
MODELING CONVECTIVE WEATHER AVOIDANCE IN ENROUTE AIRSPACE* 
 

Rich DeLaura† 
Mike Robinson 
Margo Pawlak 

Jim Evans 
Massachusetts Institute of Technology, Lincoln Laboratory 

Lexington, MA 02420 
 
 It  is generally agreed that effective 
management of convective weather in congested 
airspace requires decision support tools that 
translate the weather products and forecasts into 
forecasts of ATC impacts and then use those ATC 
impact forecasts to suggest air traffic management 
strategies.  In future trajectory-based operations, it 
will be necessary to automatically generate flight 
trajectories through or around convective weather 
that pilots will find acceptable.  A critical first step, 
needed in both today’s air traffic management 
environment and in the highly automated systems 
of the future, is a validated model for airspace that 
pilots will seek to avoid. 
 At the 12th Conference on Aviation, Range and 
Aerospace Meteorology (Atlanta, 2006), we 
reported on an initial Convective Weather 
Avoidance Model (CWAM1) (DeLaura and Evans; 
2006).  The CWAM1 outputs are three 
dimensional deterministic and probabilistic 
weather avoidance fields (WAFs). CWAM1 used 
Corridor Integrated Weather System (CIWS) VIL 
and echo top fields and National Lightning 
Detection Network (NLDN) data to predict aircraft 
deviations and penetration.  CWAM1 was 
developed using more than 500 aircraft-convective 
weather encounters in the Indianapolis Air Route 
Traffic Control Center (ZID ARTCC) airspace.  
CWAM1 gave the greatest weight to the difference 
between flight altitude and the 18 dbZ radar echo 
top with precipitation intensity playing a secondary 
role.  The deviation prediction error rate in 
CWAM1 was approximately 25%. 
 This paper presents a new model (CWAM2), 
based on the analysis of trajectories from several 
ARTCCs [Indianapolis (ZID), Cleveland (ZOB) and 
Washington, DC (ZDC)] and an expanded set of 
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meteorological deviation predictors.  Additional 
weather factors that are considered include 
vertical storm structure (upper level reflectivity and 
the height of the VIL centroid derived from the 
NSSL 3D reflectivity mosaic), vertical and 
horizontal storm growth, the spatial variation in VIL 
and echo top fields and storm motion. 
 
1.  INTRODUCTION 
 
 Thunderstorms are a leading cause of delay in 
the US National Airspace System (NAS) (Comet), 
and significant convective weather is an almost 
daily occurrence in the highly congested 
northeastern US traffic corridor during the spring 
and summer (Robinson, et al, 2004).  Aviation 
weather systems such as the Corridor Integrated 
Weather System (CIWS) Klingle-Wilson and 
Evans, 2005) and the National Convective 
Weather Forecast (NCWF) (Mueller, et al, 1999) 
provide weather products and forecasts that aid en 
route traffic managers in making tactical routing 
decisions in convective weather.  However, the 
dynamic nature of convective weather and 
complexity of air traffic management in a rapidly 
changing weather environment makes it difficult to 
derive the full benefit of high quality convective 
weather products.  In order to make the most 
effective use of convective weather information, 
traffic managers need automated decision support 
systems that integrate convective weather 
products into models of NAS operations to assist 
in developing and executing convective weather 
mitigation plans.  Weather-aware decision support 
requires methods to determine regions of the 
airspace blocked by convective weather, estimate 
the impact of convective weather on scheduled 
traffic, provide re-routes that avoid convection and 
calculate the capacity that can be achieved using 
a particular weather avoidance strategy. 
 Several techniques have been proposed to 
estimate the capacity impact of convective 
weather (Post, et al, 2002), define routes that 
avoid convective weather (Prete and Joseph, 2004 
and Winfield and Daniel, 2004) and calculate the 
capacity that is achievable along weather-avoiding 
routes (Mitchel, et al 2006).  In all of these 
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instances, the authors choose two dimensional 
spatial fields that are ‘reasonable’ but unvalidated 
representations of convective weather that must 
be avoided (VIP level 3 precipitation or cloud-to-
ground lightning strikes) to illustrate their 
techniques.  However, they stress that their 
techniques may be applied to any two-dimensional 
spatial field that defines airspace blockage.  Two 
more recent studies (Martin, 2007 and Song et al, 
2007) estimate sector capacities using WAFs from 
CWAM1 to define passable airspace. 

