
used as the NWP model. Afterward, the non-hydrostatic 
WRF-NMM (Janjic et. al. 2001) was used. We introduce 
additional complexity by incorporating output from two 
unique NWP models. The Eta and WRF-NMM use different 
techniques to assimilate data, which will result in different 
initial conditions. Owing to the chaotic nature of the 
atmosphere, these initial condition differences can result in 
divergent deterministic solutions. Further, since one model is 
hydrostatic and the other non-hydrostatic, different solutions 
are likely. However, based on NWP model simulations, 
Weisman et al (1997) found that nonhydrostatic simulations 
effectively become hydrostatic with horizontal grid spacings 
> 8-km. Since the horizontal grid spacing of the WRF-NMM 
is 12-km, non-hydrostatic phenomena are not resolved (except  

 
for mountain waves) which may decrease solution 
differences. Nevertheless, we assume that the model 
differences are not detrimental to this study. 
 
Subgrid scale atmospheric processes that directly contribute 
to CI cannot be accounted for explicitly by the Eta or WRF-
NMM. Thus, as mentioned previously, we incorporate such 
data. The subgrid scale parameters utilized in this study 
include proxies for soil moisture, wherein gradients of such 
contribute to local convergence which can trigger convection 
(e.g. Avissar and Liu, 1996). Further, the contribution of 
aerosols are included which can influence convective cloud 
dynamics (van den Heever, 2006).  

3.3 ANN Forecast Strategy 

In this study, we tested the ability of the ANN model to 
forecast CTG lightning occurrence in box 238 6 and 9 hours 
in advance. Figure 3 depicts the forecasting strategy. The 
inputs to the ANN (see section 4 for more details) are as 
follows: 

1: NAM Forecasts of parameters 1-19 from the 1200 UTC 
cycle valid at 1800 UTC (2100 UTC.)  
2: GOES AOD (parameter 39) observations at 1215, 1415, 
1615, or 1815 UTC (Assumed equal to value at 1200 UTC). 
3:  NAM parameters 20-35 valid at 1200 UTC (output from 
model initialization) 
4: Soil moisture-related variables (parameters 36-38) valid at 
1200 UTC 



 
The ANN output (thunderstorm forecast) is a value in the 
range [0..1], valid for 1800 UTC (2100 UTC.)  The ANN was 
trained using cloud-to-ground lightning binary output as the 
target [0=no lightning; 1=lightning] Lightning “occurs” when 
at least 1 cloud-to-ground lightning strike occurs in box 238. 
 

1200 UTC (fcst hour=0) 1800 UTC (fcst hour=6) 2100 UTC (fcst hour=9)

ANN INPUTS 1. NAM parameters 20-35 6-hour forecast of NAM 9-hour forecast of NAM
2. Soil moisture proxies parameters 1-19 parameters 1-19
(parameters 36-38)
3. GOES AOD 
(parameter 39)

ANN OUTPUT Thunderstorm prediction Thunderstorm prediction
[0…1] [0…1]

TARGET Cloud-to-ground lightning Cloud-to-ground lightning
binary output [0,1] binary output [0,1]

AOD observations at 1215, 1415, 1615, or 1815 UTC; assumed equal to value at 1200 UTC
Parameter 37 (Ndry) valid for previous day
Parameters 36 (API gradients) and 38 (MPE gradients) valid for the antecedent 10-day period 
Figure 3: Thunderstorm ANN Forecast Strategy 

 

3.4 ANN Training and Testing 

The ANN model for this study was developed, trained, 
validated, and tested within the MATLAB® computational 
environment utilizing the Neural Network Toolbox (The 
MathWorks, Inc., 2006). The data set (1 June 2004 – 31 
October 2007) was divided into a training set (40%), a 
validation set (20%), and a testing set (40%). All ANN 
models were trained using the automated regularization 
algorithm (trainbr) to improve generalization. The validation 
set served as a constraint on training, in order to minimize 
overfitting. The testing set was utilized to evaluate 
performance. The ANN architecture for this study is a feed-
forward, supervised, multilayer perceptron (MLP) network 
with two (2) layers – one hidden layer and an output layer. 
Only one output neuron was used. The transfer function used 
in both the hidden and output layers (f1 and f2 in figure 1) is 
log-sigmoid. One hidden neuron was used for this study. 
MATLAB requires that the ANN model contain a full input 
set. Thus, cases missing an input or target value were 
eliminated. In the following section, we provide a detailed 
description of the target (a2 in figure 1) and inputs (P1,P2,….Pz 
in figure 1) to the ANN.   
4. ANN TARGET AND INPUTS 

