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We present an overview and demonstration of open-source tools and technologies used to make 
large-scale computing connect readily to client visualization environments, bringing together multiple data 
sources to compose analyses in the McIDAS-V environment. McIDAS-V permits novel manipulations of 
atmospheric datasets distributed across the network using 3-D graphics and a highly literate data model 
implemented in Java. When coupled with plug-ins permitting it access to web services, cluster and grid 
computing can be made both easy-to-use and scriptable. Outputs can be sliced, subsetted and integrated 
into visualizations and further computations. This technology demonstration is intended to evolve into a 
toolkit and best practices for integrating heritage data processing applications with distributed computing 
and visualization.

1. INTRODUCTION

McIDAS-V is the latest in a l ine of 
visualization solutions for collating and analyzing 
meteorological data from diverse sources. 
McIDAS has, in many packages and generations, 
been supported by the University of Wisconsin 
SSEC for over 30 years. In recent years, the 
emergence of cluster and grid computing 
technologies has enabled scientists to access and 
process ever greater quantities of data, and 
various standard practices for grid and cluster 
computing have emerged for making these tasks 
easier for the end-user.

The present work shows a method for 
integrating best practices of cluster computing 
into the exist ing McIDASV visual izat ion 
environment alpha release, by providing a plug-in 
interface for building and dispatching remote 
distributed computing tasks.

The principal kind of computation to be 
distributed involves "Job  Farming," or taking a set 
of similar jobs that can each be executed 
independently of one another, and dispatching 
them to a cluster or grid for parallel execution. A 
proper mechanism for describing such jobs to the 
execution environments, as well as specifying the 
data sources needed for them is required for this 
to succeed. Distributed job  farming traditionally 

involves tedious and error-prone construction of 
elaborate one-off scripts for a given algorithm. By 
constructing a set of practices embodied in a 
small framework and accompanying library, we 
hope to reduce the overhead typically required in 
taking a large experimental computation to a 
cluster, and to open up  the experimenter's 
desktop or laptop to new possibilities for working 
with large quantities of atmospheric science data.

2. REQUIREMENTS

From the point of view of computing 
resources, meeting our goal means making 
McIDAS V communicate effectively with compute 
clusters, grids and multiprocessor machines. An 
effective and flexible dispatching architecture is 
needed along with a McIDAS V plugin. Although 
the main focus of the work is on providing 
distributed computing capabilities to McIDAS V 
users, the software should also have command-
line and scripting language API interfaces, both 
for testing purposes, and for later use in batching 
dispatch tasks. The McIDAS V plugin should 
ultimately provide a compelling graphical user 
interface (GUI), effectively communicating the 
capability of the computing systems it accesses. 
One of the great draws of an interactive 
visualization environment is its immediacy - no 
need to write batch files or other scripts.

In addition to describing jobs within the GUI, 
users need to be able to track the execution of 
longer-running jobs. A separate GUI element for 
monitoring the progress of requested work is 
therefore another requirement.
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Our first iteration on this project was focused 
on using web  technologies to create a data 
processing portal. This prior demonstration 
focused on general architecture and proof-of-
concept over framework building or flexibility. The 
current iteration focuses on identifying tools and 
practices to help the developer bring new 
computations online, on scaling downward as well 
as upward, and on improving interactivity.

By "scaling downward", we address the 
requirement of McIDAS-V that it be able to run 
stand-alone on a single UNIX workstation such as 
a scientist's laptop. We add to this the 
requirement for running on machinery brought 
along on a field experiment, so that it can execute 
the same types of jobs as tasked for a distributed 
cluster and storage system, albeit on a smaller 
scale or at a slower rate. The McIDAS-V 
environment provides McIDAS-X functionality by 
way of a separable but easy-to-install McIDAS-X 
standalone server. We wanted to have a similar 
capability for parallel computation services.

By "scaling upward", we wish to be able to 
substitute alternate implementations of the 
subsystem interfaces that act as adapters to large 
clusters, grids, storage architectures, and remote 
archives. A multitude of systems exist for 
indexing, retrieving and accessing large data 
stores, including both open source and 
commercial solutions. Similarly, multiple queuing 
engines are used.

Wh i le ease-o f use i s a pa ramoun t 
requirement, the realities of distributed computing 
provide certain limits on what can be done in this 
regard. The use of clusters and grids often 
involves requirements for authentication and 
limitations on which clients can use what 
resources at any given time. While the current 
iteration of the project does not directly address 
these issues, its architecture must not preclude 
the eventual introduction of authentication and 
accounting to its capabilities.

