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1. Introduction

Weather radar has been used widely not only for op-
erationally monitoring and issuing warning of severe
and hazardous weathers but also for providing im-
portant measurements to advance our understand-
ing of the atmosphere (e.g., Serafin and Wilson
2000; National Research Council 2002). Reflectiv-
ity, mean radial velocity, and spectrum width are the
three fundamental radar measurements, which are
defined from the zeroth, first, and second moments
of a Doppler spectrum (Doviak and Zrnić 1993). For
weather radar the three spectral moments are often
obtained using the autocovariance method because
of its robustness and efficiency (e.g, Sirmans and
Bumgarner 1975). In the autocovariance method,
although the computation of Doppler spectrum is
not needed, a model of Gaussian spectrum is used
to derive the estimators of mean velocity and spec-
trum width. In other words, a bias in velocity and
spectrum width can be resulted if the Doppler spec-
trum is deviated from symmetry and Gaussian, re-
spectively.

In this work spectra from a tornadic supercell
thunderstorm will be examined. Spectra deviated
from Gaussian with dual-peak or strong tail can
be observed. A spectrum model based on a mix-
ture of two Gaussian functions is introduced and
the power, mean velocity, and spectrum width from
each Gaussian component are obtained using a
non-linear fitting. The bias of velocity and spec-
trum width for the autocovariance method is de-
rived based on such a model. Furthermore, spec-
tra from a tornadic supercell, collected by the re-
search WSR-88D (KOUN), are shown. Discussions
of underlying processes to produce observed non-
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Gaussian spectra are included.

2. Model of Doppler spectrum

A Doppler spectrum S(v) is defined as power
weighted velocity distribution within the radar res-
olution volume. The value of S(v)dv represents the
return power of scatterers with radial velocity be-
tween v and v + dv which is weighted by range
weighting function and two-way antenna pattern. A
Gaussian-shaped Doppler spectrum is typically as-
sumed for weather signals and can be fully char-
acterized by its three spectral moments of signal
power, mean velocity, and spectrum width. How-
ever, the three moments are not sufficient to de-
scribe the spectrum shape if a spectrum is deviated
from Gaussian. For example, a bimodal spectral
signature caused by vortex can be observed from a
tornadic region (e.g., Zrnić and Doviak 1975; Zrnić
et al. 1985) and spectra with multiple patterns from
insects, birds, and clea-air observed by weather
radar were reported (Bachmann and Zrnić 2007).
Moreover, it is of interest to quantify the bias error
of the autocovariance method if a Doppler spectrum
is deviated from Gaussian.

It is assumed that the model of Doppler spec-
trum consists of two Gaussian-shaped components
as shown in the following form.

S(v) =
S1√
2πσ1

exp

[

− (v − v1)
2

2σ2

1

]

+
S2√
2πσ2

exp

[

− (v − v2)
2

2σ2

2

]

(1)

where Si, vi, and σi, i = 1, 2 are the signal power,
mean velocity and spectrum width of each Gaus-
sian component. Although a general case of n
Gaussian components can be reconstructed, the
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number of variables needed to defined such a spec-
trum increases as 3n. In addition, spectra from the
supercell storms we have observed did not show
three prominent peaks. The total signal power of
the dual-Gaussian spectrum is obtained by the ze-
roth moment P = S1 + S2. Moreover, the normal-
ized Doppler spectrum Sn(v) = S(v)/P is a mixture
of two Gaussian probability density functions (pdfs)
and its moments has been derived in the literature
(e.g., Everitt and Hand 1981). The first moment and
second central moments are obtained by the follow-
ing equations.

vr ≡
∫

vSn(v)dv = P1v1 + P2v2 (2)

σ2

v ≡
∫

(v − vr)
2Sn(v)dv

= P1σ
2

1
+ P2σ

2

2
+ (v2 − v1)

2P1P2 (3)

where P1 = S1/P and P2 = S2/P . The mean ve-
locity of the dual-Gaussian spectrum is defined by
the first moment and is a weighted average of the
mean velocities from each Gaussian moment. In
addition, the spectrum width (σv) is defined by the
square root of the second central moment, which
depends on the weighted average of the spectrum
widths from individual Gaussian and the separation
of the their mean velocities. Hereafter, the spectral
moments are referred to those of the dual-Gaussian
model rather than a single Gaussian components
except specified otherwise.

a. Bias of spectral moments estimated by the auto-
covariance method

Given the dual-Gaussian spectrum, its autocorre-
lation function is the superposition of the inverse
Fourier transform of each individual Gaussian com-
ponent as shown in the following form.