4.1 Target Data (a2) 
Cloud to ground (CTG) lightning data (written to netCDF-
formatted files) was obtained from the National Lightning 
Detection Network (NLDN) (e.g. Orville 1991). Computer 
scripts were used to extract hourly lightning data for each of 
the 286 boxes, and to write the output to a series of text files. 
The MATLAB® software was used to input the files then 
output the data into a target matrix. This data was used as a 
proxy for thunderstorm activity. Thus only thunderstorms that 

generate CTG lightning strikes detected by NLDN are 
included. The target is binary (lightning versus no-lightning.)  

Figure 4 reveals a 3-D display of the total number of CTG 
lightning strikes on the 13 x 22 ANN grid. Note that the 
greater number of lightning strikes occurred over the 
northeast region. This explains one reason for choosing 
northeast region box 238 – to provide the maximum amount 
of target data to train this supervised ANN.  

4.2 Input Data (P1, P2,….Pz) 
 
4.2.1 NWP model output 
 

The first category consists of thirty-five (35) output 
parameters from a hydrostatic mesoscale NWP model known 
as the Eta (e.g. Rogers et. al. 1996) [1 June 2004 – 19 June 
2006] and a nonhydrostatic NWP model referred to as WRF-
NMM (Janjic et. al. 2001) [20 June 2006 – 31 October 2007].              
NCEP introduced the nomenclature NAM (North American 
Mesoscale), which does not refer to a model. Rather, the term 
NAM is simply a placeholder for the current operational 
mesoscale model running on a North American domain. Thus, 
before 19 June 2006, the NAM was the placeholder for the 
Eta model, and now is the placeholder for the WRF-NMM. 
Nevertheless, we will hereafter refer to WRF-NMM and Eta 
collectively as the NAM.  

We utilized NAM output written to AWIPS (Advanced 
Weather Interactive Processing System) Grid 215 (Dey, 
1998), a Lambert Conformal grid, with a horizontal grid 
spacing of 12-km (meso-γ scale.)  Software written by Arthur 
Taylor (http://www.weather.gov/mdl/degrib/) of NOAA was 
used to extract the interpolated value of each parameter at the 
center of each box, which is assumed to be representative of 
the box. The output was written to a series of text files. Then, 
a MATLAB® software script was written to input these files 
to create a matrix containing the data.  
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Figure 4: Total CTG Lightning Strikes (6-1-2004 to 6-19-
2006) on the ANN grid.  Point (0:0) represents the southwest 
corner (box 1)              

CI requires sufficient moisture (to generate necessary 
hydrometeors), atmospheric instability (to generate updrafts 
strong enough to create a charge separation between the liquid 
and ice phases of water sufficient to generate lightning), and a 
lifting mechanism (to lift air parcels to the level of free 
convection (LFC), above which an unstable equilibrium 
exists). The NAM output parameters were chosen based on 
their contribution to the foregoing. As mentioned before, a 

http://www.weather.gov/mdl/degrib/


NWP model with a 12-km horizontal grid spacing is 
insufficient to explicitly forecast convection. However, the 
purpose of the numerical output is to provide a prediction of 
those parameters that contribute to CI/convective dissipation 
in the larger mesoscale environment (the subgrid scale 
processes that contribute to CI are accounted for in the 
parameters to be discussed later.) The following are the 
parameters and associated justifications. 

Parameter 1: Convective precipitation (CP) 

This is the precipitation that represents a byproduct of the 
CP process. This input is used because an objective of this 
study is to provide an ANN that will forecast the timing and 
positioning of convection more accurately than the NWP 
model. Ideally, the ANN will learn to correct CP scheme 
biases and generate more accurate forecasts. 

