
1

9B.9 CHALLENGES OF DISPLAYING DYNAMIC WEATHER CONTENT
IN INTERACTIVE MAPPING SOLUTIONS

 Scott Ganson1 and JT Johnson1

1Weather Decision Technologies, Norman, Oklahoma

1. Introduction
In recent years, interactive mapping such as Google

Maps/Earth, Microsoft Virtual Earth and numerous others
have become increasingly popular. The idea of combining
various data with these mapping solutions has created a
“buzz” in the Internet world as developers create new dy-
namic and immersive views of their world around them. A
natural dataset to combine with relevant location informa-
tion is weather.

However, this combination does not come without
challenges. Much, if not all, of the weather information that
enthusiasts have sought for years on the Internet has been
in text, simple image, or complex binary formats. To cre-
ate weather content for the interactive mapping world that
is both informative and intriguing the data often needs to
have both high temporal and spatial resolution as well as be
dynamic and intuitive.

Thus, the fi rst challenge: Overcoming large amounts of
data transfer. Most mapping platforms have opened tunnels
into their infrastructure via web-based API’s. However, these
API’s do not yet offer the fl exibility and effi ciency necessary
for displaying highly dynamic and voluminous content.

The second challenge is overcoming typically “clunky”
meteorological formats and placing them in a typical brows-
er-based format that can be quickly transferred without sac-
rifi cing data integrity.

Lastly, a fi nal challenge to overcome is using multiple
meteorological datasets to create interactive map products
which are meaningful to users. No longer does just a map of
color-fi lled temperature contours mean as much to people.
In the Web 2.0 world, it is necessary to assist in everyday
decision making processes for the general public. We will
specifi cally address these challenges throughout this pa-
per.

2. Challenges
a. Large dataset transfers
As most in the meteorological community know, large

datasets are often necessary to get a clear picture of atmo-
spheric conditions at any given time or location. Examples
of these types of datasets include point data, gridded data,
or raster data. Specifi cally, the amount of data in each of
these formats presents a developer with very different yet
challenging dilemmas.

* Corresponding author address: Scott Ganson,
Weather Decision Technologies, 3100 Monitor Ave.
Suite 280, Norman, OK 73072, sganson@wdtinc.com

One of the most prevalent issues that will immediately
grind production to a halt is limited bandwidth and its ex-
pense. Therefore, it becomes necessary in most produc-
tion environments to make the datasets manageable for
fi le transfer without affecting the integrity of the original
dataset.

Although there are numerous approaches to solve
this problem, this paper will only address a few of them.
The fi rst approach, known as “progressive disclosure,” ”al-
lows one to plot a large number of points (e.g. there are as
many as 2,500+ [US] METARS reporting in a one-hour cy-
cle) without cluttering up the large-scale map. “ [3]. As this
defi nition implies, the benefi ts to progressive disclosure
also help the user. The question still remains as to how
this process can help limit bandwidth and keep data trans-
fer to a minimum in a production environment. By using
a combination of progressive disclosure along with Web
2.0 techniques such as Asynchronous JavaScript And Xml
(AJAX) [1] and JavaScript Object Notation (JSON) [2], a
developer can build an application to use a client’s geo-
referenced information (such as a location) to develop a
location-based query which only returns a small subset of
data relevant to a user’s specifi c location at a given time.
By doing this, the developer creates the illusion of having
a complete dataset loaded on a client’s machine by trans-
ferring small “chunks” of data based on client side events
inside a dynamic mapping application.

Another useful technique is a tiled solution, however
this technique is more complex and diffi cult to implement.
One huge advantage to tiled data transfer is that tiles are
the backbone to mapping solutions available on the Inter-
net. Tiles are used to piece together, one small chunk at
a time, a larger image which is seamlessly composed of
the smaller tiles. Therefore, to tile meteorological data is a
natural extension of the mapping technologies.

A tiled solution is best used with raster or even grid-
ded data such as radar, satellite or weather model data.
One relatively simple tiling method is an “on-demand” ap-
proach, where tiles are created from a “master” data set
on the fl y; built upon a location-based query from a client-
side application. Another tiling method is pre-processing
the tiles to be served. This method can be computationally
quite a bit more expensive, and very hard to accomplish
with highly dynamic data.