R(m) = S1 exp

[

−4(
πσ1m

va
)2

]

exp

[

−j
πv1m

va

]

+ S2 exp
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exp

[

−j
πv2m
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(4)

where m is the temporal lag and va = λ/(4Ts) is
the maximum unambiguous velocity, Ts is the pulse
repetition period and λ is the radar wavelength. In
the autocovariance method, the mean velocity is es-
timated from the argument of the autocorrelation at
lag one. As a result,

v̂r =
va

π
arg R(1) =

va

π
tan

∑

i Ai sin φi
∑

i Ai cosφi
, (5)

where R(1) is obtained from (4) with m = 1. As a re-

sult, Ai = Si exp
[

−4(πσi

va

)2
]

and φi = πvi

va

, i=1 and

2 can be derived. Furthermore, the spectrum width
can be estimated from the autocorrelation function
at lags zero and one using the following form.
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where total signal power R(0) equals to S1+S2 from
(4).

The signal power estimated from the autocor-
relation at zero lag is an unbiased estimator. The
theoretical bias of the velocity estimate for autoco-
variance method is defined by b(v̂r) = E{v̂r} − vr,
where v̂r and vr are given in (5) and (2), respec-
tively. The ensemble mean is denoted by E{ }. In
addition, the bias of spectrum width is defined by
b(σ̂v) = E{σ̂v} − σv and σ̂v and σv are given in (6)
and (3). The bias of velocity and spectrum width es-
timators depends on the spectral moments of both
Gaussian components, but their relationship is not
clearly shown in above equations. It is important to
point out that if spectral moments of both Gaussian
components are of interest, the autocovariance es-
timators only provide a weighted average as shown
in (2) and (3) even though they are unbiased.

b. Dual-Gaussian moments estimation

In this work, the six spectral moments from both
Gaussian components are estimated by minimizing
the mean squared errors (MSE) between the model
spectrum of (1) and observed spectrum, defined in
the following equation.

ε2 ≡ 1

M

∑

v

∣

∣

∣
10 log 10

[

Ŝ(v)
]

− 10 log 10 [S(v)]
∣

∣

∣

2

(7)
where Ŝ(v) is the estimated Doppler spectrum and
M is the number of samples for the estimation.
Note that the MSE is defined in dB scale to sup-
press inherent statistical fluctuations in the spec-
tral estimation. The minimization is solved us-
ing a Gaussian-Newton method with Levenberg-
Marquardt modification (Seber and Wild 2003).
Consequently, a dual-Gaussian spectrum can be
reconstructed using estimated spectral moments.

3. Experimental Results

As discussed earlier, the dual-Gaussian fitting al-
gorithm is most advantageous when the Doppler
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spectrum is deviated from Gaussian shape and can
be characterized by a mixture of two Gaussian func-
tions. In addition, spectral moments of each com-
ponent can be obtained, while the conventional au-
tocovariance method is limited and can be biased.
In this section, the dual-Gaussian fitting algorithm
is demonstrated using spectra observed by the re-
search WSR-88D (KOUN) operated by the National
Severe Storms Laboratory (NSSL) in Norman, Ok-
lahoma. KOUN has typical spatial resolution of 1
degree in angle and 250 m in range and it has the
unique capability of continuously collecting time se-
ries of in-phase and quadrature signals for several
hours. Time series data from a supercell thunder-
storm in central Oklahoma on 10 May 2003 were
collected. The fields of reflectivity, mean radial ve-
locity, and spectrum width from elevation angles (φ)
of 0.5 ◦ at approximately 0405 UTC are presented
from the left to the right columns in Fig. 1, respec-
tively. In addition, the top and bottom rows are those
fields from elevation angles (φ) of 1.5 ◦ and 0.5 ◦ ,
respectively. The KOUN is located at the origin and
all the results associated with reflectivity less than
20 dBZ are not shown for clarity. Evident signatures
of hook-shape reflectivity and strong in-bound and
out-bound velocities can be observed at 25 km east
and 40 km north of KOUN, indicating the presence
of a tornado. In addition, large spectrum widths can
be observed in this region, which has been incor-
porated into a artificial intelligent algorithm to im-
prove tornado detection (Wang et al. 2008). Gen-
erally speaking, these fields from the consecutive
elevation scans exhibit fair continuity (not shown),
except for a region of enhanced spectrum widths
(> 6 m s−1) only at the lowest elevation angle of
0.5 ◦ , which appears as a fan shape on the north-
east of hook echoes. It has been reported that
the median spectrum width from isolated tornadic
storms has values small than 2 m s−1(Fang et al.
2004). Therefore, it is of interest to investigate why
spectrum widths in this region are much enhanced.