Parameters 2-4: Vertical Velocities at pressure levels 925, 
700, and 500  millibars (VV925, VV700, VV500) 

In hydrostatic models (e.g. Eta), the vertical velocity term 
is diagnosed from predicted horizontal motions, instead of 
being predicted explicitly in non-hydrostatic models (e.g. 
WRF-NMM). VV925 and VV700 are used as proxies for 
lower level convergence (due to mesoscale phenomena such 
as sea breezes, and synoptic scale features including fronts) 
based on the reasoning that the continuity of mass relationship 
requires upward vertical velocities resulting from surface 
convergence. Surface convergence contributes to CI (e.g. 
Ulanski and Garstang 1978). However, due to its 12-km grid 
spacing, the Eta cannot resolve the storm scale divergence 
responsible for the initiation of individual convective cells. 
The purpose of VV700 and VV500 is to account for upper 
level disturbances. Operational experience at the NWS 
National Centers for Environmental Prediction (NCEP) Storm 
Prediction Center suggests that as many as 50% of 
thunderstorms are of the elevated variety (Banacos and 
Schultz, 2005). In these instances, the triggering mechanism 
is not a surface convergent feature (e.g. surface frontal 
boundary) but rather mid-level (between 900 and 600 mb) 
convergence (Wilson and Roberts 2006). The subsequent 
vertical motions would likely be captured at least by VV500. 
The unstable equilibrium aloft would be captured by the 
Lifted Index (LI), which will be discussed later.  

Parameters 5-8: U and V components of the wind at 10-m 
and 850 mb(u-10, v-10, u-850, v-850) 

Land surface heterogeneity contributes to micro-scale/ 
meso-γ scale wind patterns that can trigger convection. 
However, strong wind can minimize the gradients generated 
by land surface heterogeneity (Dalu et al. 1996; Wang et. al. 
1996). The lead author postulates that strong wind will thus 
preclude thunderstorms that would otherwise be triggered by 
mesoscale gradients. Thus, it is important to include such 
wind as input to the ANN model. Further, the lead author has 
experienced a positive correlation between south/southwest 
wind at the 850 mb level and atmospheric stability sufficient 
to preclude CI over deep South Texas. It is hypothesized that 
such a stable equilibrium condition is caused by the advection 
of a drier and warmer mid level air mass moving across the 
region from Mexico. 

 

Parameter 9: Vertical wind shear between the surface (10-m) 
and 800 mb (sh0-8) 

Thunderstorm development within a particular 400 km2 

region can be influenced by phenomena in adjacent boxes. 
However, the ANN in this study does not explicitly account 
for such. The present ANN model predicts convection for a 
particular box solely based on information for that box. 
Including the sh0-8 prediction is one way to account for the 
influence of conditions over a broader spatial area.   Rotunno 
et. al (1988) suggest that when a gust front (the leading edge 
of negatively-buoyant air generated by thunderstorms) moves 
into a environment with a certain shear profile in the lowest 2-
km, the subsequent updraft is maximized, which can trigger 
additional convection. The sh0-8 parameter approximates the 
0-2km vertical wind shear. Inputs to the ANN do not include 
specific information about the gust front. Thus, this parameter 
is only useful for cases wherein convection within a particular 
box is generated by gust fronts that enter the box from 
outside. 

 
Parameter 10: Vertical wind shear between 800mb and 600 
mb (sh8-6) 

Crook (1996) has shown that convection initiation could be 
prevented by strong vertical wind shear above the planetary 
boundary layer. Vertical wind shear can preclude 
thunderstorm development if the updraft is weak (Colquhoun 
1987). The sh8-6 parameter is used as a proxy for the vertical 
shear encountered by a parcel moving just above the 
boundary layer. 

