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Abstract

This paper studies the phenomenon of intermittency in
the stable boundary layer with particular emphasis on the
energetic coupling between land and atmosphere. The
stable boundary layer is modelled with two different min-
imalistic models, a one-dimensional (height-dependent)
model and a bulk model. Turbulence is parameterized us-
ing a Richardson number dependent eddy viscosity. The
most important ingredient of both models is the treatment
of the lower boundary: it is based on a simplified en-
ergy balance of a vegetation layer and includes besides
radiative cooling an energetic coupling with both the at-
mosphere and the deep soil. The resulting temperature
boundary condition is time-dependent and interacts with
the atmospheric dynamics.

For a large range of parameters both models display
unsteady behaviour where the state of the atmosphere
changes between turbulent and laminar (collapsed turbu-
lence). But sustained unsteady behaviour appears only
possible when the coupling between vegetation and at-
mosphere is sufficiently strong. Both models show quali-
tative comparable behaviour. This provides a strong indi-
cation that the surface-atmosphere interaction could play
an important role in the occurrence of intermittency in the
stable boundary layer.

1. INTRODUCTION

In the diurnal cycle the atmospheric boundary layer un-
dergoes a transition from an unstable daytime boundary
layer to a stable nighttime boundary layer. Two types of
stable boundary layer are defined (Mahrt, 1999)

• the Weakly Stable Boundary Layer

• the Very Stable Boundary Layer

In the weakly continuous boundary layer turbulence in-
tensity is continuously present and the boundary layer
can be described by local similarity scaling (Nieuwstadt,
1984). The very stable boundary layer occurs on clear
nights with weak winds, where due to long-wave radi-
ation the surface cools strongly. Due to the resulting
strong stratification, turbulent intensity is very low or com-
pletely absent. In field experiments often an intermittent
form of turbulence is observed with a marked temporal
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change in turbulence intensity. This intermittency is of a
global form, in a sense that the turbulence intensity on
all length scales is either present or (completely) sup-
pressed (Howell and Sun, 1999; Doran, 2004; Salmond,
2005; van de Wiel et al., 2003). The mechanism(s) that
drive this form of intermittent turbulence are currently not
fully understood. Suggested mechanisms that drive in-
termittent behaviour are density currents, solitons (Sun
et al., 2004), gravity waves (Einaudi and Finnigan, 1993),
a non-stationair mean flow (Cullen et al., 2007) or surface
heterogeneity (Nakamura and Mahrt, 2005). These pro-
posed mechanisms can be qualified as having a non-local
(external) origin. Other suggestions include low level jets
(Smedman, 1988) and Ekman layer instabilities (Barnard,
2000). These suggestions are based on the influence of
the Coriolis force to create instabilities in the flow. How-
ever, one could argue that the characteristic time scale
of the Coriolis force is longer than the characteristic time
scale of intermittent events (ReVelle, 1993).

For this reason it is interesting to focus on local (in-
ternal) mechanisms that drive intermittency. A simple lo-
cal model was first proposed by Businger (1973). The
stratification in the boundary layer due to the cooling sup-
presses turbulence resulting in a laminar flow. Because
turbulent friction is absent, this flow accelerates, which
ultimately leads to the re-occurence of turbulence due
to the increased shear stresses. Turbulent mixing then
reduces the shear stresses while the stratification due
to ongoing cooling drives the flow back into a laminar
state. This cycle can continue during the night. Blackader
(1979) suggested that the dynamics due to land surface
- atmosphere interaction could lead to intermittent events
using a simple 1-dimensional model. Comparable results
were obtained by ReVelle (1993) and van de Wiel et al.
(2002b) for respectively a 1D model and a bulk model.
It is important that the land-atmosphere interaction is dy-
namic. A fixed surface temperature, or a fixed surface flux
`

w′T ′
´

is unlikely to be sufficient for intermittency to oc-
cur, since the system will favor either the turbulent or lam-
inar state without switching. A land-atmosphere interac-
tion scheme therefore should incorporate physically real-
istic cooling and heating terms. As argued by van de Wiel
et al. (2002b) even simple models of the land-atmosphere
interaction should be based on the energy balance of the
surface, taking into account cooling by radiation, the heat
flux to/from the deeper soil layers, and an energetic cou-
pling with atmosphere.

