
9B.10 CURRENTLY AVAILABLE AND SUPPORTED GRAPHICS METAFILE

FORMATS AND THE CHALLENGES THEY PRESENT

FOR USE IN FORECASTING APPLICATIONS

James Ramer*

NOAA Earth System Research Laboratory in collaboration with

the Cooperative Institute for Research in the Atmosphere

Colorado State University,

Fort Collins, Colorado.

1. INTRODUCTION

Since the late 1990's the National Weather Service's

Advanced Weather Interactive Processing System

(AWIPS) has been the primary tool used by National

Weather Service (NWS) forecasters. At the National

Oceanic and Atmospheric Administration's Earth

Systems Research Laboratory in Boulder, Colorado, the

Global Systems Division (GSD) has contributed a large

part of the software for AWIPS (Jones et al. 2003). GSD

continues to contribute to the AWIPS effort by assisting

with troubleshooting and maintenence for the

operational system, and by developing software to

support new applications and data sets for AWIPS.

Furthermore, GSD conducts research in new forecasting

techniques and new information processing

technologies. To support this effort, the Advanced Linux

Prototype System (ALPS) has been developed.

The ALPS system (Grote et al. 2005) is kept

backward compatible, supporting all current operational

AWIPS capabilities, but providing an environment where

GSD developers can prototype new capabilities free

from the rigid constraints of operational configuration

management.

Here we describe a prototype application developed

in ALPS, which allows any viewable AWIPS graphic

 * Corresponding author address: James Ramer,

 NOAA/GSD4, 325 Broadway, Boulder CO 80305;

 e-mail: james.e.ramer@noaa.gov.

overlay to be exported as a file in the Keyhole Markup

Language (KML) format. The KML format is a primary

means of displaying geographic data in Google
TM

 Earth

(Google 2007). This exercise has been a valuable

learning experience regarding the current state of

graphics metafile technologies, plus GSD has already

had many years of experience with older graphics

metafile technologies, acquired while developing AWIPS

and its precursors. Combined, this has lead to some

useful insights about the future of graphics metafile

technologies in forecasting applications.

2. DEFINITION OF SOME TERMS.

This discussion includes terminology that could be

ambiguous if not clarified. These concepts are

undoubtedly familiar to many who work with computer

graphics in geoscience applications, but others may use

different terminology to represent these concepts.

By graphic overlay, we generally refer to the entire

set of like displayable items covering some geographic

area at a given time for a coherent hydrometeorological

data set. An example would be a set of contours and

their labels for a specific level, time, parameter and field

from a specific numerical model. A graphic overlay is

mostly transparent, making it possible to meaningfully

interpret multiple graphic overlays mapped to the same

area simultaneously. An image overlay, in contrast, such

as one might create from satellite data, is often fully

opaque over its entire coverage area. The KML export

utility described here only exports graphic overlays.

By global coordinates, we refer to coordinates that

map to the display differently depending on the zoom

and pan state (the pan state means where the zoom is

centered). In this discussion, global coordinates for

plan-view grapics are latitude and longitude coordinates.

For graphics that are not plan-view, global coordinates

would usually be defined in terms of other parameters.

By frame coordinates, we refer to coordinates that

always map to the same location on the display

regardless of the zoom or pan state. Frame coordinates

are often used to display items that are legend type

information.

One example of a use for offset coordinates is

drawing a station model. In the station model example,

the global coordinates of the station are supplied as the

offset origin, and the individual items within the station

model are drawn with offset coordinates, which are pixel

offsets from that origin. This is how one can specify that

zooming in does not cause the station model itself to get

larger. Unrotated offset coordinates mean that the

positive y direction in offset space is up on the screen,

and rotated offset coordinates mean that the positive y

direction in offset space is north. When one uses an

offset that is the sum of a rotated and an unrotated

offset, we refer to that as a hybrid offset coordinate.

When a text string is plotted that has its location

specified using a rotated offset, but the font is such that

the character orientation and text baseline are defined

as being rectilinear with raw pixel coordinates, then one

is in effect using a hybrid offset.