Spectra from azimuthal angle (θ) of 35 ◦ and
ranges between 55 to 75 km, that is depicted by the
line AB in Fig. 1, are shown in the last column of
Fig. 2 for both elevation scans. Spectra were ini-
tially obtained using the periodogram method with
von Han window to increase the dynamic range
(Doviak and Zrnić 1993). To reduce statistical fluc-
tuations, spectra were subsequently averaged in
range by a running window with a size of 8 gates
(i.e., 2 km). Averaged spectra from every other six
gates are displayed in dB in the third column of
Fig. 2 with solid lines indicating those from eleva-
tion angle of 0.5 ◦ and dash-dotted lines denoting

those from φ = 1.5 ◦ . The maximum unambiguous
velocity (va) is approximately 32 m s−1. Note that
the autocorrelation functions were also smoothed
using the same scheme of averaging. The fields of
mean velocity and spectrum width shown in Fig. 1
were those obtained by the autocovariance method
with the range-averaged autocorrelation functions.
At each range gate, a Gaussian-shape spectrum
can be reconstructed using the three spectral mo-
ments estimated by the autocovariance and is de-
noted by Sa(v). Moreover, the dual-Gaussian fit-
ting algorithm was applied to the averaged spec-
trum and consequently to obtain its reconstructed
spectrum Sd(v). Those results are shown in the first
and second columns for the two elevation scans, re-
spectively. Averaged-spectra shown in the third col-
umn are also included and denoted by dotted line.
It is apparent that observed spectra can be better
characterize by the dual-Gaussian model for both
scans. Note that spectra at φ = 0.5 ◦ posses sig-
natures of broad spectrum with relatively flat-top or
dual-peak pattern and they become narrower with
increasing range. These spectra can be recon-
structed by two Gaussians with distinct mean ve-
locities but comparable power. It is also evident
that the autocovariance method tends to overes-
timate the spectrum width and provide mean ve-
locities approximately between the locations of the
two peaks, as shown in the first column of Fig. 2.
For the case of φ = 1.5 ◦ , spectra exhibit signa-
tures of a single dominant peak and sometimes with
tails such as those from ranges between 60 km
and 68 km. In the dual-Gaussian model, the domi-
nant peak is characterized by a strong and narrow
Gaussian component and the tail can be described
by the second component with smaller power and
larger spectrum width. As a result, the autoco-
variance method can estimate the mean velocity
of the dominant component but has the tendency
to overestimate its spectrum width as the tail be-
comes stronger, as demonstrated by those spec-
tra between of 60 km and 70 km. As spectra be-
come more Gaussian-like between 72 and 76 km,
the difference of reconstructed spectra from the au-
tocovariance and dual-Gaussian fitting methods be-
comes smaller. Another interesting result is that
spectra from φ = 1.5 degr seem to relate to the
right portion of the spectra at φ = 0.5 ◦ , which can
be exemplified by the spectra between 65 km and
70 km as shown in the rightmost column of Fig. 2.
Hypothesis of the underlying processes to produce
spectra from the two consecutive elevation scans
will be discussed later.