The pre-processing tiling method tends to lend itself
more logically to lower temporal resolution data (i.e. climate
data). This is mainly due to the fact that depending on how
zoomed in on the data the mapping solution allows, many

2

tiles may have to be created. In fact, the number of tiles is
a power curve. For example, at the highest (most zoomed
OUT level) only 1 tile may be necessary. However, as you
zoom in to the next level that number increases whereby
the total image is composed of 2x2 tiles, or 4 total tiles.
Then as you zoom in to the next level that number again
is doubled to 4x4, and zooming again yields 8x8. It can
quickly be seen how the limitations to pre-processing the
tile generation process can yield itself an impossible so-
lution. If one has to make a tiled map which consists of
16384x16384 tiles, that becomes a huge computing re-
source drain to recreate every hour or worse yet every 5
minutes for something as dynamic as radar images.

zoom level dimensions total number of tiles
1 1 1
2 2 4
3 4 16
4 8 64
5 16 256
6 32 1024
7 64 4096
8 128 16384
9 256 65536
10 512 262144
11 1024 1048576
12 2048 4194304
13 4096 16777216
14 8192 67108864
15 16384 268435456
16 32768 1073741824
17 65536 4294967296

Table 1. Example of the number of tiles derived by using a
tiling method.

However, as computing becomes cheaper, there is
obviously room for this solution to become more viable for
highly dynamic datasets.

On-demand tiling solutions are a logical approach to
datasets which do not lend themselves as easily to a pre-
generated solution due to the fact that computing resourc-
es are only used when necessary (i.e. requested by the
user). Most mapping API’s will allow a developer to point to
specifi c URL’s using a Cartesian coordinate system in the
x,y directions coupled with a zoom level coordinate (which
acts similar to a z-axis) and overlay the image found at the
target URL onto the map. Using dynamic page generation
such as PHP, CGI, or Ruby can allow a developer the op-
portunity to create the tiles on the fl y using the information

passed to the dynamic script as URL arguments. To further
enhance the end-user experience, another process can be
added to disk-cache the generated tiles for faster repetitive
retrieval by multiple users in rapid succession.

Extending mapping solutions to include meteorologi-
cal raster data can yield such results as pictured in Figure
2. These tiling solutions are extremely effective in reducing
overhead associated with bandwidth due to the fact that
the resulting tiles transferred are generally on the order
of ~10KB instead of > 1MB for a large high resolution im-
age which would produce the same result at high zoom
levels. The other added benefi t to tiles is that the end-user
experience again is greatly enhanced due to the loading of
numerous bits of small data chunks opposed to waiting on
one large dataset of which the user may only interrogate or
look at 10% of the total amount of data transferred.

Figure 2. Example of tiled data at progressively zoomed in
levels.

b. File format issues
Another challenge facing developers of client-side ap-

plications which utilize these mapping solutions is choos-
ing a fi le format to transfer data to the application from the
server. The issue is that most native meteorological formats
such as Grib fi les, fl at text fi les, NIDS, NetCDF, etc. , are
either not browser compatible, or bloated with information
not necessary for the end-user application to function. This
leaves the developer with a decision to make. The fi rst be-
ing that the programmer could write a decoder for the appli-
cation which takes the raw meteorological format, decodes

3

it, and displays it in a manner which is understandable by
the user. Secondly, the developer could make use of exist-
ing technologies such as SQL, XML, object notation, etc,
and do pre-processing to massage the dataset into these
formats. Or fi nally, the dataset could be manipulated into a
proprietary format either created by the developer or insti-
tution which has created the client-side application.