We refer to the process of adding detail as one

zooms in as progressive disclosure.

3. PROTOTYPE KML EXPORT APPLICATION.

The version of KML this work is based on is 2.1, and

this part of the discussion assumes the reader has some

knowledge of KML. A good reference for KML 2.1 can

be found at:

 http://code.google.com/

 kml/documentation/kml_tags_21.html

The KML that is output for this prototype export

application uses a very limited set of KML features. Any

drawable item that is positioned with offset coordinates,

plus any text item positioned with global coordinates, is

implemented by <Icon> elements embedded within

<Placemark> elements. While <Icon> elements have a

raster image as their core data structure, a raster image

used in this manner is mostly transparent, because it is

used to represent features that are really vector graphic

in nature, rather than raster image in nature. In an

attempt to maintain a consistent relationship between

the pixels in the icons and pixels on the Google Earth

display, an associated <scale> value is applied. To date,

it has been impossible to make this correspondence

completely consistent, even though icons are often

artifically squared off in order to make the response to

values for the scale more predictable. In the exported

KML, rotated offset addressed items are given a

<heading> value of zero; unrotated offset addressed

items have no <heading> tag. All drawable items plotted

in frame coordinates are implemented by a single large

mostly transparent <ScreenOverlay> element. All other

drawable items are implemented with <LineString>

elements embedded within <Placemark> elements.

Progressive disclosure is implemented by applying

<Region> elements to the <Placemark> elements.

Each image that is used to make up the various text

and offset addressed items, plus the image used for

frame-addressed items, all end up in their own separate

.png file. At one level, this result creates a complex file

management problem. However, Google Earth supports

loading files with a .kmz extension directly, which are

zipped KML files. Furthermore, any other desired

associated data files, such as the .png files mentioned,

can be included in a .kmz file. Therefore, the final result

of the export operation is a single .kmz file for each

graphic overlay. In the rest of this section we discuss

some figures that show the results of this effort.

Figures 1 and 2 show an export of a contour overlay,

and an example of progressive disclosure being

invoked. Both are the result of loading the exact same

file into the Google Earth display, but the zoomed-in

version shows more contours and labels. In figure 2,

note that the contour that would be valued 510 is not

visible, even though that would be consistent with the

prevailing contour interval. Zooming in further does

reveal that contour. Ideally, it should be possible to

make the progressive disclosure work such that the

contour interval is always consistent, but this goal has

been unattainable so far.

Figure 1. Export of a 50-hPa height contour from a numerical model, valid 06UTC 09 November 2007.

Figure 2. Same export as figure 1, but zoomed in to view more contours.

Figure 3. Export of a METAR plot valid 15 UTC 15 October 2007.

Figure 4. Same export as Figure 3, but zoomed in and rotated such that south is up.

Figure 5. A weekly drought monitor graphic valid 25 October 2007.

Figures 3 and 4 show the export of a METAR plot.

Both are the same file, but in figure 4 the display has

been zoomed in and rotated such that south is up. Note

that the station models stay the same size even as the

display is zoomed, and that additional stations have

been added. Furthermore, note the station near the

middle with a gust speed of 16. In the south-up version,

the 16 gets turned upside down and now looks like 91; a

meteorologically significant difference, one might argue.

The reason this occurs is that no means has yet been

discovered to support hybrid offsets in KML.

Figure 5 is a screen shot of a weekly drought monitor

graphic. This shows an example of frame coordinates

being used; the key displayed in the upper left will stay

there regardless of how one zooms or pans. In figures 1

through 4, AWIPS has the grids and metar observations

needed to create those displays decoded and stored

locally. In contrast, AWIPS does not locally store the

information about drought conditions needed to create

the display in figure 5. This display comes to AWIPS

over NOAAPORT (Kahn and Baer 1992) as a graphics

metafile. This illustrates another good application for

displays based on graphics metafiles; when the data the

display is based upon is highly specialized information.