In this paper we pursue these ideas in modelling
the stable boundary layer. We study a one-dimensional
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model in which the turbulence transport terms are mod-
eled by an eddy-diffusivity closure. To get a better qualita-
tive understanding of the cause of intermittency, we sim-
plify the model further to a bulk model. We show that
within both frameworks the interactive coupling between
land and atmosphere is a crucial ingredient for intermit-
tent behaviour to occur.

2. GOVERNING EQUATIONS

Using a pressure gradient as driving force, and neglect-
ing molecular transport and the Coriolis force, one finds
the following governing equations for the ensemble mean
horizontal velocity U(z, t) and temperature T (z, t) (e.g.
(Nieuwstadt, 2005))

∂U

∂t
= −

1

ρ

dP

dx
−

∂

∂z

`

u′w′
´

(1a)

∂T

∂t
= −

∂

∂z

`

w′T ′
´

(1b)

where u′w′ and w′T ′ are the turbulent transport terms.
To close the set of equations we use the Richardson num-
ber closure commonly applied in stable boundary layers

u′w′ = −KM
∂U

∂z
(2)

w′T ′ = −KH
∂T

∂z
(3)

where the eddy-viscosity/diffusivity is given by

KM = KH = (κz)2 f (Ri)

˛

˛

˛

˛

∂U

∂z

˛

˛

˛

˛

(4)

with κ = 0.4 the Von Karman constant and f (Ri) given
by

f (Ri) =

8

<

:

“

1 − Ri
Ric

”2

, for 0 ≤ Ri ≤ Ric

0, otherwise.
(5)

Here Ri is the gradient Richardson number, defined as

Ri =
g

T0

∂T
∂z

`

∂U
∂z

´2
(6)

where g
ˆ

m s−2
˜

is the gravitational acceleration and
T0 = 300K is a reference temperature. Ric is the crit-
ical Richardson number. As a consequence of (5), for
Ri (z) > Ric stratification suppresses turbulence com-
pletely. In contrast, turbulent eddies are always (locally)
present at height z when Ri (z) < Ric. The value of Ric is
experimentally observed to be Ric = 1

5.2
(Webb, 1970),

but for simplicity we take Ric = 1

5
. For Ric = α−1 the

closure (4) is consistent (e.g. van de Wiel et al. (2002b,
2008)) with the surface layer similarity functions for the
stable boundary layer, which are given by the loglinear
flux-profile relation

κz

u∗

∂U

∂z
= φ

“ z

L

”

= 1 + α
z

L
(7)

where L is the Obukhov length scale, defined as

L =
u3
∗

κ g
T0

[u∗T∗]
(8)

with u∗ is the surface friction velocity and [u∗T∗] =
w′T ′(z = 0) the surface heat flux.

2.1 Boundary conditions

At the top of our domain we use for the velocity a free-slip
condition for U and a constant temperature Ttop which
we can set to zero without loss of generality. At the sur-
face we follow a land-atmosphere interaction approach,
following Blackader (1957); ReVelle (1993); van de Wiel
et al. (2002b) which is based on the energy balance of
a vegetation layer. It includes radiative cooling, a heat-
flux to/from the deep soil, and a heat-flux coupling with
atmosphere. The resulting equation is

∂Tveg

∂t
= −

Tveg − T̃g

τ
−

Q

ρvcpvδ
+

β

δ

„

KH
∂T

∂z

«

z=0

(9)

where T̃g [K] is the temperature of the deep ground ,
τ [s] is a timescale for heat transport between the veg-
etation layer and the deep ground and β [−] is the ra-
tio of the heat capacities of air and the vegetation layer,
δ [m] the height of the vegetation layer, and Q the ra-
diative cooling

ˆ

W/m2
˜

. One may note that the radia-
tive cooling term can be mathematically absorbed in the
ground temperature by defining Tg = T̃g − τQ/ρvcpv,
which reduces the number of parameters. This equation
then consists of two terms, a vegetation ’heating’ term
`

βδ−1 [KH∂T/∂z]z=0

´

, which is dependent on the state
(turbulent or laminar) of the atmosphere through KH , and
a ’cooling’ term

`

−τ−1 [Tveg − Tg]
´

, which drives Tveg to-
wards Tg. We now take T (0) = Tveg (t), resulting in a
time-dependent surface boundary condition. The total set
of equations

∂U

∂t
= −

1

ρ

∂P

∂x
+

∂

∂z

»

KM
∂U

∂z

–

(10)

∂T

∂t
=

∂

∂z

»

KH
∂T

∂z

–

(11)

∂Tveg

∂t
= −

Tveg − Tg

τ
+ γ KH

∂T

∂z

˛

˛

˛

˛

z=0

(12)

with KH and KM from (4) and γ = β/δ. In section 4
we study the time dependent behaviour of this system in
greater detail. As we will see there, the behaviour of this
relatively simple model is already very complex, which
hampers a good understanding of the phenomena. For
this reason we derive in the next section an even simpler
model which shows conceptually what is going on.

