
6A.8 TOOLS FOR INTEGRATING DISTRIBUTED COMPUTING
WITH INTERACTIVE VISUALIZATION IN MCIDAS-V

Raymond K. Garcia*, Bruce M. Flynn, Robert O. Knuteson, Thomas Whittaker, Thomas Rink, Thomas
Achtor, Scott Mindock, Steven T. Dutcher, Maciej J. Smuga-Otto, Graeme D. Martin
University of Wisconsin Space Science & Engineering Center, Madison, Wisconsin

We present an overview and demonstration of open-source tools and technologies used to make
large-scale computing connect readily to client visualization environments, bringing together multiple data
sources to compose analyses in the McIDAS-V environment. McIDAS-V permits novel manipulations of
atmospheric datasets distributed across the network using 3-D graphics and a highly literate data model
implemented in Java. When coupled with plug-ins permitting it access to web services, cluster and grid
computing can be made both easy-to-use and scriptable. Outputs can be sliced, subsetted and integrated
into visualizations and further computations. This technology demonstration is intended to evolve into a
toolkit and best practices for integrating heritage data processing applications with distributed computing
and visualization.

1. INTRODUCTION

McIDAS-V is the latest in a l ine of
visualization solutions for collating and analyzing
meteorological data from diverse sources.
McIDAS has, in many packages and generations,
been supported by the University of Wisconsin
SSEC for over 30 years. In recent years, the
emergence of cluster and grid computing
technologies has enabled scientists to access and
process ever greater quantities of data, and
various standard practices for grid and cluster
computing have emerged for making these tasks
easier for the end-user.

The present work shows a method for
integrating best practices of cluster computing
into the exist ing McIDASV visual izat ion
environment alpha release, by providing a plug-in
interface for building and dispatching remote
distributed computing tasks.

The principal kind of computation to be
distributed involves "Job Farming," or taking a set
of similar jobs that can each be executed
independently of one another, and dispatching
them to a cluster or grid for parallel execution. A
proper mechanism for describing such jobs to the
execution environments, as well as specifying the
data sources needed for them is required for this
to succeed. Distributed job farming traditionally

involves tedious and error-prone construction of
elaborate one-off scripts for a given algorithm. By
constructing a set of practices embodied in a
small framework and accompanying library, we
hope to reduce the overhead typically required in
taking a large experimental computation to a
cluster, and to open up the experimenter's
desktop or laptop to new possibilities for working
with large quantities of atmospheric science data.

2. REQUIREMENTS

From the point of view of computing
resources, meeting our goal means making
McIDAS V communicate effectively with compute
clusters, grids and multiprocessor machines. An
effective and flexible dispatching architecture is
needed along with a McIDAS V plugin. Although
the main focus of the work is on providing
distributed computing capabilities to McIDAS V
users, the software should also have command-
line and scripting language API interfaces, both
for testing purposes, and for later use in batching
dispatch tasks. The McIDAS V plugin should
ultimately provide a compelling graphical user
interface (GUI), effectively communicating the
capability of the computing systems it accesses.
One of the great draws of an interactive
visualization environment is its immediacy - no
need to write batch files or other scripts.

In addition to describing jobs within the GUI,
users need to be able to track the execution of
longer-running jobs. A separate GUI element for
monitoring the progress of requested work is
therefore another requirement.

* Corresponding author address: Raymond K. Garcia,
University of Wisconsin Space Science & Engineering
Center, Madison, WI 53706; e-mail
ray.garcia@ssec.wisc.edu.

Our first iteration on this project was focused
on using web technologies to create a data
processing portal. This prior demonstration
focused on general architecture and proof-of-
concept over framework building or flexibility. The
current iteration focuses on identifying tools and
practices to help the developer bring new
computations online, on scaling downward as well
as upward, and on improving interactivity.