Even though there is no code in the AWIPS system that

knows anything about drought conditions per se, an

AWIPS user is still able to view a meaningful display of

drought conditions and overlay it with other information.

4. REVIEW OF SOME EXISTING GRAPHICS

METAFILE TECHNOLOGIES

During the years that GSD and its precursor

organizations have been doing research into

meterological displays and forecasting techniques, we

have had experience with many different graphics

metafile formats. Back when the Automation of Fields

Operations and Services (AFOS) system was the

primary tool used by NWS forecasters, very little gridded

numerical model output was made available to

forecasters. Nearly all displays of model data were sent

to offices over AFOS (Klein 1976) using a metafile

format called Universal Transmission Format (UTF).

UTF (EMWIN 1990) is a highly compact binary format

with a small to moderate amount of complexity. UTF has

some support for progressive disclosure, though the

implementation is far from ideal. There is support for

offset addressing, but one needs to apply knowledge of

what is being plotted to know when to use which type of

offset. All coordinates in UTF are simple integer

coordinates, so the coordinate system is not self

describing, and there is no support for frame

coordinates.

In the AWIPS era, the vast majority of model output

is sent to NWS offices over NOAAPORT as grids, but

graphics metafiles are still used to transmit manually

produced graphics. The metafile format currently used

for this is the Red Book (OFCM 1994) format. At one

level, the Red Book format is just a fancy wrapper

around UTF. There are additional features in the Red

Book specification that go beyond UTF, but the stream

of graphics being sent over NOAAPORT for the most

part only uses the UTF-like features. While only integer

coordinates are supported, the Red Book format does

contain some information describing the coordinate

system, but this information is often difficult to interpret

reliably. Other than that, the limitations of Red Book are

similar to those of UTF, except that Red Book is not as

simple or as compact as UTF.

Leading up to the creation of the AWIPS system,

several AWIPS pre-prototype systems were developed.

One of these was the second Denver AWIPS

Requirements and Risk Reduction Evaluation (DARE-II)

system. DARE-II (Bullock and Walts 1991) was

developed by the Forecast Systems Laboratory (FSL),

the immediate precursor organization to GSD. During

the development of DARE-II, a homegrown graphics

metafile format was defined called DARE Graphics

Metafile (DGM). DGM filled a need for a highly compact,

simple graphics metafile that had robust support for

progressive disclosure and offset addressing. For the

purpose of displaying graphic overlays, the main

DARE-II display was a DGM rendering engine. In front

of the DARE-II display was a set of product generation

processes that would turn various data sets into

viewable pictures encoded in DGM. DGM continues to

be used in the AWIPS era. There are several displays in

AWIPS created by decoding text on the fly in a separate

process, and these use DGM as an intermediate for

shipping finished graphical information to the main

AWIPS display. Also, DGM is used to ship drawing

instructions for graphics overlays from the server to the

client for the FX-Net (Wang and Madine 1998) system.

DGM is limited in that it does not distinguish between

different kinds of offset addressing and has less than

optimal support for using latitude and longitude as global

coordinates.

Besides these formats, GSD's precursor

organizations have had experience in the past with

several other graphics metafile formats. All these other

formats are binary, and are either obsolete or do not

support progressive disclosure and offset addressing.

One thing common to all formats discussed so far is that

they are binary. These highly compact binary formats

were developed at a time when available disk space,

communications bandwidth, and processing power were

much less, and file compression technologies were less

advanced, than they are now. Currently, graphics

metafile technologies seem to be universally evolving

toward ASCII formats, such as KML or Scalable Vector

Graphics (SVG). Both KML and SVG (W3C 2003) are

based on the Extensible Markup Language (XML),

described in WC3 2000 and numerous other places.

As has been demonstrated, KML currently has no

direct support for offset addressing, but KML can be

coerced into behaving as if it does to some extent. This

implementation is not ideal; using raster image

capabilities to implement what are essentially vector

graphics display items seems very much like forcing a

square peg into a round hole. In a way, this is

understandable, given that KML uses the same

geometry model as the Geography Markup Language

(GML). GML (OGC 2007) is meant to describe the

geographic characterstics of real world objects, not to

describe how to represent them visually (Lake 2005). As

such, KML is in some ways still better suited for

representing actual physical objects, like a building,

rather than abstract visual objects, like a station model,

an isopleth, or a cold front.