Also, this system's usage practices must 
inherently encourage annotation of data with 
reproducibility (provenance) information. Results 
of computations are transitory while iteratively 
testing prototype algorithms. Making it easy to re-
run a request with modified inputs or ancillary 
data, and knowing which output corresponded to 
which request, must be a consideration when 
producing and inspecting large amounts of data.

Finally, we were constrained by staffing and 
funding for this project. Executing these goals in 
an iterative fashion with a small development 

team of 2-3 has been both a benefit in that design 
goals and execution were largely precluded from 
committee debate, and a drawback in that this 
was one of many projects simultaneously vying 
for our attention.

Thus, our overall requirements for the system 
are to support parallel computing jobs involving 
large datasets, to provide a McIDAS V interface 
for interactive parallel job  submission and output 
visualization with a straightforward UI, and to 
deliver the resulting software as a toolkit that can 
be deployed on systems ranging from standalone 
computers to clusters or grids. We need this 
system to allow developers to deploy algorithms 
rapidly and with good provenance practices, and 
we are using off-the-shelf, supported and proven 
technologies [Wallnau (2001)] to achieve the 
above goals in a reasonable time and effort.

3. ARCHITECTURE

In our original demonstration, Origami 
[Smuga-Otto (2007)], we made use of web 
application development frameworks, XML-RPC, 
and the UNIDATA Integrated Data Viewer (IDV) to 
show a large calculation being distributed across 
a cluster and the results stitched together in a 
single visualization, comparing observation 
against simulation.

While successful as a demonstration, more 
architectural work would be required in order to 
attain more flexibility while reducing the time to 
integrate the throng of algorithm prototypes which  
clamor for software developer time, large-scale 
parallelism and visualization capability.

As a result, we expanded on the three basic 
systems present in the original demonstration and 
focused on making the common integration cases 
easy, while not precluding future applications and 
extensions being more interactive and involving.

3.1 Compute Facilities

Logically, a single user request for a 
distributed processing run translates into a work-
order. This work order consists of individual jobs, 
each job  being able to run to completion 
independently of the others. These jobs can then 
be distributed, each job  to a separate node, and 
upon completion their results can be gathered 
and presented to the user as the output to their 
work order. Work orders can of ten be 
decomposed into tasks along one or more 
dimensions: Spatial, temporal, channel, and 



ensemble. The specific types of decomposition 
available to an algorithm are generally known 
prior to integration of the algorithm with the 
computing system.

Division into spatially and temporally separate 
jobs is conceptually easiest: If an algorithm (such 
as a radiative transfer model) on a given region 
and time span has no external spatial or temporal 
dependencies, then a work order for running that 
algorithm on a large region can be split into 
separate jobs, each job running the algorithm on 
a spatial and temporal sub-domain. Some 
algorithms have complex spatial and temporal 
dependencies, but can subsect a work order into 
jobs by channel, band or profile level - a 
motivating example involves wind vector 
derivation that can be done independently by 
level.

Sometimes a work order can be subdivided 
not by spatial, temporal or other intrinsic divisions, 
but because the work requested involves running 
the same task with minor parameter tweaks, such 
as when evaluating and testing an algorithm 
against an error budget. One effort at the UW 
SSEC involves subjecting candidate algorithms to 
various combinations of bad or noisy input: These 
include combinations of radiometric noise, spatial 
mis-registration, missing bands, and other effects 
[Huang (2008)]. Testing an algorithm on all 
possible combinations of such effects is referred 
to as a test ensemble, and each individual test 
case can be spun into a separate job, enabling 
much faster execution of the entire ensemble.

Some work orders are decomposable in more 
than one way: An ensemble of tests may each be 
subject to further spat ial and temporal 
independence. In a more complicated case, an 
end-to-end wind processing algorithm may first 
split inputs by space and time to derive profiles, 
then recombine and split again by levels to 
produce the final wind outputs.

Finally, work orders represent potentially 
complex series of tasks, involving combinations of 
FORTRAN, C++, MATLAB, Python, or any 
number of other computation environments. Not 
every work order type can be expected to be 
supported by every computing service.  Some 
portions of a work order may have to execute in a 
dependency order - as is the case of spatially 
dividing a computation and then stitching the 
outcome together into an image.