The feasibility of writing a decoder for a client-side ap-
plication seems at fi rst logical. However, upon further exam-
ination there seems to be compelling evidence to the con-
trary. To address one reason why this may not be possible
is to look at the platform on which the application is being
developed. There exists a very large difference between a
client-side application which is built upon operating system
framework compiled from a low-level language such as C,
C++, or others and an application which is designed to use
browser-based technologies. While the former has a scope
which is completely able to lend itself to handling standard
meteorological formats, the latter is much better suited to
markup languages, fl at text fi les, or simple binary formats.
To design a browser-based application to use input data
such as NIDS or netCDF would be a tremendous undertak-
ing and could possibly rapidly drain resources on a client-
side computer when in use. Therefore this paper will focus
on the challenges a developer may face when designing
these browser-based applications.

To have a responsive application which is both intuitive
and a positive end-user experience, it is very important to
fi rst and foremost reduce to a bare minimum the amount of
time a user spends loading data into the application. This
necessitates the use of small manageable fi le formats.
With the exception of images, this thought process can
be applied to most meteorological data sets. The mapping
platforms which have been mentioned, with the exception
of Google Earth which uses Keyhole Markup Language
(KML) format, have API’s which are available in JavaScript
(a standard browser based scripting language). Therefore,
it becomes important to have a method to actually utilize
the fi le format which is chosen. The options which have
been discussed are limited to SQL, XML, and object nota-
tion, which in JavaScript, can be shortened to JSON.

The most complicated of these “formats” is to use SQL
or Standard Query Language in conjunction with XML or
JSON. Unfortunately, this method cannot be done solely
with JavaScript. This procedure uses a combination of
JavaScript and a server-side scripting language such as
PHP. The developer can use a JavaScript application to
pass HTTP request variables to a PHP script to defi ne
and/or refi ne search criteria for returning information which
is applicable to the end-user. The server-side script can
then decode the result of a SQL query either directly into
JavaScript commands, or better yet into a format which can
be used natively by JavaScript. This trick is widely used in
the Web 2.0 world as a convenient way of data transfer

without performing a “hard refresh” which causes an entire
web page to reload.

Similar to the tile serving technique, it is entirely pos-
sible to pre-process the above steps by creating, for ex-
ample, an XML fi le which contains all the latest surface ob-
servations in the CONUS. Of course, this technique is not
without its downside. The tradeoff here, is the fact that this
entire fi le would need to be transferred to the client comput-
er which takes up valuable loading time and bandwidth.

KML format offers an interesting inspiration for trying
to fi nd a happy medium for this problem. The idea to break
apart one large fi le into geographic regions could greatly in-
crease user-performance while decreasing bandwidth us-
age. By breaking the fi le into regions, the application could
easy download the relevant XML fi le with data pertaining
to the location the user is currently interrogating in the ap-
plication.

The last format which needs to be discussed is ob-
jection notation, or more commonly in JavaScript referred
to as JSON (JavaScript Object Notation). JSON is an
interchange format, much like XML except it has the ad-
vantage of being what developers call “lightweight.” This
means there is not a lot of bloating of the fi le through syntax
rules as there can be with XML. By treating SQL output
as “objects,” a developer can utilize JSON to create a fi le
of variables or expressions which can be used directly in
JavaScript applications without the overhead of parsing.
Below is an example of a standard ASOS observation and
how one could easily fi t it into a JSON-like syntax.

var currentsData =
{
 id: 1,
 conditions:
 [
 {
 stn: ‘KOUN’,
 datetime: ‘2008-01-09 21:13:00’,
 temp: ‘57.2’,
 dewp: ‘28.4’,
 lat: ‘35.217’,
 lon: ‘-97.45’,
 name: ‘Norman/Westheimer’,
 state: ‘OK’,
 country: ‘US’,
 dir: ‘170’,
 dir_eng: ‘S’,
 speed_mps: ‘8.2’,
 gust_mps: ‘11.3’,
 slp_mb: ‘’,
 weather: ‘’,
 cld_cover: ‘Clear’
 },
]
 };

4

This is just one simple example of what can be
done with this format. Most meteorological data, with
the exception of raster data, is easily massaged into this
format for simple transfer and use by browser-based ap-
plications.

c. Meaningful products
While the intent of this paper is to discuss technical

challenges associated with interactive mapping applica-
tions, it is also important to emphasize that these applica-
tions are no longer going to survive as just simple weather
maps like those found in standard newspapers. In today’s
world, people are looking to the Internet not only for in-
formation, but decision support, risk management, and
increased effi ciency in daily activities. That being said,
the challenge to us as meteorologists is to create content
that does more than just deliver information.