 
Parameters 11-14: Precipitable water (PW), 850 mb mixing 
ratio, 850 mb relative humidity, and 2-m temperature 

Thunderstorms cannot develop without sufficient 
atmospheric moisture. PW is a proxy for atmospheric 
moisture by representing rainfall measurement that would 
occur if 100% of atmospheric moisture were to rain out. Yet, 
studies have shown the low level mixing ratio and relative 
humidity (RH) values have predictive value. Véronique, et al. 
(1998) found that the combination of CAPE (mentioned 
below), and RH in the lower levels, can help identify regions 
where convection is possible, synoptic weather pattern 
notwithstanding. Khairoutdinov and Randall (2006) found 
that high CAPE and low CIN are not quite sufficient for 
convective development. Rather, the horizontal scale of 
convective clouds must reach a threshold sufficient to 
overcome the dissipative effects of dry air entrainment, and 
that clouds tend to grow from air with the greatest water 
vapor content. Hence, we include the 850mb mixing ratio. 
The surface temperature was included since the maximum 
amount of moisture the air can hold is constrained by 
temperature.  

Parameter 15: Lifted Index (LI) 

The Lifted Index (LI) is simply the temperature difference 
between the environment and an ascending air parcel at the 
500mb pressure level. A negative value indicates a parcel 
warmer than the surrounding environment, thus positively 
buoyant (unstable equilibrium). As such, it is a measure of 
atmospheric stability. Haklander and Delden (2003) found 
predictive value in the use of LI to forecast thunderstorms. 
Another purpose for inclusion of LI is to account for elevated 



convection. Elevated convection tends to occur when upper 
level disturbances move across unstable equilibrium 
environments aloft. As mentioned before, VV700 and VV550 
will serve as proxies for upper level disturbances, and the LI 
serves as a measure of upper level instability. 

Parameters 16-17: Convective Available Potential Energy 
(CAPE) and Convective Inhibition (CIN) 

CAPE measures the total energy available to generate 
thunderstorms. It is computed as the positive area on a 
thermodynamic diagram (e.g. SkewT-LogP). The greater this 
value, the greater the energy available for thunderstorm 
generation. Further, parcel theory indicates that the maximum 
speed of an updraft is a simple function of CAPE. However, 
updrafts in nature are generally weaker than what parcel theory 
suggests owing to aerodynamic drag, entrainment, compensating 
downward motions, and the weight of condensed water (e.g. 
Rogers and Yau, 1989.)  The CIN measures the negative area on 
a thermodynamic chart, which typically represents an 
atmospheric layer with base at the surface. For non-elevated 
convection to occur, air parcels must be forced from the surface 
to the top of the CIN layer. However, if CIN is too strong, the 
parcel cannot reach the LFC and thus CI will not occur. 

Parameter 18: Potential Temperature Drop-off 

Crook (1996) has shown that convection tends to occur over 
areas wherein the potential temperature (temperature achieved 
when an air parcel is brought dry adiabatically to 1000 mb) in 
the boundary layer is lower than the value at the surface. Crook 
defined this difference as the potential temperature drop-off.  
However in this study, the proxy for the boundary layer 
potential temperature is the potential temperature at 900 mb.  

Parameter 19: Lifting Condensation Level (LCL) 

Although CAPE measures the total energy available for the 
conversion to upward vertical velocities, cloud base height 
(CBH) – according to Williams et. al (2005) – measures the 
efficiency of this process. A high CBH condition tends to be 
correlated with an environment that is more efficient than low 
CBH environments in the conversion to strong updrafts 
sufficient for thunderstorm development. The LCL is used as a 
proxy for CH. 

Parameters 20-33: U and V components of the wind at the 
surface, 900mb, 800mb, 700mb, 600mb, and 500mb at 12 UTC 

This data depicts wind velocity behavior at both the lower (sfc-
700mb) and mid levels (700-500mb). The veering (backing) of 
geostrophic wind with height suggests warm (cold) air advection 
(e.g. Wallace and Hobbs 1977.) Although the wind is not 
geostrophic below 500 mb, it’s assumed that the ageostrophic 
component of the wind does not prevent a positive correlation 
between veering or backing geostrophic and non-geostrophic 
wind. Hence, warm air advection (WAA) in the lower levels, in 
response to veering wind, will likely provide additional positive 
buoyancy to parcels below the LFC, with backing wind 
providing negative buoyancy. Yet, the opposite effects occur in 
the 700-500mb layer: WAA will likely provide negative 
buoyancy, while CAA in this layer will contribute to positive 
buoyancy. Thus, veering winds in the lower levels, or backing 
winds in the mid levels, will contribute to increased instability 
(or decreasing stability) and a greater chance for convection. 