There is a clear need to understand the nature 
of convective weather that pilots avoid in en route 
and terminal airspace.  The FAA Aeronautical 
Information Manual suggests that pilots avoid 
thunderstorms characterized by “intense radar 
echo” in en route airspace by at least 20 nautical 
miles (40 km) (FAA, 2005).  However, a study of 
pilot behavior in both terminal and en route 
airspace near Memphis, TN (Rhoda, et al, 2004) 
suggested that pilots fly over high reflectivity cells 
in en route airspace and penetrate lower cells 
whose reflectivity is less than Video Integrated 
Processor (VIP) level 3.  A recent study [CWAM1] 
that developed a statistical model to predict pilot 
avoidance of convective weather in en route 
airspace found that the difference between flight 
altitude and the 18 dbZ radar echo top was the 

most accurate predictor of pilot deviation around 
convective weather, with precipitation intensity 
playing a secondary role.  Using this model, one 
can calculate three dimensional weather 
avoidance fields (WAFs) that give the probability 
of pilot deviation due to convective weather at 
each pixel as a function of echo top height and 
precipitation intensity. 
 CWAM1 was based on a limited data set.  
Approximately 500 en route flight trajectories 
through the ZID ARTCC from five different days in 
2003 with significant convective weather were 
analyzed.  Avoidance predictors were derived from 
three weather data fields: VIL (measure of 
precipitation intensity), echo top height (storm 
height) and cloud-to-ground lightning strike counts 
from the National Lightning Detection Network 
(NLDN).  Although a recent validation study 
(Chan, et al, 2007) found that the 80% probability 
of deviation regions from CWAM1 WAFs were 
generally accurate, observations of en route flight 
trajectories in convective weather also show that 
pilots readily penetrate regions characterized by 
both high echo tops and VIL intensity under 
certain circumstances (figure 1).  This suggests 
that knowledge of echo tops and VIL alone are not 
always sufficient to determine if a region of 
airspace is passable. 
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Figure 1.  Illustration of traffic penetrating a CWAM1-derived weather avoidance field (WAF) region of 
high deviation probability, from 14 July, 2006. 
 
 
 
 



In this paper, we present a revised model to 
predict pilot deviation around convective weather 
in en route airspace (CWAM2).  Flight trajectory 
data were taken from the Enhanced Traffic 
Management System (ETMS); weather products 
were taken from CIWS and the National Severe 
Storms Laboratory (NSSL) national 3D reflectivity 
mosaic (Zhang, 2004).  Three different 
geographical regions [the Indianapolis, Cleveland 

and Washington, DC ARTCCs – ZID, ZOB and 
ZDC, respectively] were studied (figure 2).  
Weather and trajectories from six different days in 
the summer of 2006 were examined to develop 
the deviation model.  In addition, trajectories from 
four clear weather days were used to develop an 
operational definition of deviation.  Table 1 
summarizes the cases analyzed. 
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Figure 2.  ARTCCs studied in CWAM2.  Red lines are jet routes; thicknesses are proportional to peak 
traffic loads 

 
 
 
 
 

Table 1.  Summary of convective weather case days and where impacts occurred (all days in 
2006). 

Date Start (GMT) End (GMT) ZDC impact ZID impact ZOB impact 
01 June 1700 2400 X X X 
19 June 0000 2400 X X X 
23 June 0000 0800 X X  
12 July 0800 1900  X  
14 July 1900 2400 X X X 

22 September 1100 2400  X  
 
 
 