SVG, on the other hand, is meant to describe how to

visualize things. However, unlike KML, it has no native

support for using latitude and longitude as global

coordinates. As such, if one has two SVG metafiles

generated in different projections, it may be difficult to

visually integrate (overlay) them and still retain the

original character of the displays. Nor does SVG offer

native support for progressive disclosure. Using

non-standard extensions, one could of course

implement these features in SVG, as one could do with

some of the harder-to-emulate features in KML.

However, doing things in this manner would negate

many of the advantages of using an off-the-shelf

standard.

5. SOME RESULTING IDEAS ABOUT GRAPHIC

METAFILES IN FORECASTING APPLICATIONS

The preceding review of existing graphic metafile

technologies leads to two conclusions that are the

driving force behind why this paper was written. One,

the current metafile format being used operationally by

the NWS to distribute manually produced graphics to the

forecast offices is obsolete and should be replaced. If

Red Book truly supported all the desired features, one

might decide to leave well enough alone, but this is not

the case. Furthermore, the Red Book standard is difficult

interpret; as such there is a reluctance to rewrite

software that deals with it, even though much of that

software is getting very old and difficult to maintain.

Thus, Red Book should be replaced with a format that is

consistent with the direction in which modern graphics

metafile technologies are evolving. Two, no currently

supported standard fully implements all the features that

are desired in a graphics metafile format meant for

forecasting applications. This second conclusion is

somewhat more tenuous than the first, due to the fact

that the preceding review of currently available formats

was not comprehensive. There could be an existing

graphics metafile standard that our research has yet to

discover which has all the desired functionality. The best

information we have says that nobody at the NWS or at

Raytheon (the current lead AWIPS contractor) is

addressing this issue at the present time.

Metafile technology seems to be universally moving

towards XML-based formats. XML-based formats have

the advantage that they are endian independent and to

an extent human readable. Furthermore, it is easy to

include ancillary information along with the raw display

instructions, without having to update the logic of a

display parser to understand the contents of that

ancillary information. Thus, whatever replaces Red Book

should probably be XML-based.

Replacing the Red Book format would involve not

just the NWS but also the Office of the Federal

Coordinator for Meteorology (OFCM) and perhaps other

agencies. Should the OFCM (OFCM 2007) and its

cooperating agencies go to the effort of replacing Red

Book, functionality should not be sacrificed just so

adherence to a standard can be claimed. The ideal

scenario would be if an undiscovered yet fully functional

standard existed that could be adopted. Alternatively, it

may be possible to get the appropriate governance

committee for some existing standard to accept the

additional functionality needed by the NWS. Barring that,

the NWS should work with the OFCM to develop a new

format for communicating manually produced graphics

to the forecast offices. If such a format were developed,

it should be kept as simple as possible and still support

the desired features; this would both ease the

implementation and speed acceptance in the wider

meteorological community. If an existing standard is

adopted, the set of functionality used for graphics sent

over NOAAPORT should still be kept as narrow as

possible to ease the transition from Red Book to the new

standard. One reason that simplicity is an issue is that

NOAAPORT is not just internal to NWS or NOAA; it is

accessible to a much wider community of users.

Whatever new standard is adopted or developed, the

default implementation should always have a one-to-one

correspondence between physical graphics metafiles

and graphical overlays. It is not a bad thing to be able to

implement a single graphic overlay distributed over

several physical files if that is convenient for an

individual implementation. However, it is undesirable if

one is forced to always implement a single graphic

overlay in a distributed fashion. If it were not for the fact

that it is possible to bundle many files into a single .kmz

file, the KML exporter discussed here would not be

practical. Because the output from the KML exporter is

internally segregated into a large number of files, this is

still far from an ideal approach.