To further investigate spectral moments esti-
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Figure 1: The fields of reflectivity, mean velocity and spectrum width from KOUN radar at the lowest eleva-
tion angle of 0.5 ◦ and 0405 UTC 10 May 2003 are shown from left to right panels, respectively.

mated from the autocovariance method and dual-
Gaussian fitting method, we define the two Gaus-
sian components: S1(v) is the one with larger mean
velocity and S2(v) is the other one. In other words,
S1(v) in Fig. 2 represents the right component of a
spectrum. The estimated signal power, mean ve-
locity and spectrum width of both components as
a function of range are shown in Fig. 3 for both
elevation angles. Spectral moments of S1(v) and
S2(v) are denoted by green and red lines, respec-
tively, and those from autocovariance method are
indicated by blue solid lines. The estimated sig-
nal power, mean radial velocity, and spectrum width
from Si(v) are denoted by Ŝi, v̂i, and σ̂i, i = 1 and
2, respectively, and the three moments estimated
by the autocovariance method are denoted by Ŝ,
v̂r, and σ̂v . It is shown that Ŝ1 and Ŝ2 are compa-
rable with a maximum difference of 8.5 dB at ap-
proximately 63.4 km. In the top second column, the
mean velocities estimated by the autocovariance
method v̂r have values between those from the two
Gaussian components, v̂1 and v̂2. As discussed
in section 2, the mean velocity of a dual-Gaussian
spectrum is a weight average of the mean velocities
from each component. The autocovariance method
would provide such an estimate if the spectrum is
symmetry. The weighted mean velocity, defined by
vr = (Ŝ1v̂1 + Ŝ2v̂2)/(Ŝ1 + Ŝ2) is also included and
is depicted by a blue dashed line. Good agreement
between vr and v̂r suggests that the bias in velocity
estimate from the autocovariance method is rela-
tively small. In addition, spectrum widths from the
two Gaussian components have comparable mag-
nitude of 2-3 m s−1between 60 and 73 km, while the
spectrum widths from the autocovariance method
have values that are approximately doubled.

For φ = 1.5 ◦ , S1(v) usually represents the
Gaussian component with dominant peak and S2(v)
describes the tail. It appears clearly that S2(v)

has signal power approximately 20 to 30 dB lower
than the one of S1(v) and has relatively large spec-
trum width between 57 km and 71 km. The abrupt
change of signal power and spectrum width at ap-
proximately 73.8 km and 75 km occurs when the
two components has crossed over. Although the
two Gaussian components can be assigned based
on their estimated signal power to avoid such a
problem, the mean velocities from the two com-
ponents on the other hand will show these abrupt
changes. As a result, the relationship of mean
velocities from autocovariance method and dual-
Gaussian fitting method is not as clear as the one
in the figure. For the autocovariance-dreived mean
velocities from 1.5 ◦ , they are determined by the
stronger component S1(v). The weighted mean ve-
locity vr also agrees well with v̂r, which is also sug-
gested by symmetric spectra in Fig 2.

Furthermore, let’s investigate what is responsi-
ble for the dual-Gaussian spectra at φ = 0.5 ◦ and
how they are related to spectra from a higher ele-
vation scan. A dual-peak pattern can be obtained if
two independent processes are present simultane-
ously within the radar resolution volume. For exam-
ple, for a VHF or UHF profiler radar, dual-Gaussian
spectra can be resulted from both precipitation and
clear-air echoes that have different mean velocities
(e.g., Boyer et al. 2003, 2004). For weather radar,
spectra with a dual-peak signature were simulated
and observed from tornadic vortices when the radar
volume is sufficiently large to encompass both the
inbound and outbound radial components and no
significant velocity aliasing occurs (e.g., Zrnić and
Doviak 1975; Bluestein et al. 1997; Yu et al. 2007).
However, the region of interest is fairly large and is
not in the vicinity of the tornado. Nevertheless it
gives the idea that strong shears have the poten-
tial to produce such a spectral signature. Since the
dual-peak or sometimes the flat-top spectra are ob-
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Figure 2: The first and second column are the averaged spectra (S(v)), denoted by dashed lines, at the
azimuth of 35 ◦ for the two consecutive elevation angles, respectively. The spectra reconstructed using
moments from the autocovariance method and dual-Gaussian fitting algorithm are defined by Sa(v) and
Sd(v), as depicted by dotted and solid lines, respectively. In each panel, spectra are shown every 1.5 km
after a range average of 2 km. It is evident that dual-peak or flat-top spectra can be observed from elevation
φ = 0.5 ◦ , which generally are better characterized by the dual-Gaussian model. Observed spectra from
φ =0.5 ◦ and 1.5 ◦ shown in the first two columns are overlaid in the third column with solid lines denoting
spectra at φ = 0.5 ◦ and dash-dotted lines representing those at 1.5 ◦ . All spectra are shown in a dB scale.
The mean velocities estimated by the autocovariance method are denoted by the location of downward
triangles.