2.  METHODS 
 
 ETMS provides the location (latitude, 
longitude, altimeter-based altitude) of each 
airborne flight in the NAS, updated every minute, 
and a list of the navigation fixes that the flight will 
pass thorough as it follows its filed flight plan.  
Only the trajectories of en route flights in the three 
analysis regions are considered, where en route 
flights are defined as those whose altitude is 
greater than 25000 feet at all times that the flights 
are within the region.  Since ETMS does not 
provide a planned trajectory, one must be created.  
We use the technique developed for CWAM1, in 
which the ground speed and altitude of the actual 
flight trajectory are applied to the path that 
connects the filed flight plan navigation fixes.  
Altimeter altitudes were converted to geometric 
height above sea level using sounding data and 
the altimeter equation (Wallace and Peter, 1977), 
so that they could be compared to echo top 
heights.  Both planned and actual trajectories are 
interpolated to 10 second intervals. 
 Weather encounters along planned flight 
trajectories (portions of a planned trajectory that 
pass through either VIL level 2 or greater or echo 
tops of 25000 feet or greater for at least 2 
minutes) are identified and automatically classified 
as deviations or non-deviations.  A weather 
encounter is classified as a deviation if the RMS 
horizontal distance between the actual and 
planned trajectories for the duration of the 
encounter exceeds the deviation threshold of jet 
routes in the region through which the trajectory 
passes.  Weather encounter classifications from 
the automated algorithm were reviewed by an 
analyst and misclassified encounters were 
removed from the analysis. Figure 3 illustrates two 
weather encounters, a deviation and non-
deviation.  Approximately 800 weather encounters 
– almost all encounters where the pilot deviated 
from the planned trajectory for non-weather 
reasons such as airborne holding or corner-cutting 
- were edited out of the original set of 
approximately 2760 encounters due to 
classification errors.  Table 2 summarizes the 
encounters analyzed.  Other reasons for editing 
encounters were slowdowns due to downstream 
volume congestion, ‘serial’ encounters (second or 
third encounters that followed an initial deviation) 
or instances where pilot intent was impossible to 
ascertain from the trajectory data.  Encounters 
were also eliminated from the analysis if any of the 
weather predictors was not available for any 
reason.  Figure 4 illustrates common classification 

errors from the automated deviation detection 
algorithm. 
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Figure 3.  Flight trajectories (planned and actual) 
overlaid on observed echo tops.  Top trajectory is 
a weather-related deviation; the flight altitude is 34 
kft.  Bottom is a non-deviation; flight altitude starts 
at 39 kft and descends to 34 kft.  Black arrow 
shows direction of travel. 
 

Table 2.  Weather encounters and deviation 
classifications. 

 Total Deviations Non-deviations

ZDC 432 238 194 
ZID 521 198 323 
ZOB 1002 232 770 
Total 1955 668 1287 

 
 The deviation threshold is defined by 
analyzing planned and actual trajectories from four 
convection-free days.  First, trajectory elongation 
(the ratio between the actual and planned 
trajectory lengths) for each flight is calculated.  
Flights with trajectory elongation << 1 (short cuts) 
and trajectory elongation >> 1 (non-weather 
related operational deviations such as vectoring to 
avoid congestion) are eliminated from the 
analysis.  The remaining flights, with trajectory 
elongation near unity, are assumed to be following 
the planned path.  For each of these flights, the 
RMS horizontal deviation distance is calculated 
and the deviation threshold is defined as the 90th 
percentile of these RMS distances.  Note that the 



deviation threshold varies from one geographical 
region to the next, since it is likely to be related to 
the route structure and complexity of traffic flows 
in the region.  The deviation threshold was 10 km. 
in ZID, 9 km. in ZOB and 7 km. in ZID. 
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Figure 4.  Examples of deviation detection errors 
in the automated weather-related deviation 
detection algorithm.  Flight trajectories (planned 
and actual) overlaid on observed echo tops. Black 
arrow shows direction of travel. 
 
 This study considers a much larger set of 
weather characteristics as possible predictors of 
weather avoidance than the one used in CWAM1.  
Additional weather products provide information 
about storm evolution, vertical and horizontal 
structure and weather type, as well as precipitation 
intensity and storm height.  CIWS weather 
products used in the study include VIL 
(precipitation intensity, see Crowe and Miller, 
1999), echo tops (storm height), horizontal growth 
and decay, time derivative of echo tops and 
weather type (convective / non-convective).  
Upper level radar reflectivity and the height of VIL 
centroid, intended to capture information about the 
vertical structure of the storm, are calculated from 
the national NSSL 3D reflectivity mosaic. Note that 
CIWS VIL is expressed as an ‘interest level’, 
ranging between 0 and 254, which is proportional 
to the log of VIL (kg / m^2) (Troxel and Engholm, 
1990).  The interest level is mapped to an 
equivalent VIP value, with an interest level of 13 
corresponding to VIP level 1, 73 to VIP level 2, 