Finally, we comment on describing abstract

meteorological objects in graphics metafiles. By this we

mean, for example, supplying the location and type of a

front, as opposed to supplying raw drawing instructions

for the frontal surface, pips, and other features that are

typically used to visualize a front. There are times when

it is appropriate to include abstract meteorological

objects in a graphics metafile. However, it is the wrong

approach to force a client to interpret such objects when

all they want to do is view a picture. This is problematic

for two reasons. First, it greatly increases the complexity

of any display interpreter for the metafile. Second, it

relies on an assumption that the average client who

wants to view the contents of the metafile understands

how to visualize such objects just as well as the creator

of the metafile. As mentioned, this does not mean that

one should never include abstract meteorological

objects in a graphics metafile. What this does mean is

that one needs to redundantly specify such objects,

supplying both the information that defines the object

and the drawing commands needed to view the object.

Thus, someone who cares about the abstract objects

can parse and use them; someone who only wants to

view the picture can just implement the simpler set of

drawing commands. Fortunately, XML lends itself very

well to support this approach for modeling abstract

meteorological objects.

6. MINIMUM SET OF FUNCTIONALITY REQUIRED IN

A GRAPHICS METAFILE STANDARD FOR

FORECASTING APPLICATIONS

What follows is a bare minimum set of capabilities

we believe are needed in a graphics metafile standard

meant to support forecasting applications. Some of this

is restating things previously discussed.

- Ability to define what the global coordinate system for

the graphical overlay is. At a minimum, the available

global coordinate systems should include

latitude/longitude and arbitrary Cartesian. It would be

reasonable to make latitude/longitude/height available

as a global coordinate system, but it is probably not

essential.

- Ability to specify whether the coordinates associated

with drawing commands are in global coordinates,

frame coordinates, unrotated offset coordinates,

rotated offset coordinates, or hybrid offset

coordinates.

- Ability to draw unlinked vectors.

- Ability to draw linked vectors.

- Ability to draw filled polygons. These filled polygons

would not have borders; those would be drawn with a

separate linked-vector operation if needed. The fill

pattern should be implemented as a two-dimensional

binary stipple of arbitrary size. Named fill patterns are

not essential because they complicate creating an

interpreter, but it would be reasonable to say that not

specifying a pattern would default to solid. Pixels

identified in the stipple as unactivated would have

nothing happen to them unless an optional

background color were supplied.

- Ability to attach interactive displayable items to a

polygon. These items would display only when some

sort of cursor interaction occurred within the area of

the polygon.

- Ability to specify the offset origin. The location of the

offset origin can be specified in either global or frame

coordinates. When the offset origin is in frame

coordinates or the global coordinates are arbitrary

Cartesian, there is no functional difference between

the different kinds of offsets.

- Ability to assign progressive disclosure thresholds to

drawable items. A progressive disclosure parameter

associated with drawing commands for a plan-view

grapical overlay should have units of earth distance

per pixel. This means larger values for the parameter

make the associated drawing commands more visible

(viewable at lower zoom factors). Furthermore, it

should be possible to indicate whether the value of

earth distance per pixel compared to a given

threshold is based on the local map scale or the mean

map scale for the entire display; this allows one to

prevent issues like the missing contour in figure 2. For

graphics that are not plan-view, the units of the

progressive disclosure parameter will be different but

should have the same sense; larger values

associated with a displayable item make it more

visible.

- Ability to associate an arbitrary 32 bit color (0-255

values for red, green, blue, and opacity) with any

drawing command. Support for plain language colors

is not essential and complicates creating an

interpreter.

- Ability to choose line texture. A variable length texture

pattern bitmap is the preferred implementation. Again,

support for plain language textures is not essential

and complicates creating an interpreter.

Note that no directly supported text functionality is

part of this bare minimum set of requirements. If text

functionality were made part of the format, then

decisions would have to be made whether to specify

stroke fonts or bitmapped fonts, whether to have certain

default font sets or have all fonts be defined in the

metafile, and how to allow for defining new fonts. Once

made, these decisions would result in reduced flexibility.