By "scaling downward", we address the
requirement of McIDAS-V that it be able to run
stand-alone on a single UNIX workstation such as
a scientist's laptop. We add to this the
requirement for running on machinery brought
along on a field experiment, so that it can execute
the same types of jobs as tasked for a distributed
cluster and storage system, albeit on a smaller
scale or at a slower rate. The McIDAS-V
environment provides McIDAS-X functionality by
way of a separable but easy-to-install McIDAS-X
standalone server. We wanted to have a similar
capability for parallel computation services.

By "scaling upward", we wish to be able to
substitute alternate implementations of the
subsystem interfaces that act as adapters to large
clusters, grids, storage architectures, and remote
archives. A multitude of systems exist for
indexing, retrieving and accessing large data
stores, including both open source and
commercial solutions. Similarly, multiple queuing
engines are used.

Wh i le ease-o f use i s a pa ramoun t
requirement, the realities of distributed computing
provide certain limits on what can be done in this
regard. The use of clusters and grids often
involves requirements for authentication and
limitations on which clients can use what
resources at any given time. While the current
iteration of the project does not directly address
these issues, its architecture must not preclude
the eventual introduction of authentication and
accounting to its capabilities.

Also, this system's usage practices must
inherently encourage annotation of data with
reproducibility (provenance) information. Results
of computations are transitory while iteratively
testing prototype algorithms. Making it easy to re-
run a request with modified inputs or ancillary
data, and knowing which output corresponded to
which request, must be a consideration when
producing and inspecting large amounts of data.

Finally, we were constrained by staffing and
funding for this project. Executing these goals in
an iterative fashion with a small development

team of 2-3 has been both a benefit in that design
goals and execution were largely precluded from
committee debate, and a drawback in that this
was one of many projects simultaneously vying
for our attention.

Thus, our overall requirements for the system
are to support parallel computing jobs involving
large datasets, to provide a McIDAS V interface
for interactive parallel job submission and output
visualization with a straightforward UI, and to
deliver the resulting software as a toolkit that can
be deployed on systems ranging from standalone
computers to clusters or grids. We need this
system to allow developers to deploy algorithms
rapidly and with good provenance practices, and
we are using off-the-shelf, supported and proven
technologies [Wallnau (2001)] to achieve the
above goals in a reasonable time and effort.

3. ARCHITECTURE

In our original demonstration, Origami
[Smuga-Otto (2007)], we made use of web
application development frameworks, XML-RPC,
and the UNIDATA Integrated Data Viewer (IDV) to
show a large calculation being distributed across
a cluster and the results stitched together in a
single visualization, comparing observation
against simulation.

While successful as a demonstration, more
architectural work would be required in order to
attain more flexibility while reducing the time to
integrate the throng of algorithm prototypes which
clamor for software developer time, large-scale
parallelism and visualization capability.

As a result, we expanded on the three basic
systems present in the original demonstration and
focused on making the common integration cases
easy, while not precluding future applications and
extensions being more interactive and involving.

3.1 Compute Facilities

Logically, a single user request for a
distributed processing run translates into a work-
order. This work order consists of individual jobs,
each job being able to run to completion
independently of the others. These jobs can then
be distributed, each job to a separate node, and
upon completion their results can be gathered
and presented to the user as the output to their
work order. Work orders can of ten be
decomposed into tasks along one or more
dimensions: Spatial, temporal, channel, and

ensemble. The specific types of decomposition
available to an algorithm are generally known
prior to integration of the algorithm with the
computing system.

Division into spatially and temporally separate
jobs is conceptually easiest: If an algorithm (such
as a radiative transfer model) on a given region
and time span has no external spatial or temporal
dependencies, then a work order for running that
algorithm on a large region can be split into
separate jobs, each job running the algorithm on
a spatial and temporal sub-domain. Some
algorithms have complex spatial and temporal
dependencies, but can subsect a work order into
jobs by channel, band or profile level - a
motivating example involves wind vector
derivation that can be done independently by
level.