Results from a study by Findell and Eltahir (2003) added 
credence to this reasoning. The ANN should capture the 
foregoing relationship, hence the inclusion of this data as 
ANN inputs. 

Parameters 34-35: Low level humidity index and “Convective 
Triggering Potential” 

Findell and Eltahir (2003) developed a framework to 
assess the atmospheric controls on the interaction between 
soil moisture and the boundary layer. In particular, they found 
(among other things) that the 1200 UTC lower level (900-
700mb) moisture and environmental lapse rates serve as 
constraints on afternoon convective development. They 
defined the humidity index (HIlow) as the sum of the dew 
point depressions at 950 and 850mb. They further defined a 
Convective Triggering Potential (CTP) as the area (on a 
thermodynamic diagram) between the moist adiabatic and the 
environmental temperature, in the 900-700mb layer. 
Essentially, the CTP measures the ambient environment’s 
departure from the moist adiabatic rate in the 900-700mb 
layer. For this study, we incorporate HIlow, yet compute the 
ratio of the mean environmental lapse rate in the 900-700mb 
layer to the average moist adiabatic rate (assumed to be 
6.5C/km in every case) as a proxy for CTP.  

4.2.2 Subgrid scale data 

The second category of input data includes data not explicity 
accounted for owing to the 12-km grid spacing of the NAM. 
We incorporate four (4) variables in this category. The first, is 
derived from high resolution (4-km grid spacing) rainfall 
output from the multi-sensor precipitation estimator (MPE) 
algorithm (e.g. Fulton et. al 1998). From this data, the 
antecedent precipitation index or API, a soil moisture proxy, 
was calculated. For each day in box 238, the maximum 
gradient of API (parameter 36) was calculated. A major 
contributor to land surface heterogeneity, soil moisture 
gradients contribute to differential surface heating and 
subsequent microscale/meso-γ scale convergent wind patterns 
which in turn contribute to CI (e.g. Avissar and Liu 1996). 
Taylor and Lebel (1998), hereafter TL98, found a positive 
correlation between daily convective rainfall gradients and the 
corresponding 2 and 10-day antecedent gradients, over semi-
arid locations on convective scales < 20-km. In particular, a 
positive feedback can occur whereby post convective 
evaporation contributes to soil moisture gradients resulting in 
areas favored for enhancement of subsequent convection/ 
rainfall. According to TL98, this feedback occurs over 2 days 
due to strong soil moisture gradients that develop in response 
to bare soil evaporation. The 10-day correlation is related to 
evaporation of deeper soil moisture, from accumulated 
rainfall; yet this correlation was strongest when no rainfall 
occurred over during the preceding 4 days (Ndry=4). Since 
soil moisture gradients also contribute to convective initiation 
(Avissar and Liu 1996; Emori 1998), we incorporate 10-day 
antecedent MPE gradients and Ndry parameters, as the second 
and third (Parameters 37-38) sub-grid scale inputs in the 
ANN. The calculation of parameters 36-38 are explained in 
the Appendix. The fourth subgrid scale data ingest is the 
Aerosol Optical Depth or AOD (Parameter 39), which, 
according to van Den Heever (2006), may influence cloud 
microphysics, and subsequent storm updraft. We argue that a 
stronger updraft, due to aerosols, could conceivably result in a 



thunderstorm, that otherwise would exist only as a convective 
shower (no lightning), without aerosol influence. Further, in 
their study of cloud-to-ground lightning over Houston, Texas 
for the period 1989-2000, Steiger et. al (2002) postulated that 
increased aerosol concentration may enhance the density of 
cloud-to-ground lightning strikes.   