The fi rst way one can do this is to attempt to have ap-
plications “tell a story.” Meaning, “How does the weather
affect people and the daily decisions they make?” Desire
for applications to lend themselves to this kind of infor-
mation is increasingly evident in the popularity of social
networking and location based services. Tying weather to
these kinds of information sources is a logical next step,
as well as an important one in continuing to protect the
life and property of those around us.

3. WDT’s Solution
One major area of work done by WDT has been to

take these challenges head on, overcome them, and suc-
cessfully create applications which utilize this new area
of technology. In recent months, work to create a radar
“Tile Server” system has recently reached its beta phase.
As previously mentioned, the main challenge with tiling
technology is the limitations of computing power. Howev-
er, WDT has managed to overcome this hurdle and prove
not only the concept, but the successful fabrication of an
end-user application based upon the technology.

In order to accomplish this task, WDT needed to de-
velop a way to have tiles, in mass quantities, be all but
immediately available to a requesting application. To do
this, it was decided that an on-demand approach would
have too much lag due to reasons involving Input of a
CONUS NetCDF fi le and the output of a high-resolution
much smaller domain PNG image. Due to the fact that
reading the NetCDF fi le was computationally intensive,
disk monopolizing, and unable to be memory cached
for simultaneous access by multiple tiling applications, it
meant that repeating this process every time a tile was
requested would be impossible. To further add diffi culty
to the process was the issue that writing PNG images
was computationally expensive due to compression algo-
rithms which are inherent in the image format. Therefore,
yielding on-demand tile generation not a viable option for
this particular application.

Due to these complications the decision was made
to head in a direction of pre-generation of tiles. This al-
lowed for one nation-wide NetCDF fi le to be read just
once for all the tiles to be created; solving one of the main
challenges to tile generation. The next compelling reason
to use pre-generation was because this would allow tiles
to sit on the disk in a format which was easily interpreted
by the browser, thus making load time of the tile relatively
small. However, the main challenge now associated with
pre-generation was fi rst, raw computational power, and
second disk I/O.

To overcome computational challenges, new library
extensions were written with brand new mathematical
classes which executed as close to bit-level as possible.
By doing this, the developers were able to cut down on
much of the overhead of using standard development li-
braries. A next step in the process was to analyze the
entire NetCDF fi le once and fl ag only areas in the fi le
which would need to be further broken down into tiles.
This process was done by looking at a CONUS compos-
ite refl ectivity mosaic and only fl agging areas with echoes
and not areas of no data. To determine if this step was
actually a sound computational investment a case study
was done on the Enterprise, AL case on March, 1 2007 at
2000Z. When the study was completed, it was found that
the results were staggering. Not only was it more than
necessary to analyze the data prior to actually beginning
the tiling process, the pre-generation scheme itself would
fail without it due to reasons which will be discussed later
in the paper.

of
Zooms

Tile size
(in pixels)

of Before
Analyzing

of Tiles
after

Analyzing
1 1024 128 15
2 512 512 61
3 256 2,048 246
4 128 8,192 983
5 64 32,768 3,932
6 32 131,072 15,729
7 16 524,288 62,915
8 8 2,097,152 251,658
9 4 8,388,608 1,006,633

Table 2. Comparison of the number of tiles at a given zoom
level prior to and after analyzing a NetCDF fi le.

After completing the study on a case with widespread
convection over the Eastern U.S. as well as large areas
of stratiform precipitation in the Northwestern U.S., it was
found that on a case as “bad” as the Enterprise case,
roughly only 12% of the CONUS domain was actually
found to have some sort of echo associated with it. This

5

4. Future Work
An additional, but anticipated issue, which has been

encountered in the tiling of gridded data such as NetCDF
data, is resolution of the data at extremely high zoom lev-
els. Performing a zoom to this degree can leave the data
appearing “pixilated” (Figure 3) instead of smooth and
pleasing to the eye.