Sometimes a work order can be subdivided
not by spatial, temporal or other intrinsic divisions,
but because the work requested involves running
the same task with minor parameter tweaks, such
as when evaluating and testing an algorithm
against an error budget. One effort at the UW
SSEC involves subjecting candidate algorithms to
various combinations of bad or noisy input: These
include combinations of radiometric noise, spatial
mis-registration, missing bands, and other effects
[Huang (2008)]. Testing an algorithm on all
possible combinations of such effects is referred
to as a test ensemble, and each individual test
case can be spun into a separate job, enabling
much faster execution of the entire ensemble.

Some work orders are decomposable in more
than one way: An ensemble of tests may each be
subject to further spat ial and temporal
independence. In a more complicated case, an
end-to-end wind processing algorithm may first
split inputs by space and time to derive profiles,
then recombine and split again by levels to
produce the final wind outputs.

Finally, work orders represent potentially
complex series of tasks, involving combinations of
FORTRAN, C++, MATLAB, Python, or any
number of other computation environments. Not
every work order type can be expected to be
supported by every computing service. Some
portions of a work order may have to execute in a
dependency order - as is the case of spatially
dividing a computation and then stitching the
outcome together into an image.

Our first major subsystem, called the Work
Order Dispatcher, addresses the above concerns.
It provides profiles of work orders that the

computing system supports, allows these profiles
to be installed as part of a library of handler
modules, and accepts work order requests from
the clients. The dispatcher then uses the selected
handler's planning function to produce a task
break-down of the work order request. Lastly, it
dispatches individual tasks to computing
hardware, tracking their status and reporting back
to the client. The dispatcher also provides the
option to retain information on requests and tasks
for future re-runs and provenance reporting.

3.2 Storage Facilities

We need a methodology for collecting the
output of jobs for visualization and analysis.
Typically, an algorithm will have any number of
input and output files, including actual products,
their metadata, and even log files. Moving files
from place to place is an area of difficulty, when
dealing with multiple generations of systems
running different software versions of protocols
and operating systems, and joined up with a
variety of interconnects and authentication
domains. Using local disk on individual compute
nodes is most efficient, but also most problematic
from when tracking the data down at a later date.

The simplest solution is to make data caching
a service, on the understanding that pockets of
accessible storage space are cheap to borrow for
days or weeks at a time. In the simple single-
machine case, this can wrap the existing "/tmp"
present in some form on every machine. Tasks
will then be responsible for submitting their output
to the cache, ensuring the data is tagged by the
work order that generated it. In our case, a
storage area network (SAN) is our preferred
landing point for data - this system holds dozens
of terabytes of data and serves it through rsync
and OPeNDAP protocols.

The cache server is capable of accepting data
no matter the back end storage configuration, and
based on its knowledge of available protocols on
the storage system it represents, provides one or
more URLs which can be used to access the
content. We call the subsystem resident on the
cache server the Data Cache Manager. It accepts
file submissions from individual tasks and tags
them with the relevant work order identifiers. It
shares data with one or more access protocols
represented by URLs that it generates. It allows
clients to query for the list of results associated
with a given work order identifier, and finally it
cleans out unused and expired data periodically.

3.3 Search Facilities

Another challenging aspect of algorithm
prototyping is identifying data sets to use for
testing, assessing their quality and extracting
subsets of practical size. This is made more
complicated by a plethora of data file formats,
varying extent of mark-up and metadata, various
incompatible search and delivery mechanisms,
and wide variance in provenance practices.
Tackling all of the above at once is infeasible. As
a pragmatic first cut, we had to satisfy ourselves
with a simple geographical-temporal search on a
well-defined data set, on the understanding that
we would ultimately give similar treatment to
potentially dozens of instrument (or instrument-
like) datasets and databases.

We focused on product files from the IASI
instrument. We built an IASI granule metadata
database and data caching engine around this
dataset for internal use in a matter of a few days'
effort. This database focused on the most
immediate features of interest, time and location,
and included an extensible keywording capability
to allow granules to be marked up based on
identified features or relevance. Looking at other
instrument databases, we saw the same trend of
a handful of common fields with substantial
mission or instrument-specific extensions.