133 to VIP level 3, 159 to VIP level 4, 181 to VIP 
level 5 and 216 to VIP level 6.Note that CIWS VIL 
is expressed on a scale ranging from 0 to 254, 
with a value of 13 corresponding to VIP level 1, 73 
to VIP level 2, 133 to VIP level 3, 159 to VIP level 
4, 181 to VIP level 5 and 216 to VIP level 6. 
 Weather characteristic fields used as deviation 
predictors are derived from observed weather 
products (not forecasts) by using three different 
sized spatial filters (4x4, 16x16 and 60x60 km) to 
calculate statistics (median, percent area 
coverage, etc.) at each pixel in the field.  For 
example, several weather characteristic fields are 
calculated from the VIL input: 90th percentile, 
median and 10th percentile VIL intensity, intensity 
variation (90th-10th percentile) at all spatial scales 
and percent coverage of VIP level 3, level 4 and 
level 5 pixels (16x16 and 60x60 km scales).  
Approximately 30 different weather characteristic 
fields were calculated, from which over 100 
deviation predictors were derived; figure 5 
illustrates several examples.  
 A value for each weather characteristic was 
assigned to every point of the planned and actual 
flight trajectories using the nearest neighbor from 
the weather characteristic field grid.  For each 
weather encounter, the deviation predictors were 
derived from the extracted characteristic values.  
For example, values were extracted along the 
planned trajectory from the 90th percentile VIL, 
60x60 km weather characteristic field; the 
maximum of these values is chosen as the ‘large 
scale maximum VIL intensity’ predictor (figure 6).  
In this way, predictors are generated that capture 
the scale, intensity and variation of the convective 
weather features encountered along the trajectory.  
Planned trajectories were also offset in time (+/- 
15 and 30 minutes) and run through VIL and echo 
top fields in an effort to generate predictors that 
capture storm motion (i.e., to identify planned 
trajectories that pass in front of or behind moving 
storms).  Table 3 summarizes the complete set of 
predictors considered. 
 The deviation classifications and predictor set 
for all weather encounters were input to a 
Gaussian classification algorithm (Lippmann et al, 
1993 and Duda et al, 2001), as in the CWAM1 
study.  The classifier identifies the predictor set 
that minimizes the total encounter classification 
error (both deviation and non-deviation) and 
defines the decision boundary surface in multi-
dimensional predictor space that separates 
deviations from non-deviations.  Once this set of 
‘best’ predictors was identified, a series of 
modeling experiments was carried out with several 
subsets of the best predictors to determine the 



impact of different predictors on the classification 
error and to see if it was possible to reduce the 
number of predictors in the model without 
significantly increasing the error. 
 The deviation probability model was derived 
from the observed deviation statistics, partitioned 

into histogram bins defined for the best predictors.  
The deviation histograms were smoothed and 
extrapolated to define the probability of deviation 
as a function of the selected predictor set. 
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Figure 5.  Illustrations of weather products from which deviation predictors were derived.  Flight 
trajectories (planned and actual) are overlaid. 
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Figure 6.  Extracting weather data along planned and actual trajectories. Figure (a) shows echo tops 
(top) and VIL (bottom), 90th percentile values from the 4 x 4 km spatial filter.  The black arrow shows the 
direction of flights.  This encounter was flagged as a deviation.  Figure (b) shows the echo top (top) and 
VIL (middle) data extracted along the trajectories; the period of the weather encounter is outlined by the 
orange box.  Bottom plot shows the deviation distance. 