Figure 3. Pixelized radar image due to gridded data.

For that reason, WDT’s future mission which is al-
ready underway is to represent gridded radar data such
as NetCDF and convert it into vector data, then perform a
process similar to what was detailed in the Section 3. By
converting the grid into a vectorized form, it gives the user
the ability to zoom infi nitely far in to a point and not see
pixelization because data is fi lled via linear interpolation
in between points in the vectored data. An example of a
hypothetical result from this process is seen in Figure 4.

Figure 4. Hypothetical vectorized radar image.

5. Summary
In reality, there are an infi nite number of ways which

meteorological data can be visualized. While this paper
explains methods which are operationally used, it does
not necessarily mean better ways do not exist. The main

allowed the amount of tiles that needed to be created to
be greatly reduced.

The next challenge associated with pre-generation
was to actually complete the process in <5 minutes, or the
average time that WDT creates a new nation-wide com-
posite mosaic. This posed a whole new set of hurdles to
overcome. Physically, a single disk at 15,000 rpm could
not write the 8,388,608 tiles necessary in less than 5 min-
utes. Therefore, a new research area was spawned. How
can WDT mimic ~8 million tiles with signifi cantly less I/O?

Inspiration for solving this dilemma was found in
compression algorithms for representing large fi les with
the fewest bytes possible. By breaking down the entire
NetCDF fi le into the core components which comprise it,
(in this case the unique refl ectivity values in the fi le), it was
found that all of the roughly 8 million tiles could be repre-
sented by a relatively small number of “building blocks.”
By only creating unique tiles and fabricating them together
to re-create a much larger picture, the team discovered
that the entire NetCDF fi le could actually be generated us-
ing a signifi cantly smaller number of tiles than originally
expected, as Table 3 illustrates.

of
Zooms

Tile size
(in

pixels)

of
Before

Analyzing

of Tiles
after

Analyzing

WDT
Compres-

sion
algorithm
at ~7%

1 1024 128 15 1

2 512 512 61 4

3 256 2,048 246 17

4 128 8,192 983 69

5 64 32,768 3,932 275

6 32 131,072 15,729 1,101

7 16 524,288 62,915 4,404

8 8 2,097,152 251,658 17,616

9 4 8,388,608 1,006,633 70,464

Table 3. Example of the amount of tiles required after WDT
compression algorithm is applied.

As the Table 3 shows, on average, WDT was able to
further lower the number of tiles by a staggering 93% by
using this process. This now allowed the tile generation
process to successfully be able to write the adequate num-
ber of tiles to disk while leaving repeated tiles or blank tiles
to be all pointed to a representative tile that was already
generated. Thus leaving the opportunity to develop an end-
user application which utilized the mapping solutions freely
available as well as combining WDT’s now pre-generated
radar tiles for an un-paralleled end-user experience.

6

goals of browser-based applications, regardless of how
the goals are accomplished should be:

Ensure necessary information in conveyed to the 1.
end-user in an intuitive manner.
Create a positive end-user experience by utilizing 2.
techniques to minimize load time and increase
application responsiveness.
 Assist in decision making and not just information 3.
disclosure.

It is the mission of the meteorological software de-
veloper to meet the challenges discussed in the paper
and to overcome them. While only a few solutions have
been introduced to some very broad challenges, there are
still a limitless number of both which will exist as datasets
become larger, higher in temporal and spatial resolution,
and the users of such data become more connected and
widespread.

6. References

1. AJAX: For information:
 http://www.w3schools.com/ajax/default.asp

2. JSON: For information:
 http://json.org/

3. Roberts, William F., Nicholas D. Gebauer, and Leigh
K. Cheatwood, 2007,A ONENOAA CONCEPT PRO-
TOTYPE FOR DATA VIEWING NOAA RESEACH
23th Int. Conf. on Interactive Information Process-
ing Systems (IIPS) for Meteorology, Oceanography,
and Hydrology, San Antonio,TX, Amer. Meteor. Soc.,
9A.4.

