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1. Introduction

A common problem in convective forecasting
is the prediction of lightning flash rates, partic-
ularly of cloud-to-ground (CG) flashes. Devel-
oping a solution to this problem is restricted by
the spatially and temporally finite observing sys-
tem of lightning and its potential predictors. Ob-
servational studies have analyzed CG flash on-
set (e.g., Hondl and Eilts 1994; Gremillion and
Orville 1999) and storm-flash rate relationships
(e.g., MacGorman et al. 1989; Carey and Rut-
ledge 1996; Wiens et al. 2005; Petersen et al.
2005). Kuhlman et al. (2006) presented model-
based flash rate relationships for the tornadic
supercell storm studied by Wiens et al. (2005).
Both studies found good correlations between to-
tal flash rate and both graupel echo volume and
updraft volume. Petersen et al. (2005) found a
high correlation between total flash rate and ice-
water path (IWP, a measure of integrated grau-
pel mass) over a large range of convection type,
but typically with only about 80 s of data from any
given storm (the viewing time of the satellite). The
goal of the present study is to evaluate some of
the predictors for flash rates from an ensemble of
simulated non-severe convective storms to have
both a range of storm type as in Petersen et al.
(2005) and histories of individual cases. Thus it
will be possible to compare the range of relation-
ships of individual storms with aggregate behav-
ior.

In this study, we use the results of twenty-two
simulations run by COMMAS to develop the re-
lationships between flash rates and several of its
potential predictors.

2. Cloud Model

The numerical model used in this study is the
Collaborative Model for Multiscale Atmospheric

∗Corresponding author address: Ariel Cohen, National
Weather Service, Great Falls Weather Forecast Office,
5324 Tri-Hill Frontage Rd., Great Falls, MT 59404; e-mail:
Ariel.Cohen@noaa.gov.

Simulation (COMMAS; Wicker and Wilhelmson
1995; Wicker and Skamarock 2002; Coniglio et al.
2006). COMMAS uses the basic equation set
from Klemp and Wilhelmson (1978) and prognos-
tic equations are included for momentum, pres-
sure, potential temperature, and turbulent kinetic
energy (Deardorff 1980). Time integration is per-
formed with a third-order Runge–Kutta scheme
(Wicker and Skamarock 2002). The basic mi-
crophysical model used for this study is a 3-
ICE microphysics scheme (Ziegler 1985; Zrnić
et al. 1993) that predicts mass and number con-
centration for five hydrometeor types (droplets,
rain, ice crystals, snow, and graupel). The two-
moment scheme also predicts the concentration
of cloud condensation nuclei (CCN) and predicts
the average graupel bulk density, which is al-
lowed to vary between 300 to 900 kg m−3. For
this simulation, initial CCN concentration was set
at 700(ρair/ρo) cm−3, where ρair is air density and
ρo = 1.0 kg m−3.

Electrification processes (Mansell et al. 2005)
include parameterizations of multiple laboratory
results of noninductive charge separation in re-
bounding graupel-ice collisions. Small ion pro-
cesses such as attachment and drift motion are
treated explicitly. The branched lightning param-
eterization of Mansell et al. (2002) was used, with
charge neutrality of the channel structure now
maintained by adjusting the electric potential of
the channel (e.g., Mazur and Ruhnke 1998). In
Mansell et al. (2002), a simple height threshold
(typically 2 km) was used to declare a flash to be
a CG (i.e., the flash was not required to propagate
all the way to ground). In the updated scheme,
the potential at the tip must maintain the correct
sign to be connected to ground, since the sign
can change due to internal resistance and adjust-
ment of the channel potential.