Table 3.  Summary of deviation predictors. 
Weather Scale   
 4 x 4 

km 
16 x 16 km 60 x 60 km 

VIL Intensity    
90th, 50th,10th percentile X X X 
% cover level 3, 4, 5  X X 
Echo top height    
90th, 50th,10th percentile X X X 
% cover 30,40,50 kft  X X 
Trends    
% cover VIL growth  X X 
% cover echo top growth  X X 
Vertical structure    
VIL centroid 90th, 50th, 10th percentile X X X 
Composite reflectivity (>=25 kft.) 90th, 50th, 10th percentile X X X 

Weather type    
CIWS ‘convective’ X X  
VIL variation (90th-10th percentile) X X X 
Echo top variation (90th-10th percentile) X X X 
Flight relative    
Flight altitude – echo top X X X 
Flight altitude – VIL centroid X X X 
Storm motion    
Echo tops 90th, 50th, 10th percentile, +/-15, 30 minutes  X  
VIL 90th, 50th, 10th percentile, +/-15, 30 minutes  X  

 
 Modeling experiments were performed on the 
complete set of weather encounters from all three 
ARTCCs and on the set of weather encounters 
from each individual ARTCC to determine if there 
were significant differences between weather 
avoidance in different ARTCCs.  Modeling 
experiments were also run using the CWAM1 
predictors and predictor sets that excluded echo 
top information. 
 
3.  RESULTS 
 
 There are two types of model classification 
error:  deviations may be misclassified as non-
deviations (‘missed detections’) or vice-versa 
(‘false alarms’).  Two models with similar overall 
error rates [ ( missed detections + false alarms ) / ( 
total encounters) ] may have very different missed 
detection and false alarm rates.  One cannot 
determine objectively which model is ‘best’, 
without an explicit cost weighting assigned to each 
error type.  In this analysis, we present overall 
error rates, missed detection and false alarm 
rates. 

 Figure 7 summarizes the results.  Five 
predictors were found to have skill in classifying 
encounters:  the difference between flight altitude 
and 90th percentile echo top height from the 16 x 
16 km spatial filter (DZ_ETOP_16); variation of 
VIL (90th – 10th percentile) from the 60 x 60 km 
spatial filter (VILVAR_60); percent coverage of 
echo top >= 30 kft. (16 x 16 km, ETOP_C030_16); 
90th percentile echo top height (16 x 16 km, 
ETOP_P090_16) and 90th percentile composite 
reflectivity from 25 kft and above (16 x 16 km, 
COMPREFL_25_P090_16).  The figure shows the 
overall error rate (blue), false alarm rate (green) 
and missed detection rate (red) for all regions 
(square), ZDC (triangle), ZID (plus sign) and ZOB 
(circle).  Errors are plotted for the best 5, 4, 3 and 
2 predictor models from CWAM2, the best 
predictor model without echo top information 
(VILVAR_60, COMPREFL_25_P090_16 and 90th 
percentile VIL, 60 x 60 km, VIL_P090_60) and the 
CWAM1 predictor model (DZ_ETOP_16 and 
percent coverage with VIL >= VIP level 3, 60 x 60 
km spatial filter, VIL_C003_60). 

 



 
Figure 7.  Summary of classification errors for deviation prediction models.  Predictors are defined in the 
text. 
 
 Several things are evident in the results.  The 
overall classification error rates for all models (no 
echo tops and CWAM1 included) are very similar, 
at least when encounters from all ARTCCs are 
considered together (square symbols on the error 
plot).  There are significant differences, however, 
in the spread between false alarm and missed 
detection rates and in the classification error rates 
for individual ARTCCs.  Both the CWAM2 no-
echo-top model and the CWAM1 model have 
larger error spreads than the CWAM2 models with 
echo top predictors; differences between false 
alarm and missed detection rates are greater, as 
are the differences between error rates in different 
ARTCCs. 

The five predictor model provides only 
marginal improvement in the overall error rate and 
actually increases the difference between missed 
detection and false alarm error rates compared to 
the four predictor model; apparently, the fifth 
predictor (COMPREFL_25_P090_16) adds little 
benefit.  Reducing the number of predictors from 

four to three to two does not significantly increase 
the overall error rate.  However, the difference 
between missed detection and false alarm rates 
does increase as the number of predictors 
decreases, as does the variation in error between 
ARTCCs.  The CWAM2 models appear to work 
best in ZID, with lower overall errors and a small 
spread between missed detection and false alarm 
rates.  Interestingly, false alarm rates were greater 
than missed detections in ZDC, while the situation 
was reversed in ZOB.  This may be due to 
operational differences in the two ARTCCs; for 
instance, ZOB may be more able to accommodate 
deviation than ZDC, making pilots more willing to 
ask for deviations around marginal weather in 
ZOB.  The differences may also be due to the 
relatively small number of weather encounters in 
each individual ARTCC.  In any event, further 
research is required to understand the observed 
differences. 