The AOD data set contains a significant amount of missing 
data. Thus, for each day of the time frame analyzed, data from 
the 1215, 1415, 1615, or 1815 UTC were used to increase the 
likelihood of acquiring valid data. Further, we assume that 
AOD is invariant during the 1200-1815 UTC period. This 
approach is somewhat reasonable as Anderson et. al. (2003) 
have shown that AOD temporal variations at a given location 
are not significant for time scales ≤ 6 hours. Each day, the 
earliest valid datum of the four was used to predict CI (see 
figure 3).  

 
Figure 5a: Box 238 Histogram of maximum 10-day 
Antecedent Precipitation Gradient -- Non Lightning Cases (1-
1-2003 to 10-31-2007). Gradient refers to finite differences. 
Units in 10-2 mm (5000 x 10-2 mm = 1.9685 in) 
 

 
Figure 5b: Same as 5a, except for Lightning Cases. 
 

Figure 5 depicts histograms of maximum 10-day antecedent 
MPE gradients, both for lightning and non-lightning cases, for 
the 1 January 2003 to 31 October 2007 period in box 238. 
Note that the highest frequency occurs at a larger gradient 

magnitude for the lightning cases (ignoring zero frequency), 
consistent with the reasoning that a greater moisture gradient 
results in a greater chance for CI (assuming atmospheric 
conditions are favorable.)   

Figure 6 depicts corresponding histograms of parameter Ndry 
For each day in the data set, the number of dry days (no 
precipitation in box 238) for the previous 10 days was 
calculated. Then, the cases were segregated into lightning and 
non-lightning days for the creation of the histograms. Note 
that for the lightning cases, the frequency is highest for day 5. 
Yet for non-lightning cases, the frequency is highest for 8 of 
the 10-day antecedent period. These results suggest that more 
rain occurred during the 10-day period preceding lightning 
cases, along with a sufficient number of dry days to generate 
strong soil moisture gradients in response to the evaporation 
of deep soil moisture, consistent with TL98.   
 

 
Figure 6a: Histogram of Ndry -- Non Lightning Cases (1-1-
2003 to 10-31-2007). 
 
 

 
Figure 6b: Same as 6a, except for Lightning Cases 

5. RESULTS 

The utility of the ANN model in this study was evaluated using 
signal detection theory. In particular, we calculated the model’s 
ROC (Relative Operating Characteristic) curves (Jolliffe and 
Stephenson, 2003). The ROC graphs the probability of detection 
(POD), and the false alarm rate (FAR). The ROC curve is 



created by computing POD and FAR for varying ANN model 
thresholds, then graphing the POD as ordinate and FAR as 
abscissa. By thresholds, we refer to the minimum value of ANN 
output that is considered an ANN model prediction of the 
occurrence of a thunderstorm. We varied the threshold from 
0.01 to 1.00 using a 0.01 increment. The results are depicted in 
figure 7. Figures 7a through 7d are based on 6-hour forecasts 
(F06) valid at 1800 UTC. An accurate forecast occurs when the 
model correctly predicts the target (for a given threshold) for the 
4-hour window (W04) between 1600 and 2000 UTC. Figures 7e 
through 7h are based on 9-hour forecasts (F09) valid at 2100 
UTC. An accurate forecast occurs when the model correctly 
predicts the target (for a given threshold) for the 4-hour (W04) 
window between 1900 and 2300 UTC. Note that skill has been 
demonstrated; the ROC curves for the testing sets are well above 
the diagonal for all thresholds. Thus, the ANN model developed 
in this study has demonstrated the ability to generalize. 
 

 
Figure 7a : ROC curve for 1st training set: F06 W04 
 

 
Figure 7b: ROC curve for 1st testing set: F06 W04 

 
Figure 7c: ROC curve for 2nd training set: F06 W04 
 

 
Figure 7d: ROC curve for 2nd testing set: F06 W04 
 

 
Figure 7e: ROC curve for 1st training set: F09 W04 



 
Figure 7f: ROC curve for 1st testing set: F09 W04 
 

 
Figure 7g: ROC curve for 2nd training set: F09 W04 
 

 
Figure 7h: ROC curve for 2nd testing set: F09 W04 

 
6. DISCUSSION/CONCLUSIONS 

We accessed the performance of an ANN modeling 
system, originally developed by CT07, after incorporating a 
more comprehensive set of inputs that contribute to CI. The 
39 inputs include both NWP and sub-grid scale data, much of 
which possess a strong relationship to CI (not shown.) In this 
study, the ANN model was used to forecast the location of 
thunderstorms for 6 and 9 hours in advance, within a single 
400 km2 box region in South Texas. Evaluation of the ANN 
performance using ROC diagrams indicates that this ANN has 
the ability to generalize.  