3. INTERMITTENCY IN THE BULK MODEL

In the bulk model the governing partial differential equa-
tions (10-11) are integrated over the domain height re-
sulting in a set of ordinary differential equations for the
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Figure 1: a) Time-series of u in the bulk-model for dif-
ferent values of the temperature difference θtop − θg. The
parameters α = 10 and τ = 1 are fixed. b) Correspond-
ing trajectories in phase-space u(t) vs θtop − θveg(t). The
shaded area represents the region where Ri > Ric. Dots
indicate the fixed-point associated with the value of the
temperature difference θtop − θg as given by (19-21).

domain-averaged values of velocity 〈U〉, and tempera-
ture 〈T 〉, in combination with the equation for the vege-
tation temperature Tveg. We discretize the system such
that KM , KH are located at z = H/2, together with
〈U〉, and 〈T 〉. With regard to the boundaries, we use
a free-slip top-boundary condition and a no-slip bottom
boundary condition, while for the temperature we have
a fixed top temperature Ttop and the interactive bottom
temperature Tveg (t). The relevant gradients can then be
approximated by ∂U

∂z

˛

˛

z=0
= 〈U〉

H/2
, ∂T

∂z

˛

˛

z=0
=

〈T〉−Tveg

H/2
,

∂T
∂z

˛

˛

z=H
=

Ttop−〈T〉

H/2
, which yields

d〈U〉

dt
= −

1

ρ

∂P

∂x
−

2KM

H2
〈U〉 (13)

d〈T 〉

dt
=

2KH

H2
[Ttop − 2〈T 〉 − Tveg] (14)

dTveg

dt
= −

Tveg − Tg

τ
+

2γKH

H
(〈T 〉 − Tveg) (15)

The eddy diffusivities are again closed by equation (4),
with z = H/2. With the adopted discretization the
Richardson number (6) becomes Ri = gH(Ttop −
Tveg)/(4T0〈U〉2). The equations can be simplified further

by scaling the variables; if we take U = κ−1
q

− 1

ρ
∂P
∂x

H

the velocity-scale, H/(κ2U) the time-scale, and T =
4T0U

2/gH the temperature-scale, we derive for the sys-
tem in dimensionless form

du

dt
= 1 − u2f(Ri) (16)

dθ

dt
= (θtop − 2θ + θveg) uf(Ri) (17)

dθveg

dt
= −

θveg − θg

τ
+ 2α(θ − θveg) uf(Ri) (18)

where f (Ri) is described by equation (5) with Ri =
(θtop − θveg)/u2. As such the model is even more rudi-
mentary than the bulk-model derived by van de Wiel et al.
(2002b). The justification for this is that the present ap-
proach focusses entirely on the role of the vegetation-
atmosphere interaction and much less on describing the
energetics of the vegetation layer very accurately. The
dimensionless parameter α = Hγ/2 thus plays a key
role in this model since it represents the interaction be-
tween atmosphere and vegetation. For α = 0 the vege-
tation temperature does not depend on the atmospheric
temperature. Note that τ is now dimensionless as well.
Treating Ric = 0.2 as a given fixed value, the system
essentially has three independent dimensionless param-
eters α, τ , and θtop − θg which is the temperature differ-
ence over the entire domain. Without loss of generality
one could set θtop = 0 because all temperatures can be
shifted by a constant value without changing the system,
but for clarity we prefer the notation θtop − θg over −θg.
Analysis of the three-dimensional system (16-18) reveals
that there is a only one possible stationary state, which



depends on the three parameters as

û =
1 − ατ

2
+

s

„

1 + ατ

2

«2

+
θtop − θg

Ric
(19)

θ̂ =
θtop + θ̂veg

2
(20)

θ̂veg = θtop − (θtop − θg)
û

û + ατ
(21)

In the neutral situation θg = θtop, the stationary state is
û = 1, and θ̂ = θ̂veg = θtop, regardless of the values of α
and τ . However, when there is a temperature difference
θtop − θg > 0, the equilibrium velocity will increase, i.e.
û > 1, owing to the less efficient turbulent mixing of mo-
mentum in the stably stratified situation (lower KM ). One
may further note that in this situation the equilibrium state
does depend on two parameters rather than three, i.e.
the temperature difference θtop − θg and the product ατ .
This means that for the stationary state there is a trade-
off between the land-atmosphere coupling α and the soil
response time τ .