The way the data is used varied. Some
applications demand entire granules, others need
only individual spectra within a search perimeter.
Yet other views of the data include conjoining
environment data records (EDR) with science
data records (SDR) for a given test algorithm.

This and other experiences have led to
several observations regarding instrument data
search functionality:

• We do not yet have a sufficiently generalized
schema for this domain to cover all uses of all
instruments.
• Similarly, one definitive location for data has
been found to be impractical.
• Search results are potentially complex, even
hierarchical, depending on the application. They
are likely to be useful as metadata files which
can help direct computations and planning.
• We do not want to preclude the possibility of
joining across multiple instrument databases or
creating “pseudo-instrument” searches which
index correspondence of multiple instruments.

The third major subsystem that handles the
above functionality is called the Geo-Temporal
Search. It accepts (at the least) spatial, temporal,
and keyword-constrained searches, sends search
result details to the Data Cache Manager which in
turn can be used for work planning. The search
service must of course provide descriptive output
of the search results to the client, including URLs
to the files and subset information found. Although
the search as currently scoped only spans data
residing in a single instrument catalog, the
architecture should not preclude integration with
search services that can perform "cross-database
joins" for multiple instruments using multiple
services

3.4 The Client Interface

All of the above functionality needs to be
gathered together in a user-accessible interface.
This interface component takes on several major
use cases:

• Interactive invocation: Users will walk through
a "data processing wizard" interface which
allows them to identify appropriate input data
and submit a processing request. They can then
monitor progress of their work order and import
the resulting products to a visualization
environment.
• Developer testing: Algorithm integrators will
need a robust set of tools for adding new
algorithm handlers to a computing facility.
Ultimately, this should progress to the point of
having enough work archetypes and testing
patterns that science staff will be able to do
much of this on their own.
• Standalone scripted automation: Anything that
users accomplish interactively can evolve into a
batch script. The toolset should support easy
access patterns for scheduled runs.
• Embedded scripting automation (i.e. "UI
buttons"): Modern graphical development
environments make possible the creation hybrid
interfaces with the combination of a scripting
system within a GUI.

Our overall system, incorporating the above
components, is illustrated in Figure 1.

Worker Nodes

Visualization
Client

(McIDAS-V)
Database

Server

Coordination
Server

Storage Server/s

Figure 1. System Components.

4. TECHNOLOGY

A vital but often underestimated aspect of
software architecture is the choice of underlying
technologies. Once a project is settled on a
particular platform or mix of platforms, such as
Java, C#/.NET, CORBA, WSDL/SOAP, or UNIX,
certain design opportunities open up, while others
become complex or infeasible. The use of
scripting languages such as Python eases some
of these decisions, as these languages can act as
glue between different platforms, but does not
entirely remove the underlying platform strengths
and weaknesses.

McIDAS V is principally a Java application,
and as such leverages the considerable power
and portability of the Java platform. Further
capability and flexibility is added by the extensive
use of Jython, an implementation of a subset of
Python that works natively in the Java runtime
environment.

Much of the original algorithm development
and evaluation at the SSEC takes place in
MATLAB, however use of this proprietary coding
environment makes it hard to integrate with larger
open standard based systems, except by means
of batch scripting. Prototype FORTRAN and C++
algorithm implementations are often no more
amenable to reworking, and present rigid
interfaces that must be integrated into larger
systems as delivered. Major re-factorings must
often be deferred until the algorithm reaches a
later stage in its development cycle.

For the purposes of this project, the NetCDF
file format is the gold standard, allowing
meaningful metadata to be embedded alongside
raw data. The OPeNDAP server architecture both
sources and provides NetCDF files to remote
processes, making the OPeNDAP - NetCDF
system very flexible in a distributed computing
situation. Use of accepted metadata formats as
specified in the UNIDATA "CF" standard and
UDUNITS increase the longevity of a dataset.
Data that use these metadata standards also
automatically support unit conversion and implicit
data mappings in VisAD / IDV / McIDAS V.