Our first major subsystem, called the Work 
Order Dispatcher, addresses the above concerns. 
It provides profiles of work orders that the 

computing system supports, allows these profiles 
to be installed as part of a library of handler 
modules, and accepts work order requests from 
the clients. The dispatcher then uses the selected 
handler's planning function to produce a task 
break-down of the work order request. Lastly, it 
dispatches individual tasks to computing 
hardware, tracking their status and reporting back 
to the client. The dispatcher also provides the 
option to retain information on requests and tasks 
for future re-runs and provenance reporting.

3.2 Storage Facilities

We need a methodology for collecting the 
output of jobs for visualization and analysis. 
Typically, an algorithm will have any number of 
input and output files, including actual products, 
their metadata, and even log files. Moving files 
from place to place is an area of difficulty, when 
dealing with multiple generations of systems 
running different software versions of protocols 
and operating systems, and joined up  with a 
variety of interconnects and authentication 
domains. Using local disk on individual compute 
nodes is most efficient, but also most problematic 
from when tracking the data down at a later date. 

The simplest solution is to make data caching 
a service, on the understanding that pockets of 
accessible storage space are cheap  to borrow for 
days or weeks at a time. In the simple single-
machine case, this can wrap the existing "/tmp" 
present in some form on every machine. Tasks 
will then be responsible for submitting their output 
to the cache, ensuring the data is tagged by the 
work order that generated it. In our case, a 
storage area network (SAN) is our preferred 
landing point for data - this system holds dozens 
of terabytes of data and serves it through rsync 
and OPeNDAP protocols. 

The cache server is capable of accepting data 
no matter the back end storage configuration, and 
based on its knowledge of available protocols on 
the storage system it represents, provides one or 
more URLs which can be used to access the 
content. We call the subsystem resident on the 
cache server the Data Cache Manager. It accepts 
file submissions from individual tasks and tags 
them with the relevant work order identifiers. It 
shares data with one or more access protocols 
represented by URLs that it generates. It allows 
clients to query for the list of results associated 
with a given work order identifier, and finally it 
cleans out unused and expired data periodically.



3.3 Search Facilities

Another challenging aspect of algorithm 
prototyping is identifying data sets to use for 
testing, assessing their quality and extracting 
subsets of practical size. This is made more 
complicated by a plethora of data file formats, 
varying extent of mark-up  and metadata, various 
incompatible search and delivery mechanisms, 
and wide variance in provenance practices. 
Tackling all of the above at once is infeasible. As 
a pragmatic first cut, we had to satisfy  ourselves 
with a simple geographical-temporal search on a 
well-defined data set, on the understanding that 
we would ultimately give similar treatment to 
potentially dozens of instrument (or instrument-
like) datasets and databases.

We focused on product files from the IASI 
instrument. We built an IASI granule metadata 
database and data caching engine around this 
dataset for internal use in a matter of a few days' 
effort. This database focused on the most 
immediate features of interest, time and location, 
and included an extensible keywording capability 
to allow granules to be marked up  based on 
identified features or relevance. Looking at other 
instrument databases, we saw the same trend of 
a handful of common fields with substantial 
mission or instrument-specific extensions.

The way the data is used varied. Some 
applications demand entire granules, others need 
only individual spectra within a search perimeter. 
Yet other views of the data include conjoining 
environment data records (EDR) with science 
data records (SDR) for a given test algorithm.

This and other experiences have led to 
several observations regarding instrument data 
search functionality:

• We do not yet have a sufficiently generalized 
schema for this domain to cover all uses of all 
instruments.
• Similarly, one definitive location for data has 
been found to be impractical.
• Search results are potentially complex, even 
hierarchical, depending on the application. They 
are likely to be useful as metadata files which 
can help direct computations and planning.
• We do not want to preclude the possibility of 
joining across multiple instrument databases or 
creating “pseudo-instrument” searches which 
index correspondence of multiple instruments.