Note that the stationary states (19-21) do not com-
prise the decoupled state where Ri > Ric and KM = 0.
The inadmissibility of this solution as a stationary state is
a direct consequence of our choice to force the system by
a constant pressure gradient: when Ri > Ric, f(Ri) = 0
by which equation (16) becomes du/dt = 1; this implies
that u(t) will grow linearly until Ri = (θtop − θveg)/u2

drops below the critical value Ric. This is inevitable be-
cause θveg is bounded – it cannot become smaller than
θg –, whereas u will grow unbounded when Ri > Ric. In
line with this argument, one may verify that the stationary
state Richardson-number R̂i = (θtop− θ̂veg)/û2 is always
below Ric.

It is however important to realize that the fixed-point
(19-21) might not be stable at all. Since under the dy-
namics of (16-18) none of the variables u, θ, θveg can
escape to ±∞, instability of the (only) fixed-point solution
must entail non-trivial behaviour such as chaos or limit-
cycles. In Fig. 1 we show the timeseries for three val-
ues of the global temperature difference θtop − θg = 1, 3
and 10, while α = 10 and τ = 1 are fixed. For a small
temperature difference the solutions rapidly converge to
the fixed-point solution. For moderate temperature differ-
ences θtop − θg the variables reach the equilibrium value
in an oscillatory fashion. For a relatively large tempera-
ture difference θtop−θg the fixed-point is no longer stable;
it spirals away from it and settles into a limit cycle. The
phasespace trajectories in Fig. 1b show that one branch
of the cycle is always in the turbulent state and the other
in the decoupled state (indicated by the gray zone which
represents Ri > Ric).

In order to get more insight in the stability of the fixed-
point and in the transition from stationary to unsteady
behaviour, we study the eigenvalues of Jacobian matrix
evaluated at the fixed-point (û, θ̂, θ̂veg) which after some
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Figure 2: Regime-plots indicating the stability of the
fixed-point solutions (19-21). Shaded regions represents
the parameter regime where one of the eigenvalues of the
Jacobian (22) has a positive real part. At the perimeter
of the regions the system undergoes a Hopf-bifurcation;
inside the regions the system is has a periodic solution
(limit-cycle).



manipulation reads

J =

0

B

B

B

B

@

− 2

û
− 4R̂i

Ric
0 − 2

ûRic

0 − 2

û
1

û

αR̂i + 4αR̂i
2
û

Ric

2α
û

− 1

τ
− 2α

û
+ 2αR̂i

Ric

1

C

C

C

C

A

(22)
For a large range of parameter values we have calcu-
lated the eigenvalues of J and located the parameter
regime where at least one of the eigenvalues has a pos-
itive real value, which indicates that the fixed-point is lin-
early unstable. The results have been plotted in Fig.2,
where a shaded region indicates instability of the fixed-
point. Since as mentioned the system cannot escape to
infinity and since no chaotic solutions were observed, a
shaded region indicates that the system has a periodic
solution. At the region-perimeter the system undergoes
a Hopf-bifurcation, since there the real part of the (com-
plex) eigenvalues changes sign.

The other relevant point to notice in Fig.2 is that un-
steady solutions cannot exist when the coupling parame-
ter α is below a critical value. Indeed, for α smaller than
roughly 2, no combinations of τ and θtop−θg can be found
such that the fixed point is unstable. This clearly shows
that, within the adopted framework, a non-vanishing land-
atmosphere interaction is a necessary condition for inter-
mittency to happen.