With the above platform challenges, we
sought a maximally flexible set of technologies to
glue together the various components of the
target architecture. At first, SOAP (Simple Object
Access Protocol) and WSDL (Web Service
Description Language) were favored for
interprocess communication, as they are based
on open cross-platform standards, and are the
current preferred solution for web based
distributed applications. Soon however, we
discovered that SOAP is anything but simple, and
getting this mix of technologies to act as a
communication channel exhibited a substantial
barrier to productivity. Instead of pursuing the
SOAP/WSDL route, we switched to CORBA as
our communications channel.

CORBA was developed over a decade ago to
solve a similar problem set to SOAP and WSDL,
bu t be fo re the XML and web-enab led
technologies became ubiquitous. It had initially
acquired a reputation for being unwieldy and
poorly implemented, but years of incremental
development have produced an eminently usable
system for distributed computing in a largely
language-agnostic fashion. While it is not
considered cutting edge, it is a mature technology
and fulfills the project needs directly, doing so with
a minimum of custom configuration.

A downside to using CORBA for many is that
it is not as well-suited as WSDL+SOAP for widely
distributed, loosely coupled systems: XML
serialization over the HTTP port is arguably
superior (or at least, more often found in practice)
for reaching through firewalls and across a wider
range of languages. However, our experiments
with SOAP and the overall project scope led us to
CORBA as a highly practical and productive
technology choice, well suited to our project
scope.

struct CacheEntry {
 string uuid; // of the work order that it belonged to
 string owner; // contact point
 boolean is_search; // if this is true, the cache entry is a search result
 // and not data processing output
 double incept; // creation time as second since UNIX epoch
 double expiry; // time when this will be flushed, or NaN
 sequence<CacheLink> links; // alternate access routes to this content
};

struct CacheRequest {
 string uuid; // work order to associate the file with
 string filename; // for the data stream to be stored as
 ...
};

interface DataCacheManager {
 // query routine for data consumers
 CacheEntrySeq resultsForWorkOrder(in string uuid);

 // reservation and cache filling routine for data providers
 // note that completing a single work order may result in several cache pickups
 CacheEntry requestCachePickup(in CacheRequest data);
};
Figure 2. Excerpt of DataCacheManager interface (CORBA IDL).

struct WorkOrderProfile {
 string uuid; // uuid of the profile - when functionality changes,
uuid changes
 string name; // name of the work order (title)
 string desc; // description of what it does, potentially lengthy
 string uri; // e.g. python:module.submodule#function
 sequence<FlagInfo> flags; // boolean checkbox descriptions
 sequence<OptionInfo> options; // pull-down options to select among
 sequence<FieldInfo> fields; // fill-in text boxes for URLs et cetera
};

struct WorkOrderContent {
 string uuid; // uuid of the profile to run
 sequence<boolean> flags; // flag values, in order corresponding to profile
 sequence<string> options; // option values, in order corresponding to profile
 sequence<string> fields; // field contents, in order corresponding to profile
 string output_ior; // DataCacheManager instance IOR to receive output
 // to, empty if use-default
};

struct WorkOrderStatus {
 string uuid; // uuid of the work request this status reflects
 WorkState state; // enum: queued, running, done, incomplete, aborted
 string desc; // description of the current status of the job
 string output_ior; // IOR of DataCacheManager receiving the data
};

interface WorkOrderDispatcher {
 // provide list of profile structures describing flags, options, fields
 WorkOrderProfileSeq discoverWorkOrderProfiles();
 // submit a work order for processing and recover its initial status
 WorkOrderStatus submitWorkOrder(in WorkOrderContent wo_data);
 // query the most recent status of a submitted work order, given its UUID
 WorkOrderStatus queryWorkOrderStatus(in string woid);
};
Figure 3. Excerpt of WorkOrderDispatcher interface (CORBA IDL).