served in a number of consecutive radials, it is not
likely such a shear pattern can repeatedly occur in
the azimuthal direction. Therefore, the shear should
be likely in the vertical direction. Indeed, it has been
shown that vertical shear plays an important role in
convective storms (e.g., Weisman and Klemp 1982;
Weisman and Rotundo 2000). It should be noted
that different combinations of reflectivity and ve-
locity distributions can produce a similar spectrum.
Therefore, it is not our goal to retrieve the velocity
and reflectivity distribution from spectra. Instead,
we are in an attempt to quantitatively show what a
reasonable distribution of radial velocity and reflec-
tivity can produce those observed spectra. Since
only the vertical direction is of interest, mathemat-
ically the spectrum can be simplified to a 1D case

as shown in the following formula (Doviak and Zrnić
1993).

S(v) =

∫

v=η

Cf4

b (φ)Z(z)|∇v(z)|−1dz. (8)

where f4

b (φ) is the two way beam pattern in the el-
evation direction, Z(z) and v(z) are the reflectivity
and radial velocity in the vertical direction, and C is
a parameter that is a function of radar wavelength,
peak transmitted power, range, antenna gain, and
range weighting function. From (8) S(v)dv repre-
sents the return power from all scatterers with radial
velocity between v and v+dv and is obtained by nu-
merical simulations in this work. We use the simu-
lation scheme similar to the ones used in Bluestein
et al. (1993) and Yu et al. (2007). Initially the reflec-
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Ŝ2

1

Ŝ
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Figure 3: Range profiles of the spectral moments estimated by both autocovariance method and dual-
Gaussian fitting technique. The first three plots from left to right are signal power, mean velocity, and
spectrum width from azimuth of 35 ◦ and elevation of 0.5 ◦ . The second three plots are those from the same
azimuth but the subsequent elevation angle of 1.5 ◦ . Spectral moments of S1(v) and S2(v) estimated from
the dual-Gaussian fitting algorithm are depicted by red and green lines, respectively. Moments obtained by
the autocovariance method are denoted by blue lines.

tivity and velocity are sampled at a finer scale. A
Gaussian-shaped beam pattern from (11.117a) in
Doviak and Zrnić (1993) is used with a half power
beamwidth of 1 degree. The height of each ray path
is calculated using h =

√

r2 + R′2 + 2rR′ sin φ−R′,
where the range r = 65 km, R′ is 4/3 of the earth
radius, and φ is the elevation angle of each ray path.
The integration in (8) is subsequently performed by
a summation of return power at heights with ve-
locities between v and v + dv over the radar vol-
ume, which is defined by the angle between -2 ◦ and
2 ◦ from the center of radar beam.

In order to obtain some ideal of a shear pat-
tern, we first examine the relationship of spectra
between φ = 0.5 ◦ and 1.5 ◦ from the third col-
umn of Fig. 2. It appears that S1(v) maintains
fairly good consistency from the two consecutive el-
evation scans, which suggests that the shear pat-
tern responsible for S1(v) at φ = 0.5 ◦ could oc-
cur in the upper portion of the beam and continu-
ously extend to higher altitudes. Additionally, the
velocities at the lower portion of the beam from
φ = 0.5 ◦ are smaller in order to produce S2(v)
with smaller mean velocity. The profile of radial
velocity is modeled using vr = vs tanh z/zs, which
is the same formula as the one used in Weisman
and Klemp (1982). We also set vs = 20 m s−1and
zs = 800 m. The profile is shown in the upper first
panel of Fig. 4. Additional velocity fluctuations gen-
erated from a normal distribution with a standard
deviation of 2 m s−1was added. Two cases of re-