Simulations were carried out on a model
domain using dimensions 100x100x17 km3

(200x200x45 grid points). The horizontal resolu-
tion was 500 m, and the vertical spacing stretched
from 200 m in the lowest level of the model to



Case w Shr Mag Shr Dpt
Ashtabula + 11.2 25.0 3500.
Butler + 12.5 25.0 3500.
Cuyahoga + 12.5 19.0 1000.
Delaware + 12.6 25.0 6000.
Fayette + 12.5 25.0 3500.
Franklin + 13.0 35.0 5555
Greene + 13.0 10.0 6666
Hardin + 10.0 40.0 7563
Harrison + 11.5 17.5 1193
Jefferson + 13.0 40.0 6688
Warren + * * *
Ashtabula ++ 11.2 25.0 3500.
Butler ++ 12.5 25.0 3500.
Cuyahoga ++ 12.5 19.0 1000.
Delaware ++ 12.6 25.0 6000.
Fayette ++ 12.5 25.0 3500.
Franklin ++ 13.0 35.0 5555
Greene ++ 13.0 10.0 6666
Hardin ++ 10.0 40.0 7563
Harrison ++ 11.5 17.5 1193
Jefferson ++ 13.0 40.0 6688
Warren ++ * * *

Table 1: Environmental initialization for each storm
(single asterisk denotes the environmental conditions
associated with the 2 June 1995, Dimmit, TX, tornadic
storm, with w denoting surface mixing ratio with units
g kg−1), Shr Mag denoting shear magnitude with units
s−1, Shr Dpt denoting shear depth with units m, with
a single plus sign indicating an SP storm, and with a
double plus sign indicating a TAK storm)

500 m at 10 km altitude and above. For all cases,
convection was initiated by a region of vertical ac-
celeration in the model domain, along with ran-
dom thermal perturbations over the model do-
main. Grid motion was chosen to retain storms
within the model domain. Each case was run for
two hours. While a few storms dissipated before
the end of this two-hour period, most storms were
still actively producing lightning at the end of the
two-hour period.

Eleven of the storms (indicated by a + sign,
and also referred to as SP) use the Saunders and
Peck (1998) charging regime to study their elec-
trical properties. Another set of eleven storms (in-
dicated by a ++ sign, and also referred to as TAK)
assume the same environmental shear magni-
tude, shear depth, and surface mixing ratio to ini-
tialize each storm as the first set, however all of
the second set used the Takahashi (1984) charg-
ing parameterization. The difference between
the two charging schemes lies in the relationship

Case Correlation Coefficient
EF GV UMF

Ashtabula + 0.40 0.89 0.89
Butler + 0.24 0.84 0.77
Cuyahoga + * 0.18 0.66 0.09
Delaware + 0.35 0.77 0.52
Fayette + * 0.17 0.74 negl.
Franklin + 0.19 0.80 0.79
Greene + * 0.13 0.81 0.01
Hardin + 0.29 0.53 0.57
Harrison + * 0.12 0.65 0.58
Jefferson + 0.25 0.82 0.70
Warren + 0.35 0.79 0.78
Ashtabula ++ 0.24 0.88 0.86
Butler ++ 0.28 0.80 0.78
Cuyahoga ++ * 0.18 0.68 0.05
Delaware ++ 0.25 0.78 0.54
Fayette ++ * 0.08 0.72 negl.
Franklin ++ 0.20 0.82 0.78
Greene ++ * 0.05 0.50 0.01
Hardin ++ 0.54 0.63 0.58
Harrison ++ * 0.21 0.66 0.50
Jefferson ++ 0.26 0.75 0.64
Warren ++ 0.31 0.83 0.82

Table 2: Raw CCs between flash rate and elec-
tric field (EF), graupel volume (GV), and updraft
mass flux (UMF), with no trend removal. An as-
terisk (*) denotes a simulation involving unicellu-
lar storm mode for the majority of the simulation.
A (+) sign indicates an SP storm, and (++) sign
indicates a TAK storm, with “negl.” indicating a
negligible value below 0.01

between ambient temperature and cloud water
content or graupel rime accretion rate (e.g., see
Mansell et al. 2005). The appendix contains sim-
ulated reflectivity plan views at a specified time
for each of the eleven unique storms.

Table 1 lists two sets of eleven cases, as well
as the nomenclature used, for a total twenty-
two cases. Since the only difference between
the two sets of storms is the noninductive charg-
ing parameterization, the non-electrical proper-
ties of the two sets are identical. The environ-
mental shear magnitude, shear depth, and sur-
face mixing ratio used to initialize each storm var-
ied from storm to storm. The vertical wind, tem-
perature, and dewpoint profiles in each simula-
tion are specified by Weisman and Klemp (1982)
and Weisman and Klemp (1984), except for the
Fayette (SP and TAK) and Warren (SP and TAK)

2



simulations. The Warren storm was initialized us-
ing the proximity sounding from the 2 June 1995
the Dimmitt, Texas tornado as described in Fierro
et al. (2006), while the Fayette simulation was ini-
tialized using a hand-made sounding. The envi-
ronmental conditions were assumed to be hori-
zontally homogeneous across the domain initially.