5. IMPLEMENTATION

The platform architecture we settled on was a
CORBA-IPC system written in Java and Python.

For Java, the org.omg.corba built-in library
provided our client-side access, with stubs
compi led f rom the three IDL in ter face
d e s c r i p t i o n s : G e o Te m p o r a l S e a r c h . i d l ,
D a t a C a c h e M a n a g e r . i d l , a n d
WorkOrderDispatcher.idl. For Python, the most
straightforward route was to use ORBit-python, a
mature CORBA object request broker. It is already
found on many Linux systems as a middleware
for the GNOME desktop. Marshaling of our
relatively simple data structures and small
number of calls was easy and obeys each
programming languageʼs idioms due to extensive
work by the CORBA community on standard
language bindings.

This freed us to work rapid prototyping on
each service in a few hundred lines of Python. It
also did not preclude future implementations
being done in Java or even C/C++ as the need
may arise. It has the added advantage of
adhering to the free software principles adopted
by the McIDAS-V development team.

We started with test implementations of the
Work Order Dispatcher (WOD) and Data Cache
Manager (DCM). These first cuts were intended to
function as "sniffer" tools for interface testing, to
allow us to refine our initial interfaces and to allow
parallel development between our Java UI
development and Python service development.

The sniffer tools could then evolve into a
command-line toolset.

Links between services and client are
initialized using CORBA "IOR" strings which are
uploaded to an accessible location at startup and
provided in the form of a readable URL. This
provides a stable reference location while not
precluding future use of other more elaborate
service advertising or naming systems, such as
zeroconf.

Following that, we started into production
versions of the three major services.

5.1 The DataCacheManager

The production DCM would have the
capability to ship data through RSYNC to our
SAN system, and mark up NetCDF and HDF files
with their equivalent OPeNDAP URLs on that
server. It is the simplest of the three services - its
responsibilities are limited to keeping track of data
files, returning URLs to them, and pushing them
to a large disk pool for service by Apache, Hyrax
(OPeNDAP), FTP and/or RSYNC. Its secondary
function is to operate on a local machine as a
standalone service and offer local file URLs.

The major calls for the DCM are shown in
Figure 2.

5.2 The WorkOrderDispatcher

The WOD was the most complex of the three
to implement from scratch. It has a library of
dynamically loadable work order handler

struct SearchForm {
 // time span to intersect
 TimePeriod span;
 // area to intersect
 sequence<Point> perimeter;
 // boolean expression to be evaluated on dataset keyword-value pairs as a filter
 string keyword_expr;
 // any additional search instructions which may be specific to this data type
 sequence<string> extra;
 // optional (empty string if not provided) - existing search result to start from
 // this would expand a previous result to "drill down" into smaller detail,
 // for instance instrument -> granule -> scan -> field -> spectrum
 string container_uuid;

 // optional - suggested datacachemanager to publish hit-lists to
 string output_ior;
};

interface GeoTemporalSearch {
 SearchResultSeq search(in SearchForm request);
};
Figure 3. Excerpt of GeoTemporalSearch interface (CORBA IDL).

modules. Each module has a .profile structure
which answers to a CORBA interface advertising
the flags, options and fields that must be provided
in order for a request to be dispatched. It also has
a .plan() function which takes a submission and
returns Task objects which must be scheduled.
Finally, each work order module has one or more
task functions which are ultimately executed in
slave processes by way of a "glider" host script.
This script is spawned on each slave CPU to
execute a work order task(). In the case of an
exception in the task, its hosting glider returns
(through the shared task table database) an
exception trace log appropriate for debugging.