The third major subsystem that handles the 
above functionality is called the Geo-Temporal 
Search. It accepts (at the least) spatial, temporal, 
and keyword-constrained searches, sends search 
result details to the Data Cache Manager which in 
turn can be used for work planning. The search 
service must of course provide descriptive output 
of the search results to the client, including URLs 
to the files and subset information found. Although 
the search as currently scoped only spans data 
residing in a single instrument catalog, the 
architecture should not preclude integration with 
search services that can perform "cross-database 
joins" for multiple instruments using multiple 
services

3.4 The Client Interface

All of the above functionality needs to be 
gathered together in a user-accessible interface. 
This interface component takes on several major 
use cases: 

• Interactive invocation: Users will walk through 
a "data processing wizard" interface which 
allows them to identify appropriate input data 
and submit a processing request. They can then 
monitor progress of their work order and import 
the resulting products to a visualization 
environment.
• Developer testing: Algorithm integrators will 
need a robust set of tools for adding new 
algorithm handlers to a computing facility. 
Ultimately, this should progress to the point of 
having enough work archetypes and testing 
patterns that science staff will be able to do 
much of this on their own.
• Standalone scripted automation: Anything that 
users accomplish interactively can evolve into a 
batch script. The toolset should support easy 
access patterns for scheduled runs.
• Embedded scripting automation (i.e. "UI 
buttons"): Modern graphical development 
environments make possible the creation hybrid 
interfaces with the combination of a scripting 
system within a GUI.

Our overall system, incorporating the above 
components, is illustrated in Figure 1.
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Figure 1. System Components.

4. TECHNOLOGY

A vital but often underestimated aspect of 
software architecture is the choice of underlying 
technologies. Once a project is settled on a 
particular platform or mix of platforms, such as 
Java, C#/.NET, CORBA, WSDL/SOAP, or UNIX, 
certain design opportunities open up, while others 
become complex or infeasible. The use of 
scripting languages such as Python eases some 
of these decisions, as these languages can act as 
glue between different platforms, but does not 
entirely remove the underlying platform strengths 
and weaknesses.

McIDAS V is principally a Java application, 
and as such leverages the considerable power 
and portability of the Java platform. Further 
capability and flexibility is added by the extensive 
use of Jython, an implementation of a subset of 
Python that works natively in the Java runtime 
environment.

Much of the original algorithm development 
and evaluation at the SSEC takes place in 
MATLAB, however use of this proprietary coding 
environment makes it hard to integrate with larger 
open standard based systems, except by means 
of batch scripting. Prototype FORTRAN and C++ 
algorithm implementations are often no more 
amenable to reworking, and present rigid 
interfaces that must be integrated into larger 
systems as delivered. Major re-factorings must 
often be deferred until the algorithm reaches a 
later stage in its development cycle.

For the purposes of this project, the NetCDF 
file format is the gold standard, allowing 
meaningful metadata to be embedded alongside 
raw data. The OPeNDAP server architecture both 
sources and provides NetCDF files to remote 
processes, making the OPeNDAP - NetCDF 
system very flexible in a distributed computing 
situation. Use of accepted metadata formats as 
specified in the UNIDATA "CF" standard and 
UDUNITS increase the longevity of a dataset. 
Data that use these metadata standards also 
automatically support unit conversion and implicit 
data mappings in VisAD / IDV / McIDAS V.

With the above platform challenges, we 
sought a maximally flexible set of technologies to 
glue together the various components of the 
target architecture. At first, SOAP (Simple Object 
Access Protocol) and WSDL (Web  Service 
Description Language) were favored for 
interprocess communication, as they are based 
on open cross-platform standards, and are the 
current preferred solution for web  based 
distributed applications. Soon however, we 
discovered that SOAP is anything but simple, and 
getting this mix of technologies to act as a 
communication channel exhibited a substantial 
barrier to productivity. Instead of pursuing the 
SOAP/WSDL route, we switched to CORBA as 
our communications channel. 

CORBA was developed over a decade ago to 
solve a similar problem set to SOAP and WSDL, 
bu t be fo re the XML and web-enab led 
technologies became ubiquitous. It had initially 
acquired a reputation for being unwieldy and 
poorly implemented, but years of incremental 
development have produced an eminently usable 
system for distributed computing in a largely 
language-agnostic fashion. While it is not 
considered cutting edge, it is a mature technology 
and fulfills the project needs directly, doing so with 
a minimum of custom configuration.