4. INTERMITTENCY IN THE ONE-DIMENSIONAL
MODEL

In the 1-dimensional model, described by equations 10-
12, we implement a z0-concept to model the influence of
the rough surface on the flow. The actual boundary is
at z = (h), with h/H = 0.02. Integrating the log-linear
flux-gradient relations from 0 to h one obtains at z = h

u∗ = κU (h)

„

ln

„

h

z0

«

+
h − z0

RicL

«−1

(23a)

T∗ = κ△T (h)

„

ln

„

h

z0

«

+
h − z0

RicL

«−1

(23b)

where u2
∗ is the momentum flux and u∗T∗ is the heat

flux at z = z0. Using the definition of the height z0, we
have U (z0) = 0 and △T (h) = T (h) − T (z0). We ob-
tain the value for T (z0) from the vegetation layer model
(9), i.e. T (z0) = Tveg(t). Using (23) and (8) we note
the positive feedback between the Obukhov length L
`

L = u3
∗ [κg (u∗T∗) /T0]

−1
´

and u∗, in the sense that an
increase in u∗ leads to an increase in L which leads to
an increase in u∗. In contrast, a negative feedback exists
between U (h) and u∗.

We numerically solve the 1D-model using a stag-
gered grid with 400 cells, where we define U and T on
cell centers and fluxes (e.g. − KM∂U/∂z) on cell bound-
aries. At the top we take a free-slip condition for velocity
and a fixed temperature condition (Ttop) for T , which we
set to zero without loss of generality. In the simulations
we simulate a night of 8 hours, from sunset to sunrise.

The initial state of the model is a neutral log-profile for
U (z), K (z) = (κz)2 |∂U/∂z|, and Tveg = T (z) = 0.
The time-integration scheme is direct Euler-forward with
a fixed timestep △t = 5 × 10−4 s.

The scaling variables employed in the bulk model are
not suitable in the 1D-model because the height of the
domain (H) is not the boundary layer height and there-
fore not a characteristic length scale. We therefore show
the results in dimensional notation. Another important
issue that should be addressed is the absence of any
mixing when Ri (z) ≥ Ric. This has two important con-
sequences. First, a sharp bend exists in the profiles at
the transition from Ri < Ric → Ri > Ric. Second,
the information in the turbulent regions (close to the sur-
face) where Ri (z) < Ric is not transported over this Ri-
transition. In this region (Ri (z) > Ric) initial gradients
are directly removed by turbulent mixing and a laminar
flow develops, undisturbed by unsteady behaviour near
the surface. A consequence of this is a slight grid depen-
dency during unsteady behaviour. In simulations without
unsteady behaviour no grid dependency is observed. Be-
cause the only influence of an increase in grid cells is a
slight temporal shift in the unsteady dynamics, it is rea-
sonable to assume that the main characteristics of the
unsteady behaviour do not depend on the employed res-
olution.

In the simulations we observe three different types
of nights. The first type, the radiative night, is char-
acterized by strong stratification, leading to a negligible
heat flux from the atmosphere to the vegeation by which
Tveg → Tg. The second type, a turbulent night, has a
large atmospheric heat flux such that Tveg ≈ 0. Finally,
nights exist, where these two states are interchanged, the
intermittent nights. These three types of nights are also
observed in field measurements (e.g. van de Wiel et al.
(2002a, 2003)). These three types of nights can be ex-
plained by noting the dynamical behaviour of Tveg (equa-
tion 12). For strong cooling, f (Ri) = 0 and the heating
term is negligible compared to the cooling term. For a
strong turbulent night, f (Ri) > 0 and either τ is large
or Ttop − Tg is small, leading to an atmospheric heat flux
to the vegetation capable of balancing the cooling term.
However, in between these two states the relative influ-
ence of both terms is important. The characteristic re-
sponse time τ of the vegetation to the deep soil temper-
ature (in which we absorbed the radiative term) and γ
the coupling coefficient of the atmospheric flux with the
vegetation , dominate the process. For very large τ the
response is slow for changes in the state of the atmo-
sphere and longer timescales for unsteady behaviour are
expected. In figure 3 we show these different types of
nights, for varying values of γ and τ .

Since in this study we are particularly interested in
the dynamical interaction of the vegetation layer and the
state of the atmosphere, we focus on the intermittent be-
haviour where the laminar and turbulent state are inter-
changed. In figures 4 and 5 we show the time series of
Tveg and the ground-flux

`

−τ−1 (Tveg − Tg)
´

and atmo-
spheric flux (γu∗T∗). The intermittent behaviour is aperi-



odic, both in amplitude and period, and tends to decay on
large time-scales. These trends are observed in most of
our simulations.