3. Individual Storm Discussion

By generating time series of several different
variables for each simulation, we are able to study
the numerous relationships that exist between
the variables. To understand the most basic de-
pendencies in the most consistent way possible,
we chose to study the strength of linear relation-
ships. This provides a basic guide of the degree
to which microphyiscal, dynamical, and electrical
variables explain flash rates. The raw correlation
coefficients (CC), without any shifting of the time
series, between maximum electric field over the
domain, graupel volume, and updraft mass flux
across the 0◦C isotherm are displayed in Table 2.

For most simulations, the relationship between
flash rate and electric field is weak. Raw cor-
relation coefficients between these two variables
rarely exceed 0.4, with most correlation coeffi-
cients below 0.3. The electric field time series
data (not shown) suggest that, in most cases,
the electric field rapidly increases in the incipi-
ent stages of the storm, and peaks at a value
generally between 80 kV m−1 and 100 kV m−1,
the nature of which is discussed by MacGorman
and Rust (1998). This value can be considered
a proxy for the electric field strength that pro-
motes electrical breakdown, and the development
of flashes. Once this value is achieved, however,
flash rates can continue to increase but electric
field strengths do not. This is consistent with the
concept that flashes serve the purpose of limiting
the electric field strength within storms, which is
a fundamental assumption of the electrical struc-
ture of any numerical model, as discussed in
Mansell et al. (2002) and Mansell et al. (2005).

Several microphysical and kinematic variables
could potentially serve as predictors for flash
rates. We will consider each one separately.
Carey and Rutledge (1996) considered these re-
lationships for a specific storm that occurred on
21 May 1993 on the Front Range of Colorado,
which was sampled by the CSU-CHILL doppler
radar. Their study drew many conclusions regard-
ing predictors for intracloud flashes for that storm,
including graupel volume. Some of the results of
that study are compared to the present study.

As in Carey and Rutledge (1996), we find a very
strong relationship between flash rate and grau-
pel volume. In fact, the correlation coefficients be-
tween graupel volume and flash rate are always
above 0.400, and often above 0.700, suggesting
this strong relationship. The correlation between
flash rate and updraft mass flux across the 0 ◦C
isotherm is also significant. The physical relation-
ship between updraft mass flux, convective-scale
charge separation, and flash rate is consistent
with this signal, as cited in Carey and Rutledge
(1996). Additionally, graupel volume is causally
related to updraft mass flux, so it is not surpris-
ing that both are correlated with flash rate. On
average, however, the correlation coefficients be-
tween updraft mass flux and flash rate are smaller
than between graupel volume and flash rate.

The relationship between graupel volume and
flash rate and between updraft mass flux and
flash rate are the strongest in the cases reminis-
cent of supercells (based on hook echo identifica-
tion). This is the case for the Ashtabula (SP and
TAK), Butler (SP and TAK), Delaware (SP and
TAK), and Warren (SP and TAK) simulations, with
correlation coefficients are generally over 0.200
larger than most other simulations.

Correlation coefficients were also calculated af-
ter linear trends were removed (Table 3). The cor-
relation coefficients between the detrended elec-
tric field and detrended flash rate were negli-
gible, suggesting no significant relationship be-
tween the cycles of these variables. The correla-
tions between flash rate perturbations and grau-
pel volume perturbations, however, were negligi-
ble or marginally significant for 7 cases (both SP
and TAK), but significant (>0.45) for the other 4
(Cuyahoga, Fayette, Greene, and Harrison). The
cases for which the largest correlation coefficients
exist between perturbation graupel volume and
perturbation flash rate are ones in which the con-
vection was largely unicellular for the entire 2-hr
simulation. This suggests that low detrended cor-
relations may have resulted from multiple cells
in the domain at different stages of maturity or
simply a storm mode that has greater short-term
variability. Section 6 discusses results from ex-
tracting time-series for a subdomain of three low-
correlation cases.