A downside to using CORBA for many is that 
it is not as well-suited as WSDL+SOAP for widely 
distributed, loosely coupled systems: XML 
serialization over the HTTP port is arguably 
superior (or at least, more often found in practice) 
for reaching through firewalls and across a wider 
range of languages. However, our experiments 
with SOAP and the overall project scope led us to 
CORBA as a highly practical and productive 
technology choice, well suited to our project 
scope.



struct CacheEntry {
  string uuid;                // of the work order that it belonged to
  string owner;               // contact point
  boolean is_search;          // if this is true, the cache entry is a search result
                              // and not data processing output
  double incept;              // creation time as second since UNIX epoch
  double expiry;              // time when this will be flushed, or NaN
  sequence<CacheLink> links;  // alternate access routes to this content
};
 
struct CacheRequest { 
  string uuid;                // work order to associate the file with  
  string filename;            // for the data stream to be stored as
  ...
};

interface DataCacheManager {
  // query routine for data consumers
  CacheEntrySeq resultsForWorkOrder( in string uuid );

  // reservation and cache filling routine for data providers
  // note that completing a single work order may result in several cache pickups
  CacheEntry requestCachePickup( in CacheRequest data );
};
Figure 2. Excerpt of DataCacheManager interface (CORBA IDL).

struct WorkOrderProfile {
  string uuid;                    // uuid of the profile - when functionality changes, 
uuid changes
  string name;                    // name of the work order (title)
  string desc;                    // description of what it does, potentially lengthy
  string uri;                     // e.g. python:module.submodule#function
  sequence<FlagInfo> flags;       // boolean checkbox descriptions
  sequence<OptionInfo> options;   // pull-down options to select among
  sequence<FieldInfo> fields;     // fill-in text boxes for URLs et cetera
};
    
struct WorkOrderContent { 
  string uuid;                    // uuid of the profile to run
  sequence<boolean> flags;        // flag values, in order corresponding to profile
  sequence<string> options;       // option values, in order corresponding to profile
  sequence<string> fields;        // field contents, in order corresponding to profile        
  string output_ior;              // DataCacheManager instance IOR to receive output
                                  // to, empty if use-default
};
    
struct WorkOrderStatus {
  string uuid;                    // uuid of the work request this status reflects
  WorkState state;                // enum: queued, running, done, incomplete, aborted
  string desc;                    // description of the current status of the job
  string output_ior;              // IOR of DataCacheManager receiving the data
};

interface WorkOrderDispatcher {
  // provide list of profile structures describing flags, options, fields
  WorkOrderProfileSeq discoverWorkOrderProfiles(); 
  // submit a work order for processing and recover its initial status
  WorkOrderStatus submitWorkOrder( in WorkOrderContent wo_data );
  // query the most recent status of a submitted work order, given its UUID
  WorkOrderStatus queryWorkOrderStatus(in string woid);
};  
Figure 3. Excerpt of WorkOrderDispatcher interface (CORBA IDL).



5. IMPLEMENTATION

The platform architecture we settled on was a 
CORBA-IPC system written in Java and Python. 

For Java, the org.omg.corba built-in library 
provided our client-side access, with stubs 
compi led f rom the three IDL in ter face 
d e s c r i p t i o n s : G e o Te m p o r a l S e a r c h . i d l , 
D a t a C a c h e M a n a g e r . i d l , a n d 
WorkOrderDispatcher.idl. For Python, the most 
straightforward route was to use ORBit-python, a 
mature CORBA object request broker. It is already 
found on many Linux systems as a middleware 
for the GNOME desktop. Marshaling of our 
relatively simple data structures and small 
number of calls was easy and obeys each 
programming languageʼs idioms due to extensive 
work by the CORBA community on standard 
language bindings.

This freed us to work rapid prototyping on 
each service in a few hundred lines of Python. It 
also did not preclude future implementations 
being done in Java or even C/C++ as the need 
may arise. It has the added advantage of 
adhering to the free software principles adopted 
by the McIDAS-V development team.

We started with test implementations of the 
Work Order Dispatcher (WOD) and Data Cache 
Manager (DCM). These first cuts were intended to 
function as "sniffer" tools for interface testing, to 
allow us to refine our initial interfaces and to allow 
parallel development between our Java UI 
development and Python service development. 

The sniffer tools could then evolve into a 
command-line toolset.

Links between services and client are 
initialized using CORBA "IOR" strings which are 
uploaded to an accessible location at startup and 
provided in the form of a readable URL. This 
provides a stable reference location while not 
precluding future use of other more elaborate 
service advertising or naming systems, such as 
zeroconf.

Following that, we started into production 
versions of the three major services. 