Direct after sunset, due to the ’cooling’ term, Tveg

exponentially approximates Tg. The system moves
into a stratified regime (L → 0) and the surface fluxes
`

u∗T∗ and u2
∗

´

vanish. The system is uncoupled, in the
sense that the heat- and momentum-transfer between
vegetation and atmosphere is negligible. Due to the sup-
pression of surface friction the atmospheric flow accel-
erates, where the relative velocity increase is larger near
the surface. At a critical point the further increase of U (h)
initiates the very rapid positive feed-back loop between L
and u∗ and a large turbulence burst occurs.

Indeed we can rewrite equations 23 and use that
u∗/T∗ = △U/△T = U (h) / (T (h) − Tveg) to derive af-
ter some rearrangement

u2
∗ =

»

ln

„

h

z0

«–−2

(κ△z)2
„

△U

△z

«2 „

1 −
Ri△
Ric

«2

(24)

where △z = h − z0 and

Ri△ =
g

T0

△T
△z

“

△U
△z

”2
(25)

and the critical point can be identified with the point when
Ri△ < Ric. The soil flux, governed by τ , always lags the
atmospheric flux. An increase in the total heat flux is the
result.

During the turbulence burst the system re-couples.
The direct consequences of this coupling are the increase
of both the surface heat flux and the surface friction ve-
locity. The increase of the surface heat flux (u∗T∗) has a
positive effect on Tveg and a negative effect on T (h). On
a somewhat longer timescale, the turbulent eddies en-
hance the mixing in the atmosphere, leading to an en-
trainment flux of warm air from higher regions (figures 6
and 7). This entrainment causes the rise in temperature
during the turbulence burst. The height averaged temper-
ature of the system decreases with every cycle.

The surface friction velocity is negatively coupled
to △U since the turbulence causes additional friction.
Hence △U decreases, Ri△ > Ric, and the turbulence
collapses. We return to the decoupled situation where the
cooling is dominated by Tg and Tveg decreases. We can
now summarize the influence of a single turbulence burst
on our dynamical system. First, the mixing of air in the
atmosphere leads to entrainment of warmer air down. As
a result the height of the laminarized layer grows in time
(see figures 8 and 9). Because the laminarized region is
larger after every single burst, the duration of a burst is
longer in subsequent bursts. The turbulence grows from
the surface towards the inversion and the total time of this
process is height dependent. Second, the heat flux from
the atmosphere to the vegetation layer leads to a gradual
decrease of the atmospheric temperature, (T (z)). The
temperature difference (△T ) becomes smaller with ev-
ery single burst. The stratification strength decreases and

turbulence persists longer, eventually leading to a contin-
uously weakly turbulent state.

In figure 10 we show a plot comparable to figure 2a.
The shaded regions are the ranges where intermittent be-
haviour is observed. The qualitative similarity is striking.
First, the general shape of the regions is similar. Second
we observe for the coupling parameter γ a critical mini-
mum value below which there is no unsteady behaviour.
In a quantitative sense the results are of course not di-
rectly comparable: In contrast to the bulk model we do
calculate the stability of solutions analytically. Rather,
in the 1D model we define a maximum integration time
(8 hours) and unsteady behaviour with a transient pe-
riod longer than this time is not represented in the graph
(e.g. in the bottom left figure of figure 3 one could argue
that the integration time is too short). Second, in the 1D
model the depth of the stable boundary layer increases.
This complicates the direct comparison of the ranges for
τ and γ between the 1D model and the bulk model.

The parameter τ is a measure for the response time
of vegetation to the deep ground temperature. A very
large value of τ corresponds to a low thermal diffusivity
of the ground. For grasslands τ ≈ O

`

102
´

∼ O
`

103
´

,
which would be comparable to our results. γ is the en-
ergetic coupling coefficient between vegetation and at-
mosphere. It depends on the ratios of the volumetric
heat capacities (β), divided by the height of the veg-
etation layer δ. The height of vegetation layer we as-
sume O

`

10−2
´

and for air the volumetric heat capac-
ity is (ρcp)a = O

`

103
´

we have (ρcp)v = O
`

104
´

for
β = O (10). Finally, Tg was defined as the mathematical
contraction between the deep ground temperature and
constant net radiative forcing.