Figure 8 shows the results for the two 
predictor (DZ_ETOP_16, ETOP_C030_16) model.  

5 predictor DZ_ETOP_16, ETOP_C030_16, VILVAR_60, 
ETOP_P090_16, COMPREFL_25_P090_16

4 predictor DZ_ETOP_16, ETOP_C030_16, VILVAR_60, 
ETOP_P090_16

3 predictor DZ_ETOP_16, ETOP_C030_16, VILVAR_60

2 predictor DZ_ETOP_16, ETOP_C030_16

NOET (no echo tops) VILVAR_60, COMPREFL_25_P090_16, VIL_P090_60

CWAM1 DZ_ETOP_16, VIL_C003_60

Figure 7 . Summary of classificationerrors for deviationprediction models. Predictorsare defined in the text . 
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Figure 8a is a scatterplot of all encounters, with 
the boundary between deviation and non-deviation 
in the background and the encounters erroneously 
classified by the model in gray.  Figure 8b is a 2D 
histogram showing the observed deviation 
probabilities as a function of the two predictors.  
Figure 8c is a 2D histogram of the modeled 
probability of deviation derived from the observed 
probabilities. 
 
a) Decision model 

 
b) Observed probability of deviator 

 
c) Modeled probability of deviation 

 
Figure 8.  Summary of the two predictor model.  
Figure (a) shows a scatter plot of all encounters, 
with the boundary between deviations and non-

deviations.  X-axis is % coverage with echo top >= 
30 kft. (16  x 16 km); Y-axis is flight altitude – 90th 
percentile echo top (16 x 16 km).  Gray filled 
squares indicate encounters that were 
misclassified by the model; note the cluster of 
errors where flight altitude was roughly equal to or 
slightly less than echo top height.  Figure (b) 
shows the observed probability of deviation, with 
the same X and Y axes as figure (a).  White 
squares indicate histogram bins with no data.  
Figure (c) shows the modeled 2D probability 
function derived from the observed probabilities in 
figure (b). 
 

The classification errors are clustered around 
encounters with flight altitudes roughly comparable 
to or slightly less than the echo top height (and 
where the observed probability of deviation is 
roughly in the range of .4 to .6).  The inability of 
the CWAM2 model to differentiate between echo 
tops at flight altitude that pilots appear to view as 
benign and those that they wish to avoid may be 
due to any one of a number of factors.  Knowledge 
of upper level winds may be needed to 
differentiate hazardous downwind thunderstorm 
anvils from relatively benign regions of high-
topped stratiform rain, whose echo top and VIL 
signatures appear similar.  Figure 9 illustrates an 
example of each, showing photos taken from 
during a flight mission on 30 August, 2007 and 
corresponding VIL and echo top fields. 
 Other factors that were not considered in the 
CWAM2 study may help explain observed pilot 
deviation decisions.  These include weather 
information that cannot be easily derived from 
ground or satellite-based weather sensors (cockpit 
visuals, for example) or that are related to pilot 
training, aviation company policies or the pilot’s 
risk tolerance.  Figure 10 illustrates two weather 
encounters, 10 minutes apart, flying in the same 
direction on the same en route airway in eastern 
ZOB.  The flights encounter virtually identical 
weather and their altitudes are roughly the same, 
yet the first flight deviates widely around the 
weather and the second penetrates without any 
discernable alteration of course.  The CWAM2 
predictor set did not include anything that might 
have helped differentiate between these two pilots’ 
behavior. 

Finally, the Gaussian classifier models the 
distributions of deviations and non-deviations 
about the input predictors as Gaussians.  While 
many of the predictors studied were well suited to 
Gaussian modeling, some were not.  A poor fit of 
these distributions will result in classification 
errors.  Another classification scheme may be 



more appropriate.  We tried to apply a k-nearest-
neighbor scheme (Lippman et al, 1993 and Duda 
et al, 2001), with k=3 and k=5, but the results were 
significantly worse that the those obtained using 
the Gaussian classifier. 