The service can operate independently using
a simple built-in task scheduler - this is used on
standalone systems and multiprocessor boxes. If
a queueing system is available (e.g. Sun Grid
Engine), it is straightforward for it to submit to a
pre-existing queue. An SQL database is used to
track tasks and their completion - in the single-
machine case an SQLITE database file is
sufficient, while a Postgres or MySQL table is
easily set up for cluster installs. Using a database
server helps with maintaining visibility into the
system as it operates and reduces the number of
potential races when dealing with multiple
processes.

T h e p r i n c i p a l c a l l s o f t h e
WorkOrderDispatcher are illustrated in Figure 3.

5.3 The GeoTemporalSearch

The GTS was the third to be implemented,
essentially as an adapter to the previously-
deployed database of selected IASI data. The
initial implementation serializes geographic
search results describing per-granule subsets as
Python "pickle" files; future versions are likely to
serialize as JSON or an XML format. These “hit-
list” files are cached with the DCM and are used
by work order handlers in planning parallel runs.

For instance, a given search may result in full
granules, a series of cross-track scans by the
instrument, or a subset of fields-of-regard
intersecting a given search perimeter. Different
work order handlers may have constraints on
whether they can process independent spectra,
full scans, or full granules - the “hit-list” provides
sufficient information that they can plan
effectively, up to and including providing a list of
URLs where the raw data can be obtained.

The GeoTemporalSearch interface is
summarized in Figure 4.

5.4 The User Interface

User interface development was done as a
standalone Java-Swing application which could
also be built as a McIDAS-V Chooser plug-in. As
of this writing, the user interface module supports
generation and interaction with Swing forms for
job submission and output monitoring and
recovery. An additional panel is in the works for
executing searches interactively and directing the
search results into the inputs of a work order.

Delivery of data to McIDAS-V at the current
time is focused on OPeNDAP / NetCDF for data
delivery and "ISL" scripts to provide default
visualizations. Thus, the processing outputs are
best received as NetCDF files, inclusive of unit
and provenance metadata, with an accompanying
script referencing one or more output sources.

6. APPLICATIONS AND RESULTS

The initial work order module set includes a
se l f - tes t a l lowing eva luat ion o f py thon
expressions. Beyond that, we implemented a
physical retrieval test pattern involving both
MATLAB and FORTRAN modules and extensive
ancillary data. Finally, we obtained code for an
instrument spectral convolution in MATLAB that
allows IASI scans to be convolved to emulate
GOES-12 and other satellite soundersʼ data.

A major aspect of dealing with prototype
algorithms is data format and extraction. Each
work order module matched a simple pattern:
Cache the software, fetch the data, build a
workspace, reformat or extract the input as
needed, execute the algorithm, reformat the
output to NetCDF, upload results to the cache
manager, and finally purge the workspace. As
with many parts of this system, making algorithm
software packages available as prepackaged
images which could be downloaded and cached
became the most productive solution, as it lends
itself to testing as well as inviting algorithm
providers to place explicitly versioned software in
accessible download locations. Nonetheless, the
integration time for each of these test applications
can still require a day of effort at this point in
prototyping.

As a secondary result, a toolbox of functions
for caching URL content of different schemes
(rsync, ftp, http for starters) evolved in support of

common functions. We also found it useful to
deploy a capable python interpreter environment
to include file I/O to and from MATLAB, NetCDF,
HDF5, HDF4, and other scientific formats which
the algorithm code accepts as inputs and outputs.
This core of function is a credit to the scientific
Python community and provides a substantial leg
up in dealing with the variety of inputs and outputs
that are inherent to this domain.

The actual activities of the system for a test
case follows the sequence shown in Figure 6.

1. User directs McIDAS-V at the IASI search
service and a work order service by their
URLs. He/she selects an area and time of
interest.
2. A hierarchy of IASI granule subsections is
sent to the cache manager and provided to
the user for selection as search results.
These correspond to cached metadata files
with detailed machine-readable information.