The implications of these results are significant. Instead 
of using a NWP model with high horizontal resolution (<4-
km) to forecast thunderstorm location, one can develop an 
ANN model with the framework developed in this study – 
which includes a coarser resolution (e.g. 12-km) NWP model 
and sub-grid scale data – to generate thunderstorm forecasts, 
possibly with similar or greater accuracy and/or skill. This 
new modeling system will require significantly less 
computational expense for the NWP component.  

Results notwithstanding, we seek to improve the accuracy 
of the model; we intend to focus on the following four areas 
for possible performance enhancement. First, we will test 
different ANN architectures, such as modular ANNs. Other 
connectionist architectures have performed better than MLPs. 
In other words, we want to determine whether an optimal 
solution can be achieved with ANN structures other than that 
of the MLP variety. Second, we will continue to search for 
additional sub-grid scale parameters. Thus, we assume that 
the highly nonlinear process of CI may not be fully accounted 
for in our ANN model. Data mining techniques may uncover 
additional physical parameters to incorporate. Third, we plan 
to address the fact that the atmosphere is chaotic. The use of 
ANN ensembles may provide a more accurate model. Fourth, 
we plan to compare the foregoing ROC curves to those 
generated based on WFO CRP forecaster output. This is 
important since the primary goal of this research is to develop 
an ANN model that can be used by the forecast community.  

APPENDIX 

Process of MPE Data Extraction 
Estimates of rainfall were calculated by the NWS West Gulf 
River Forecast Center (WGRFC) using Stage III (Fulton et al. 
1998) and Multi-sensor Precipitation Estimator (MPE) 
algorithms (hereafter MPE.) MPE estimates were on the 4-km 
Hydrological Rainfall Analysis Project (HRAP) Grid (polar 
stereographic projection) and written in a specialized format 
known as XMRG. Rick Hay, of the TAMUCC (Texas A&M 
University – Corpus Christi) Center of Water Supply Studies, 
wrote a Fortran program (nextract) to extract MPE data for 
box 238 from XMRG files, and to write output to ASCII text, 
geocoded, time series files. MATLAB® code written by co-
author Dr. Philippe Tissot to input MPE values from ASCII 
files and write to a 6 x 7 matrix (42 data points in box 238.) 
 
API Calcuation 

For this study, the API was calculated based on the following 
equation from Cheng and Cotton (2004): 



APIt = MPEt + Π(API)t-1  where t and t-1 refer to current and 
previous day, respectively. MPE is the sum of the 24 hourly 
MPE rainfall values for the current day. Π is the depletion 
coefficient: 

Π = 1 – 0.04{sin[2π ((j–a–b)/c)] + 1}, where j=time in julian 
days, a=15 days, b=91.25, and c=365 days 

Calculation of Parameter 36: Maximum API gradient 

For each day in box 238, the API was calculated at each grid 
point [Owing to the 4-km grid spacing of the MPE data, and a 
20-km x 20-km box region, 42 data points exist within each 
box]. Next, simple finite differences of API were calculated 
as the proxy for gradients. The maximum finite difference 
served as parameter 36.  

Calculation of Parameter 37: 10-day antecedent maximum 
MPE gradient 

For each day in box 238, the sum of hourly MPE rainfall 
values for the 10-day period, ending the previous day, was 
calculated at each grid point. Next, the maximum finite 
difference was determined, which served as parameter 37. 

Calculation of Parameter 38: Number of dry days during 
the past 10 days (Ndry) 

For each day in box 238, the number of days with no rainfall 
(based on MPE) during the 10-day period ending the previous 
day, was calculated. This served as parameter 38.    
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