flectivity profiles presented in the second column
were used in simulations and the resulted spec-
tra are shown in the lower two panels. For each
case, spectra at both φ = 0.5 ◦ and 1.5 ◦ are gener-
ated and spectra with dual-peak signature are ob-
tained from 0.5 ◦ for both cases. For case I both
components of the dual-peak pattern have compa-
rable power and for case II S1(v) (the one with larger
mean velocity) has relatively large power, which are
similar to some of the observed spectra. Moreover,
spectra at 1.5 ◦ exhibit tail signature and their strong
components are similar to the right component of
the spectra (S1(v)) at 0.5 ◦ . Note that a Doppler
spectrum represents a weighted velocity distribu-
tion within the radar volume. In other words, the
velocity profile determines the radial components in
a spectrum. Additionally, the shape of spectrum
is determined by the effective weighting function,
which is defined by the product of reflectivity and
beam pattern (W ≡ fb4(z)Z(z)) and is shown in
the top third column for both cases. The ordinate
on the right represents corresponding elevation an-
gles, where the center of the two beam locations
are denoted by two arrows. Their height are ap-
proximately 0.86 and 2.05 km, respectively. It can
be observed that the effective weighting function
shows a dual-peak pattern for φ = 0.5 ◦ for both
cases. In addition, it is apparent that more retuned
power comes from the lower portion of beam (where
smaller velocities occur) in case I than those in case
II. Moreover, it is hypothesized that the spectrum’s
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weighting (i.e., the product of reflectivity and radar beam pattern), respectively. The lower two panels are
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tail at 1.5 ◦ are partially contributed by the scatterers
from a lower altitude through the beam pattern. The
power is only decreased by 3 dB at φ = 0.5 ◦ from
the radar beam centered at 1.5 ◦ . Note that the
tail is not symmetrical as those from observations.
To produce such a result, more complicated radial
velocity profile is needed and probably cannot be
modeled by a simple mathematical equation. Nev-
ertheless, our simple approach can produce spec-
tra that are similar to observed spectra to some ex-
tent. Furthermore, those dual-peak spectra cannot
be better characterized by a dual-Gaussian model
as shown previously.

4. Conclusions

In this work, a dual-Gaussian model is introduced
and each component is defined by three spectral
moments. The mean power, Doppler velocity, and
spectrum width of such a spectrum are derived in
terms of the three spectral moments from each
components. Theoretical bias of mean radial ve-
locity and spectrum width estimated by the autoco-
variance method in relation to the six parameters
are derived. Spectra from a supercell thunderstorm
collected by the KOUN radar in Norman, Oklahoma
are shown. Interesting spectra with dual-peak or
flat-top are observed at the lower elevation angle
of 0.5 ◦ , which caused autocovariance method to
overestimate the spectrum widths. At the consec-
utive higher elevation scan, spectra are correlated
well with one of the component of the spectra from
the lower elevation scan. In addition, tails are of-
ten observed for those spectrum which seemed to
related to another component of the spectrum at
the lower scan. Hypothesis of vertical shear pat-
tern with enhanced reflectivity structure at lower al-
titudes is proposed. Spectra from hypothesized pro-
file of reflectivity and radial velocity are simulated.
Similar features to those from observations can be
reproduced to some extent. More comprehensive
analysis should be done using more sophisticated
radar simulator and is planned. In addition, it is
shown spectra can add an additional dimension and
has the potential to reveal more detailed dynamics
within the radar volume.
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sity of polarimetric variables separating biological
scatterers in the VAD display. J. Atmos. Oceanic
Technol., 24, 1185–1198.

Bluestein, H. B., J. G. Ladue, H. Stein, and D. Spe-
heger, 1993: Doppler radar wind spectra of su-
percell tornadoes. Mon. Wea. Rev., 121, 2200–
2221.

Bluestein, H. B., W. P. Unruh, and H. Stein, 1997:
Doppler radar analysis of the Northfield, Texas,
tornado of 25 May 1994. Mon. Wea. Rev., 125,
212–230.

Boyer, E., P. Larzabal, C. Adnet, and M. Petitdidier,
2003: Parametric spectral moments estimation
for wind profiling radar. IEEE Trans. Geosci. Re-
mote Sens., 41, 1859–1868.

Boyer, E., M. Petitdidier, and P. Larzabal, 2004:
Stochastic maximum likelihood (SML) parametric
estimation of overlapped Doppler echoes. Ann.
Geophy., 22, 3983–3993.

Doviak, R. J. and D. S. Zrnić, 1993: Doppler
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