The decision space for the three and four 
predictor models is difficult to visualize and the 
analysis of these models has not yet been 

completed.  As the number of predictors 
increases, the dimensionality of the deviation 
probability function also increases and a larger set 
of encounter statistics is needed to fit the deviation 
probability function.  A larger encounter database 
will be needed to estimate a deviation probability 
function of three or four input predictors. 
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Figure 9.  Photographs showing a thunderstorm anvil overhang (a), taken from 28 kft., and a region of 
high echo top decay behind the leading edge of a storm (b), taken from 35 kft.  Pilots tend to avoid anvils, 
where convective activity is vigorous and growing and where flights will experience significant turbulence.  
Pilots are more likely to penetrate or fly over regions of high-topped decay, where convective activity is 
weak and turbulence is minimal. 
 
 
 

a) 17:37 - 33 kft. flight altitude b) 17:47 – 36 kft. altitude

 
Figure 10.  Flight at 33 kft. altitude deviates around 35-40 kft cell at 17:37 (a).  Flight at 36 kft. flies 
straight through the same cell at 17:47 (b)   Flight trajectories (planned and actual) are overlaid on 



observed echo tops(to) and VIL (bottom). Black arrows indicate direction of travel. Example is taken from 
01 June, 2006. 
 
 
4.  CONCLUSIONS 
 

This study (CWAM2) extends the initial 
exploratory convective weather avoidance 
modeling study (CWAM1) reported in 2006.  It 
presents a statistical model to predict pilot 
deviation around convective weather in en route 
airspace.  Nearly 2000 weather encounters from 
three ARTCCs (ZDC, ZID and ZOB) on six 
different days in 2006 were analyzed.  Deviations 
were identified using flight track data from ETMS 
and more than 100 deviation predictors were 
derived from CIWS and NSSL weather products.   

CWAM2 confirmed the finding of the original 
study that the difference between flight altitude 
and echo top height is the single best predictor of 
pilot deviation around convective weather in en 
route airspace.  Only one of the five best 
predictors of deviation identified by a Gaussian 
classifier algorithm was not related to echo top 
height (the difference between 90th and 10th 
percentile of the VIL, where percentiles were 
calculated over a 60 x 60 km region).  Prediction 
errors were greatest for trajectories whose flight 
altitude was near or slightly below the echo top 
height and the differentiation between ‘benign’ 
echo tops and those that pilot avoid remains the 
major challenge in convective weather avoidance 
modeling. 

It may be surprising that measures of 
precipitation intensity (maximum VIL, composite 
reflectivity, etc.) do not provide additional deviation 
prediction skill beyond what is available in the 
echo top fields.  However, for flights at en route 
cruising altitudes, regions of heavy but low-topped 
precipitation are readily over flown.  Where heavy 
precipitation is due to vigorous convective activity, 
both high VIL and echo tops are present.  Echo 
top heights alone can explain observed pilot 
behavior in both circumstances.  Note that in other 
phases of flight – departures and arrivals in the 
terminal area or transition from terminal area to en 
route airspace – aircraft are traversing different 
altitudes and pilots have different concerns that 
may be more closely related to precipitation 
intensity measured by VIL. 

Going forward, several areas of continued 
research are needed: 
 

1) Development of an improved deviation 
detection algorithm to enable the creation 
of large scale trajectory and deviation 

databases for modeling and validation 
studies 

2) Consideration of important weather data 
such as upper level winds and satellite 
data as possible deviation predictors 

3) Review of existing data such as echo top 
trends and storm motion data to ensure 
that predictors based on these products 
were well-chosen 

4) Consideration of human factors, such as 
cockpit information, pilot training, company 
policies, etc. as possible deviation 
predictors. 

 
It is also necessary to extend the research into 

terminal area and transitional airspace to develop 
convective weather avoidance models for 
ascending and descending aircraft.  Finally, 
research is needed to determine how to use 
weather avoidance fields based on convective 
weather avoidance models in airspace capacity 
algorithms and operational decision support tools. 
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