The correlations between CG flash rate and
electric field, graupel volume, and updraft mass
flux were not significant (<0.3) especially be-
tween flash rate and electric field, graupel vol-
ume, and updraft mass flux (not shown). This
poor relationship is likely due to the rarity and ran-
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Figure 1: Summary scatterplots of flash rate and CG flash rate versus electric field, graupel volume, updraft
mass flux, rain mass, crystal mass flux, updraft volume, maximum updraft, and cloud ice mass, with linear fits
superimposed. Correlation coefficients are given for all cases and for SP and TAK separately (ALL/SP/TAK).
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Case Correlation Coefficient
EF GV UMF

Ashtabula + 0.01 negl. negl.
Butler + 0.06 negl. negl.
Cuyahoga + * negl. 0.74 0.01
Delaware + negl. negl. 0.01
Fayette + * 0.25 0.68 0.08
Franklin + 0.01 0.38 0.14
Greene + * 0.26 0.76 0.10
Hardin + negl. 0.05 0.23
Harrison + * 0.01 0.74 0.42
Jefferson + 0.01 0.03 0.19
Warren + 0.02 0.06 negl.
Ashtabula ++ negl. 0.41 0.14
Butler ++ 0.01 0.04 negl.
Cuyahoga ++ * negl. 0.66 negl.
Delaware ++ 0.03 0.05 negl.
Fayette ++ * 0.25 0.62 0.07
Franklin ++ 0.01 0.12 0.19
Greene ++ * 0.25 0.46 0.16
Hardin ++ 0.04 negl. 0.25
Harrison ++ * 0.01 0.73 0.30
Jefferson ++ negl. 0.07 0.22
Warren ++ 0.01 0.03 0.01

Table 3: CCs between flash rate and electric field (EF),
graupel volume (GV), and updraft mass flux (UMF),
with CCs between detrended value in parentheses,
with an asterisk denoting a simulation involving unicel-
lular storm mode for the majority of the simulation, with
a single plus sign indicating an SP storm, with a dou-
ble plus sign indicating a TAK storm, and with “negl.”
indicating a negligible value below 0.01

dom occurrence of CG flashes compared to intra-
cloud flashes, which can be visualized by cross
referencing the time series of flash rate versus
CG flash rate for each simulation. Naturally, the
correlation coefficients between the perturbation
forms of these quantities are also negligibly small,
indicating very weak relationships between the
cycles of CG flashes and electric field, graupel
volume, and updraft mass flux.

The graupel volume and updraft mass flux time
series data were also subjected to Fourier cross-
correlation to determine whether correlation val-
ues (especially for detrended variables) with flash
rate could be increased by phase-shifting (e.g.,
MacGorman et al. 1989; Wiens et al. 2005). The
lag time to maximize the correlation coefficients
was generally zero or on the order of a few min-
utes. Any increase in the detrended correlations,
however, was not significant.

4. Aggregated Storms Discussion

We will now consider relationships among sev-
eral flash rate predictors in an aggregate sense.
A potential disadvantage to this analysis is that
combining time series from several different sim-
ulations implies a loss of detail for individual storm
simulations. Nevertheless, this analysis provides
an overall summary for the range of values and
relationships discussed in this study. Figure 1
shows the relationships series for all the afore-
mentioned variables, as well as for rain mass,
crystal mass flux through the -30 ◦C isotherm, the
updraft volume for updrafts in excess of 10 m s−1,
maximum updraft, and cloud ice mass.

Similar to the individual simulations, the rela-
tionship between aggregate flash rate and grau-
pel volume is significant, with slightly higher cor-
relations for rain mass and ice crystal mass flux.
Petersen et al. (2005) also determined a strong
statistical relationship between flash density and
graupel mass from sampling a wide range of
convection. Other studies, including Kempf and
Krider (2003) have also showed a relationship
between CG flash rates and surface rain rates,
which in turn are conceivably highly correlated
with melting graupel. Electric field similarly shows
poor correlation, as well as maximum updraft
speed, neither of which gives an integrated mea-
sure of storm vigor.