With this recommended very minimal set of functionality,

graphics creators more comfortable with stroked fonts

can draw their characters using offset coordinates, those

more comfortable with bitmap fonts can implement them

as filled polygons.

If a more varied feature set is desired, then a

converter could always be written to take a metafile

created based on a more complex format that

implements things in this simpler format. This would be

the recommended means for implementing things like

text functionality, named colors, or named line textures.

7. CONCLUSIONS

A utility that exports AWIPS graphic overlays using

KML as a graphics metafile format has been discussed.

This effort, combined with GSD's previous experience

with graphics metafile formats and a cursory review of

some other metafile formats in common usage, has

been a worthwhile learning experience. This has lead to

some useful insights about the current state of metafile

technologies for use in forecasting applications. These

insights lead to the conclusion that the current metafile

format the NWS uses to distribute manual graphics to

the forecast offices, Red Book, is out of date and should

be replaced. A proposal has been made for a minimum

set of functionality needed in a replacement for the Red

Book format.

REFERENCES

Bullock, C.S., and D.S. Walts, 1991: Considerations for

the DARE II design. Seventh Int. Conf. on

Interactive Information and Processing Systems for

Meteorology, Hydrology, and Oceanography, New

Orleans, LA, Amer. Meteor. Soc., 152-156.

Google, cited 2007: Google Earth main KML page

[Available online at

http://earth.google.com/apis/kml/.]

Grote, U.H., D. Davis, C. Bullock, and J. Tuell, 2005: An

advanced Linux prototype of AWIPS. 21st Int. Conf.

on Interactive Information and Processing Systems

(IIPS) for Meteorology, Oceanography, and

Hydrology, San Diego, CA, Amer. Meteor. Soc.,

CD-ROM, 8.4.

Lake, R. cited 2005: GML and KML Syntax [Available

online at http://geoweb.blog.com/313918/.]

Jones, D.R., C. Bullock, W. Carrigg, C. Dietz, M.

dedJardin, E. Mandel, D. Rhine, J. Roe, and M.T.

Young, 2003: AWIPS Build 5 in review. 19th Int.

Conf. on Interactive Information Processing Systems

(IIPS) for Meteorology, Oceanography, and

Hydrology, Long Beach, CA, Amer. Meteor. Soc.,

CD-ROM, 4.1.

Kahn, R., and V. Baer, 1992: Information stream project

for AWIPS/NOAAPORT (ISPAN). Eighth Int. Conf.

on Interactive Information and Processing Systems

for Meteorology, Oceanography, and Hydrology,

Atlanta, GA, Amer. Meteor. Soc.

Klein, W. H., 1976: The AFOS Program and Future

Forecast Applications. Mon. Wea. Rev., 104,

1494-1504.

EMWIN, cited 1990: Appendix B, Universal

Transmission Format [Available online at

http://www.weather.gov/emwin/h5v6p2.zip.]

OFCM, cited 1994: Standard Formats for Weather Data

Exchange Among Automated Weather Information

Systems [Available online at

http://www.ofcm.gov/s2/s2.htm.]

OFCM, cited 2007: Office of the Federal Coordinator for

Meteorology home page [Available online at

http://www.ofcm.gov/]

OGC, cited 2007: OpenGIS Geography Markup

Language (GML) Encoding Standard [Available

online at

ttp://www.opengeospatial.org/standards/gml.]

Wang, N. and S. Madine, 1998: FX-Net: a Java-based

internet client interface to the WFO-Advanced

workstation. 14th Int. Conf. on Interactive

Information and Processing Systems for

Meteorology, Oceanography, and Hydrology,

Phoenix, AZ, Amer. Meteor. Soc., 427-429.

W3C, cited 2000: Extensible Markup Language (XML)

1.0 (Second Edition) [Available online at

http://www.w3.org/TR/2000/REC-xml-20001006.]

W3C, cited 2003: Scalable Vector Graphics (SVG) 1.1

Specification [Available online at

http://www.w3.org/TR/SVG/.]

