
5C.4 ADDING MODERN AJAX WEB-SERVICES TO EXISTING DATA DISTRIBUTION SYSTEMS

Roland H. Schweitzer*
Weathertop Consulting, LLC, College Station, Texas

Steve Hankin, Ansley Manke
NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

Jonathan Callahan, Kevin O'Brien, Jeremy Malczyk
JISAO, University of Washington, Seattle, Washington

Jing Li
Macrostaff, Seattle, Washington

1. INTRODUCTION

The Live Access Server (LAS); Hankin (1998) is
celebrating its tenth year as a freely available Web-
application software system for display and analysis of
geo-science data sets. The software, available for
anyone to download and install, gives data providers an
easy way to establish services for their on-line data
holdings so their users can make plots, create and
download sub-sets in a variety of formats, and compare
and analyze data.

Modern web applications are taking advantage
of novel applications of web technology – the so called
Web 2.0 revolution. In this paper we discuss our
experiences adding AJAX (Asynchronous Javascript and
XML) services to the next generation of the Live Access
Server. In order to build clients which give the user the
utmost in responsiveness we had to carefully consider
the factoring and the implementation of the services that
will feed the client program the information it needs. In
conjunction with the discussion of software infrastructure
issues related to Live Access Server development, we will
provide an overview of the latest advances in the
capabilities and configurability of the Live Access Server
itself.

We recently re-factored our server architecture
for other purposes. The new architecture is faster at
extracting and processing configuration information
needed to address each request. The speed of this re-
factored architecture has meant that we can use many of
the underlying configuration processing classes to
implement services for an AJAX client. We believe this
retooling has been successful and that others will benefit
from our experience.

*Corresponding author address: Roland H. Schweitzer,
Weathertop Consulting, LLC, 2802 Cimarron Ct, College
Station, TX 77845. E-mail:
weathertop.consulting@gmail.com

2. AJAX – AN OLD IDEA WITH A FANCY NAME

AJAX, Asynchronous JavaScript and XML, is a
short-hand name for collection of technologies and
programming techniques that allows JavaScript running
inside a browser to fetch data from the server "behind the
scenes" so the user unaware of the server access.
Contrast this with the other extreme of interface where
the user interacts with the site via a series of "pages"
where the entire browser window is refreshed after each
interaction.

The concepts now commonly in use and
referred to as AJAX have as ancestors concepts such as
"Inner-Browsing" Gallias (2003) as the technique was
called by Netscape and Microsoft's Remote Scripting.

Now that the client-side of the AJAX technology
(the ability for browsers to make requests from the server
via JavaScript) has standardized enough to make
implementing and maintaining an AJAX application
reasonable for a small group with limited resources, we
decided to base our new user interface for the Live
Access Server on AJAX technologies.

3. ADVANTAGES FOR THE LIVE ACCESS SERVER

Of course, we hope to gain many of the
advantages in user interaction that AJAX sites offer. LAS
sites will have increased responsiveness using this type
of interface. Controls for selections can be refreshed
without sending the user back through a series of
individual pages.

Interestingly, once we started down this path we
found that the components we constructed both on the
server-side and on the client-side could be adapted to
create a collection of new and novel data analysis and
display products that were difficult to implement using the
old technology. Section 5 has details on two of those
new products.

4. OUR IMPLEMENTATION

Many AJAX implementations use XML as the
exchange format. However, for our implementation we
choose to stream our AJAX responses from the server
as JSON, rather than XML. JSON, the JavaScript
Object Notation, is a lightweight data-interchange format.
 The advantage of JSON when received by a JavaScript
client is that the text of a JSON object can be evaluated
as JavaScript code and the contents of the object can be
accessed directly as JavaScript data structures.

On the server-side, all of our configuration
information is ingested from XML files. The internal
objects used to contain the information stores the XML
as JDOM objects and exposes convenience methods for
extracting the information needed by the server in the
form most convenient to the class using the information
(such as collections of human readable date Strings).
Because there is a nearly direct translation possible
between the XML and a JSON object, the job of shipping
the requested information to the AJAX client is quite
simple to implement and fast to run.

One word of caution, however. When
translating XML to JSON some implementations will
"flatten" the resulting XML when there is only one sub-
element in a parent element and eliminate the parent
element as redundant. To keep the data structures
consistent, we had to modify this translation to JSON
from XML to keep the parent element.

5. EXAMPLE PRODUCTS

As mentioned previously the new AJAX aware
client-side components made it easy to implement new
products for LAS.

5.1 ANIMATION

For example, we have created an animation
product. When the product is first requested, we
calculate some reasonable default animation parameters
on the server-side, like the number of time steps,
consistent contour levels to use for all frames and the
size of the images. This information is delivered to the
client as a list of individual product requests that it should
make to build the animation. The client makes these
requests via AJAX using the client-side components
created for that purpose. This means that all of the error
handling and other features built into the AJAX
component are seamlessly reused in the animation
product.

Figure 2. A snap-shot of the animation interface.

5.2 SLIDE-SORTER

A second new product that depends on the
new AJAX infrastructure is a plot comparison interface
we call the slide sorter. The content of each individual
frame in the interface is independently controlled by
selecting the value(s) for the axes orthogonal to the plot
plane. Each frame refreshes itself independently by
making an AJAX call to request the new plot image after
value(s) of the orthogonal axes have been changed.

Figure 1. The new user interface.

6. CONCLUSTIONS

Not only has the new AJAX implementation
made the main user interface more robust and user
friendly, it has made it easy for us to implement many
new and useful data analysis and exploration products.

7. REFERENCES

Galli, M., R. Soares, I Oeschger, 2003: Inner-Browsing:
Extending Web Browsing the Navigation Paradigm,
http://devedge-temp.mozilla.org/viewsource/2003/inner-
browsing/index_en.html.

Hankin, Steve, J. Davison, J. Callahan, D. E. Harrison
and K. O'Brien, 1998: A Configurable Web Server for
Gridded Data: A Framework for Collaboration, Preprints,
Fourteenth International Conference for Interactive
Information and Processing Systems for Meteorology,
Oceanography, and Hydrology, Phoenix, AZ., AMS, 417-
418.

Figure 3. The Slide-sorter Interface in LAS