Graupel volume, updraft mass flux, and cloud
ice mass are also well-correlated with flash rates
in an aggregated sense. These three variables
are directly related to the processes responsible
for charge separation discussed earlier. The up-
draft mass flux is associated with the distribution
of positively-charged cloud ice particles into the
upper parts of the storm and negatively-charged
graupel particles into the bottom part of the storm.
On the other hand, the relationship between flash
rate and updraft volume is relatively weaker, and
yet even weaker for maximum updraft. This sug-
gests that the particle phase relationships and
distributions play a more significant role in the re-
lationship between the updraft mass flux and the
flash rate than then updraft strength itself.

The relationships between CG flash rates and
all the variables discussed in this work (not
shown) are all very weak, as the number of CG
flashes is quite variable over a large range of the
values of these quantities. Note that the CG flash
rate is a small fraction of the total simulated flash
rate, and it is possible that the model does not
always simulate realistic CG flash rates (Mansell
et al. 2002).
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5. Charging Scheme Discussion

We can also compare the difference between
the SP and TAK charging schemes. Since the mi-
crophysics package is independent of the charg-
ing scheme selected, the time series of grau-
pel volume, updraft mass flux, rain mass, crys-
tal mass flux, updraft volume, maximum updraft,
and cloud ice mass are the same for the TAK
storms as for the SP storms. Variations in flash
rate and electric field time series between TAK
and SP storms, however, result in variations in the
flash rate relationships between each TAK and
corresponding SP storm. While the same gen-
eral relationships hold – positive ones – some dif-
ferences do exist. On a storm-by-storm basis, the
correlations are quite similar (Table 2), but when
the cases are aggregated separately by charging
scheme, the linear relationships are consistently
stronger for the TAK charging scheme than for SP
charging scheme by as much as 0.1.

The total amounts of positive and nega-
tive charge gained by graupel from noninduc-
tive charging was determined by integrating the
charge separation rates over time and space
across the entire model domain. Both the to-
tal positive and negative charge were computed
for all 22 simulations, resulting in comparisons
among SP and TAK storm pairs. Figure 2 displays
a scatterplot of these totals, where each SP-TAK
storm pair is connected with a thin line. The to-
tal negative charge for any simulation using the
SP scheme is substantially more negative than
using the TAK scheme, while the total positive
charge for any simulation using the TAK is gener-
ally slightly smaller than using the SP scheme. In
a couple pairs, the total positive charge is larger
using the TAK instead of the SP scheme. Thus,
the total amount of noninductive charge transfer
is larger when using the SP scheme than when
using the TAK scheme. And, the main contributor
to the larger amount of charge transferred in the
SP scheme is negative charge. This explains the
larger flash rates using the SP compared to the
TAK scheme. Additionally, it qualitatively appears
from Figure 2 that there is much more range in
total noninductive charging for the SP simulations
than among the TAK simulations, possibly due to
greater variability in charge separation sign in the
SP scheme. This may explain the weaker correla-
tion coefficients between flash rate and its predic-
tors in the SP simulations than in the TAK simula-
tions. Interestingly, the difference in total negative
charge increases among simulation pairs as the
total positive charge increases, as indicated by
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Figure 2: Total temporal and spatial noninduc-
tive charge separated, with results from the
Saunders-Peck charging scheme in red and from
the Takahashi charging scheme in blue.

the longer connecting lines with increasing pos-
itive charge.

6. Domain Variations Discussion

To further investigate the impact that non-
unicell convection has on reducing the correlation
coefficients between flash rate and the other vari-
ables specifically for the perturbation quantities,
we manually divided the model domain into rect-
angular subdomains to study these relationships
for distinct convective elements of three SP simu-
lations (Table 4). Based on the analysis of the uni-
cell storm cases, one might expect that the cor-
relation coefficients for these cell-tracking subdo-
mains would be higher between the perturbation
quantities. Table 4 indicates the correlation coef-
ficients between total flash rate and electric field,
graupel volume, and updraft mass flux for both
a north and south sector for the first hour or so
(S1, N1) of the simulation and then for the second
part of the simulation (S2, N2), as well as over
the entire domain using the 3-minute history data.
It is important to note that model output used
for this sector-analysis is based on three-minute
sampling over the domain, which may result in
smoother time series data than the 1-minute out-
put used for Tables 1–3. Nevertheless, Table 4
still indicates low correlations for the perturba-
tion quantities using 3-minute calculations, just as
with 1-minute calculations.