3. User directs search results to inputs of a
work order - either using full data file URLs, or
the URLs of the search results.
4. The Dispatcher invokes the work orderʼs
planning function to get list of tasks to
execute, and schedules tasks to run on
workers - be they local or remote CPUs.
5. Jobs download algorithm software
snapshots, ancillary data, and source data to
a local workspace and start processing.
6. Jobs complete processing, uploading
their output to the cache manager.
7. The user receives notification of work
order completion by way of the Dispatcher.
8. The user gets a list of output URLs
related to the work order, including data files
as well as run reports or visualization scripts
bringing outputs together.
9. McIDAS-V loads any visualization script
that the work order may have provided, and
reads data over OPeNDAP to form a
visualization.

Visualization Client (McIDAS-V) Database Server

Storage Server/s

Metadata

Source Data

&

Prepackaged Code

Cache Space

Geo-
Temporal
Search
service

Coordination Server

Work Order
Dispatcher service

Worker Node

Work Order
task handler

Payload
Code

6. Deposit
output

data access
http,

rsync,
opendap,

ftp,
etc.

2. Deposit
search result

details

5. Provide
payload code &

input data

Workspace

Task Table

4. Assign & monitor
tasks on workers

3. Submit work
requests

1. Interactive
data search

9. Provide
output data
for display

8. Enumerate
available

output

7. Signal work
completion

Work Order System Activities

Work
Order

Creation

Work
Order

Tracking

Geotemporal
Search

Data Cache
Manager
service

Figure 6. System Activity Diagram.

7. CONCLUSIONS AND FUTURE WORK

As a second prototype, this is a significant
boost in functionality and flexibility. It has attained
aspects of both a simplified parallel computing
framework and an algorithm integration toolkit.
However, much work remains to bring the core
software to a release state and build dozens of
algorithm handlers for end-users. The primary
intent of building this system was to improve the
scientistʼs capabilities to analyze algorithms by
reducing the time required to locate data, process
it and manipulate it.

Other uses are also planned for this service
infrastructure, such as a scheduled “nightly build”
batching tool for instrument simulations working
with (or generating) proxy data.

There is a desire to extend the system to
allow products to publish search information and
thus permit elaborate loops with search-and-
process rule sets to be constructed and run
implicitly based on work order profiles.

Further work is needed toward building tools
to rapidly deploy database indexing routines for
new and experimental datasets. This system only
provides a first step in replacing manual data and
software gathering. Making it fully useful will
doubtless reveal usage patterns which we had not
considered.

More extensive support of provenance,
including report generation as well as information
publication through a web portal or content
management system (such as Plone) is of interest
as algorithms mature toward production use.

Refining the interface to be intuitive and
feature-filled for managing work orders, searches
and outputs into a “computational desktop” will be
a substantial windfall to usability and acceptance.

Alternate back-end implementations of these
services making full use of the substantial efforts
of the Grid Computing community would broaden
the system capabilities. Likewise, extending the
interaction of the Work Order Dispatcher with the
client to allow better input validation would make
a more modern user interface metaphor than
“filling in forms”.

Finally, leveraging the literate, unit-sensitive
data models inherent in the McIDAS-V and its
Java tool-set is likely to bring to light better ways
to move data between workers, cache, and client,
and combine previously incompatible datasets in
support of the advancement of atmospheric
science.

8. REFERENCES

Huang, H.L., M. Goldberg. Overview of
GOES-R Analysis Facility for Instrument Impacts
on Requirements (GRAFIIR) Planned Activities
and Recent Progress. Poster, AMS 88th Annual
Meeting, 2008.

Smuga-Otto, M J, Garcia, R K, Knuteson, R
O, Martin, G D, Flynn, B M, Hackel, D (2006),
Integrating High-Throughput Parallel Processing
Framework and Storage Area Network Concepts
Into a Prototype Interactive Scientific Visualization
Environment for Hyperspectral Data. Eos Trans.
AGU, 87(52), Fall Meeting Supplementary
Abstract A21D-0858, 2007.

Wallnau, K., S. A. Hissam, R. C. Seacord.
Building systems from commercial components.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, 2001.