5.1 The DataCacheManager

The production DCM would have the 
capability to ship  data through RSYNC to our 
SAN system, and mark up  NetCDF and HDF files 
with their equivalent OPeNDAP URLs on that 
server. It is the simplest of the three services - its 
responsibilities are limited to keeping track of data 
files, returning URLs to them, and pushing them 
to a large disk pool for service by Apache, Hyrax 
(OPeNDAP), FTP and/or RSYNC. Its secondary 
function is to operate on a local machine as a 
standalone service and offer local file URLs.

The major calls for the DCM are shown in 
Figure 2.

5.2 The WorkOrderDispatcher

The WOD was the most complex of the three 
to implement from scratch. It has a library of 
dynamically loadable work order handler 

struct SearchForm { 
  // time span to intersect
  TimePeriod span;              
  // area to intersect
  sequence<Point> perimeter;    
  // boolean expression to be evaluated on dataset keyword-value pairs as a filter  
  string keyword_expr;
  // any additional search instructions which may be specific to this data type
  sequence<string> extra;       
  // optional (empty string if not provided) - existing search result to start from
  // this would expand a previous result to "drill down" into smaller detail, 
  // for instance instrument -> granule -> scan -> field -> spectrum 
  string container_uuid;                                              
  
  // optional - suggested datacachemanager to publish hit-lists to
  string output_ior;            
};

interface GeoTemporalSearch {
  SearchResultSeq search( in SearchForm request );    
};
Figure 3. Excerpt of GeoTemporalSearch interface (CORBA IDL).



modules. Each module has a .profile structure 
which answers to a CORBA interface advertising 
the flags, options and fields that must be provided  
in order for a request to be dispatched. It also has 
a .plan() function which takes a submission and 
returns Task objects which must be scheduled. 
Finally, each work order module has one or more 
task functions which are ultimately executed in 
slave processes by way of a "glider" host script. 
This script is spawned on each slave CPU to 
execute a work order task(). In the case of an 
exception in the task, its hosting glider returns 
(through the  shared task table database) an 
exception trace log appropriate for debugging.

The service can operate independently using 
a simple built-in task scheduler - this is used on 
standalone systems and multiprocessor boxes. If 
a queueing system is available (e.g. Sun Grid 
Engine), it is straightforward for it to submit to a 
pre-existing queue. An SQL database is used to 
track tasks and their completion - in the single-
machine case an SQLITE database file is 
sufficient, while a Postgres or MySQL table is 
easily set up  for cluster installs. Using a database 
server helps with maintaining visibility into the 
system as it operates and reduces the number of 
potential races when dealing with multiple 
processes.

T h e p r i n c i p a l c a l l s o f t h e 
WorkOrderDispatcher are illustrated in Figure 3.

5.3 The GeoTemporalSearch

The GTS was the third to be implemented, 
essentially as an adapter to the previously-
deployed database of selected IASI data. The 
initial implementation serializes geographic 
search results describing per-granule subsets as 
Python "pickle" files; future versions are likely to 
serialize as JSON or an XML format. These “hit-
list” files are cached with the DCM and are used 
by work order handlers in planning parallel runs. 

For instance, a given search may result in full 
granules, a series of cross-track scans by the 
instrument, or a subset of fields-of-regard 
intersecting a given search perimeter. Different 
work order handlers may have constraints on 
whether they can process independent spectra, 
full scans, or full granules - the “hit-list” provides 
sufficient information that they can plan 
effectively, up  to and including providing a list of 
URLs where the raw data can be obtained.

The GeoTemporalSearch interface is 
summarized in Figure 4.

5.4 The User Interface

User interface development was done as a 
standalone Java-Swing application which could 
also be built as a McIDAS-V Chooser plug-in. As 
of this writing, the user interface module supports 
generation and interaction with Swing forms for 
job  submission and output monitoring and 
recovery. An additional panel is in the works for 
executing searches interactively and directing the 
search results into the inputs of a work order.

Delivery of data to McIDAS-V at the current 
time is focused on OPeNDAP / NetCDF for data 
delivery and "ISL" scripts to provide default 
visualizations. Thus, the processing outputs are 
best received as NetCDF files, inclusive of unit 
and provenance metadata, with an accompanying 
script referencing one or more output sources. 

6. APPLICATIONS AND RESULTS

The initial work order module set includes a 
se l f - tes t a l lowing eva luat ion o f py thon 
expressions. Beyond that, we implemented a 
physical retrieval test pattern involving both 
MATLAB  and FORTRAN modules and extensive 
ancillary data. Finally, we obtained code for  an 
instrument spectral convolution in MATLAB  that 
allows IASI scans to be convolved to emulate 
GOES-12 and other satellite soundersʼ data. 