Tg = T̃g −
Qτ

(ρcp)v δ
(26)

where T̃g is the real ground temperature and Q is the
long-wave radiation. If we take T̃g = 0 we have

Q =
(ρcp)v δTg

τ
=

O
`

10−2
´

O
`

104
´

O (10)

O (102)
= O (10)

(27)
which, given the above rough estimates, is not
unrealistically far from measured radiation values
`

Q ≈ 60 ∼ 100 W/m2
´

.

5. CONCLUSIONS AND DISCUSSION

Using two minimalistic approaches, a bulk model and a
1D model, the stable boundary layer is modelled. Both
models show unsteady behaviour for a wide range of pa-
rameters. Furthermore, the types of behaviour observed
in this conceptual study (turbulent, radiative and inter-
mittent) are comparable to observations in field exper-
iments. Within the adopted framework, the role of the
land-atmosphere coupling turned out be crucial.

Both models are obviously rather crude. They are
based on a rigid turbulence parameterization (equation 5,
where the presence of turbulence is a prescribed function



of Ri. In addition, the precise details of the heat transfer
between the vegetation layer and both atmosphere and
soil have been only conceptually accounted for. Also
the absence of Coriolis force in our model is unrealis-
tic. On the other hand, the results show that the Coriolis
force is not a prerequisite for intermittency; also the land-
atmosphere interaction could be responsible. We stress
that the mechanism studied in this paper does not rule
out any other mechanism for intermittency.
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Figure 3: A logarithmic view of the influence of the parameters τ and γ for Tg = −10C. The transition from radiative
nights to turbulent nights is seen from top left to right bottom. The unsteady intermittent behaviour is in between this
transition. The intermittent behaviour is aperiodic and has a decaying trend.



-10

-8

-6

-4

-2

 0

 0  1  2  3  4  5  6  7  8

T
 [C

]

Time [h]

Tv Tg T(h)

Figure 4: The figure shows the timeseries of Tveg, T (h) and Tg for γ = 10, τ = 150 and Tg = −10. The temperature Tveg

and T (h) have an aperiodic, oscillating behaviour. A change between fully laminar states (Tveg = Tg) is interchanged
with burst of turbulent states, where the coupling between the surface and the atmosphere drives the temperature
increase for Tveg.
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Figure 5: The time development of the ground flux
`

−τ−1 (Tveg − Tg)
´

, the atmospheric flux (αφ (z0)) and the sum of
these two fluxes, the total flux for γ = 10, τ = 150 and Tg = −10. The atmospheric flux is governed by the state of the
atmosphere, while the ground flux is governed by the difference between Tveg and Tg. The lag of the response of the
ground flux on changes in the atmospheric flux is governed by τ . This leads to the typical behaviour of the total flux
during a burst: at the occurence a positive flux while at the decay a negative flux.
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Figure 6: The time development of the temperature profiles for a single burst, burst 4 in figure 4. At z = h, see subfigure,
we observe the characteristic behaviour of the atmospheric temperature. At first a strong decrease due to the coupling
of surface and atmosphere, followed by an increase due to the entrainment of warm air. △z is the increase of the stable
boundary layer height due to the entrainment during a single burst.
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Figure 7: The time development of the K profiles for a single burst, burst 4 in figure 4. At the start of the burst the
system is completely laminar (K = 0 for all z), due to the strong stratification (f (Ri) = 0). During the turbulence burst
the stratification is overcome and turbulent viscosity arises. At the end of the turbulent burst the stable boundary layer
height is increased by △z.
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Figure 8: The time development of the temperature profiles, where each profile correspond to the midpoints between
bursts in figure 4. Every profile is normalised with its own minimum (≈ Tg). The growth of the stable boundary layer
height is observed in time due to the entrainment. We note the decrease of the stratification strength (∂T/∂z) in time.
The sharp bend at the inversion height is inherent of our system, because molecular mixing is absent in our description
(κ = 0).
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Figure 9: The time development of the turbulent diffusivity K profiles, where each profile correspond to the midpoints
between bursts in figure 4. Every profile is normalised with its own maximum. Both the increase of the boundary
layer height, due to entrainment, and the increase of (weak) turbulence close to the surface, due to the decrease of
stratification, is shown. It is important to compare the figure with figure 7, where we observe that on an absolute scale
the turbulene intensity is negligible.
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