It does appear that individual cells do in-
deed have better correlations for their perturba-
tion quantities, as evidenced by correlation co-
efficients in Table 4 being up to 0.4 larger than
those Table 3, especially for graupel volume and
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Case EF GV UMF
Butler – S1 0.04 0.12 negl.
Butler – N1 0.08 0.29 0.08
Butler – S2 0.03 0.07 0.11
Butler – N2 0.03 0.20 0.12
Butler – All 0.11 negl. negl.
Franklin – S1 0.01 negl. 0.28
Franklin – N1 0.18 0.04 0.02
Franklin – S2 0.01 0.05 0.05
Franklin – N2 0.04 0.40 0.02
Franklin – All negl. 0.37 0.19
Hardin – S1 0.11 0.28 0.36
Hardin – N1 0.31 0.19 0.01
Hardin – S2 0.04 0.12 negl.
Hardin – N2 0.01 0.10 0.44
Hardin – All negl. 0.07 0.18

Table 4: CCs between detrended flash rate
and detrended electric field (EF), graupel volume
(GV), and updraft mass flux (UMF) for sectorized
storms, as well as over the entire domain using
3-minute model output, and with “negl.” indicating
a neglible value (<0.01)

updraft mass flux, but still not greater than 0.45.
These improvements seem to be dominant for the
northern subdomains. Surprisingly, these cor-
relations are also higher for the electric field in
some cases. However, the biggest improvement
appears to be higher correlations for the updraft
mass flux rather than graupel volume, consistent
with discussion throughout this entire work. Con-
sideration of fewer stages of various cells’ lives in
the subdomains compared to the entire domain
results in better correlations between the pertur-
bation quantities.

The cell-tracking subdomains were crude rect-
angles that often included edges of neighboring
cells. Thus it is possible that a more careful delin-
eation of a cell could result in more significant cor-
relations. It is also quite possible that the nature
of the convection in these cases is simply more
variable in time.

7. Conclusions

This study provides an analysis of the relation-
ships between flash rates and several microphys-
ical quantities across an ensemble of simulated
storms using two parameterizations of noninduc-
tive charge separation. Some of these quantities
include electric field, graupel volume, and updraft
mass flux, rain mass, crystal mass flux, updraft

volume, maximum updraft, and cloud ice mass.
Modifications to surface moisture and bulk shear
depth and magnitude yielded a wide range of
storm intensity and morphology, from weak, uni-
cell storms, to strong squall lines and supercells.
Each of the 11 unique cases was run with two dif-
ferent noninductive graupel-ice charge separation
schemes, for a total of 22 simulations. Results
show that the relationships between total flash
rate and rain mass, ice crystal mass flux, and
graupel volume are the most significant, while
the relationships are weak for electric field and
maximum updraft. In cases where convection re-
mained isolated (i.e., one cell in the model do-
main for most of the 120 minutes), the correla-
tions between detrended total flash rate and grau-
pel volume were also found to be significant. Sec-
torizing the domain to study individual cells also
resulted in higher, but still weak, correlation coeffi-
cients, indicating that multiple phases of cells over
the domain reduce correlations between the cy-
cles of the variables studied. Additionally, by lag-
ging flash rate time series backwards in time, the
correlation coefficients between flash rates and
some of the microphysical variables were found
to increase slightly. Understanding these relation-
ships can provide the foundation for future work
in predicting flash rates across a wide range of
storms based on observational information, in-
cluding radar data.
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9. Appendix

Figures 3, 4, and 5 show the simulated surface
radar reflectivity for the 11 storms.
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Figure 3: Surface radar reflectivity representations in color and -1 K potential temperature perturbation
contour in gray for the first four storms.
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Figure 4: As in Figure 3, but storms 5–8.
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Figure 5: As in Figure 3, but storms 9–11.
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