A major aspect of dealing with prototype 
algorithms is data format and extraction. Each 
work order module matched a simple pattern: 
Cache the software, fetch the data, build a 
workspace, reformat or extract the input as 
needed, execute the algorithm, reformat the 
output to NetCDF, upload results to the cache 
manager, and finally purge the workspace. As 
with many parts of this system, making algorithm 
software packages available as prepackaged 
images which could be downloaded and cached 
became the most productive solution, as it lends 
itself to testing as well as inviting algorithm 
providers to place explicitly versioned software in 
accessible download locations. Nonetheless, the 
integration time for each of these test applications 
can still require a day of effort at this point in 
prototyping.

As a secondary result, a toolbox of functions 
for caching URL content of different schemes 
(rsync, ftp, http for starters) evolved in support of 



common functions. We also found it useful to 
deploy a capable python interpreter environment 
to include file I/O to and from MATLAB, NetCDF, 
HDF5, HDF4, and other scientific formats which 
the algorithm code accepts as inputs and outputs. 
This core of function is a credit to the scientific 
Python community and provides a substantial leg 
up  in dealing with the variety of inputs and outputs 
that are inherent to this domain.

The actual activities of the system for a test 
case follows the sequence shown in Figure 6.

1. User directs McIDAS-V at the IASI search 
service and a work order service by their 
URLs. He/she selects an area and time of 
interest.
2. A hierarchy of IASI granule subsections is 
sent to the cache manager and provided to 
the user for selection as search results. 
These correspond to cached metadata files 
with detailed machine-readable information.

3. User directs search results to inputs of a 
work order - either using full data file URLs, or 
the URLs of the search results.
4. The Dispatcher invokes the work orderʼs 
planning function to get list of tasks to 
execute, and schedules tasks to run on 
workers - be they local or remote CPUs.
5. Jobs download algorithm software 
snapshots, ancillary data, and source data to 
a local workspace and start processing.
6. Jobs complete processing, uploading 
their  output to the cache manager.
7. The user receives notification of work 
order completion by way of the Dispatcher.
8. The user gets a list of output URLs 
related to the work order, including data files 
as well as  run reports or visualization scripts 
bringing outputs together.
9. McIDAS-V loads any visualization script 
that the work order may have provided, and 
reads data over OPeNDAP to form a 
visualization.
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Figure 6. System Activity Diagram.



7. CONCLUSIONS AND FUTURE WORK

As a second prototype, this is a significant 
boost in functionality and flexibility. It has attained 
aspects of both a simplified parallel computing 
framework and an algorithm integration toolkit. 
However, much work remains to bring the core 
software to a release state and build dozens of 
algorithm handlers for end-users. The primary 
intent of building this system was to improve the 
scientistʼs capabilities to analyze algorithms by 
reducing the time required to locate data, process 
it and manipulate it.

Other uses are also planned for this service 
infrastructure, such as a scheduled “nightly build” 
batching tool for instrument simulations working 
with (or generating) proxy data. 

There is a desire to extend the system to 
allow products to publish search information and 
thus permit elaborate loops with search-and-
process rule sets to be constructed and run 
implicitly based on work order profiles.

Further work is needed toward building tools 
to rapidly deploy database indexing routines for 
new  and experimental datasets. This system only 
provides a first step  in replacing manual data and 
software gathering. Making it fully useful will 
doubtless reveal usage patterns which we had not 
considered.

More extensive support of provenance, 
including report generation as well as information 
publication through a web portal or content 
management system (such as Plone) is of interest 
as algorithms mature toward production use.

Refining the interface to be intuitive and 
feature-filled for managing work orders, searches 
and outputs into a “computational desktop” will be 
a substantial windfall to usability and acceptance.

Alternate back-end implementations of these 
services making full use of the substantial efforts 
of the Grid Computing community would broaden 
the system capabilities. Likewise, extending the 
interaction of the Work Order Dispatcher with the 
client to allow better input validation would make  
a more modern user interface metaphor than 
“filling in forms”.

Finally, leveraging the literate, unit-sensitive 
data models inherent in the McIDAS-V and its 
Java tool-set is likely to bring to light better ways 
to move data between workers, cache, and client, 
and combine previously incompatible datasets in 
support of the advancement of atmospheric 
science.
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