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1 INTRODUCTION

Boundary layer flows are greatly complicated by
the presence of complex terrain which redirects
mean flow and alters the structure of turbulence.
Surface fluxes of heat and moisture provide addi-
tional forcing which induce secondary flows, or can
dominate flow dynamics in cases with weak mean
flows. Mesoscale models are increasingly being
used for numerical simulations of boundary layer
flows over complex terrain. These models typically
use a terrain-following coordinate transformation,
but these introduce numerical errors over steep ter-
rain. An alternative is to use an immersed bound-
ary method which alleviates errors associated with
the coordinate transformation by allowing the ter-
rain to be represented as a surface which arbitrarily
passes through a Cartesian grid.

This paper describes coupling atmospheric
physics models to an immersed boundary method
implemented in the Weather Research and Fore-
casting (WRF) model in previous work [Lundquist
et al., 2007]. When the immersed boundary method
is used, boundary conditions must be imposed on
the immersed surface for velocity and scalar surface
fluxes. Previous algorithms, such as those used
by Tseng and Ferziger [2003] and Balaras [2004],
impose no-slip boundary conditions on the veloc-
ity field at the immersed surface by adding a body
force to the Navier-Stokes equations. Flux bound-
ary conditions for the advection-diffusion equation
have not been adequately addressed. A new al-
gorithm is developed here which allows scalar sur-
face fluxes to be imposed on the flow solution at
an immersed boundary. With this extension of the
immersed boundary method, land-surface models
can be coupled to the immersed boundary to pro-
vide realistic surface forcing. Validation is provided
in the context of idealized valley simulations with
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both specified and parameterized surface fluxes us-
ing the WRF code. Applicability to real terrain is
illustrated with a fully coupled two-dimensional sim-
ulation of the Owens Valley in California.

2 NUMERICAL METHODOLOGY

The solver for the WRF model is described in this
section. Details are included for the governing
equations, spatial and temporal discretization, and
boundary conditions. New boundary condition op-
tions have been added to the existing WRF options,
and include a no-slip velocity condition and the use
of flux boundary conditions provided by physics pa-
rameterizations for all of the large-eddy closure op-
tions. Following this, the modifications needed to
include the effects of the immersed boundary are
discussed.

2.1 THE WEATHER RESEARCH AND FORE-
CASTING MODEL

WRF is an open source community model that is
designed for a variety of purposes ranging from op-
erational weather forecasting to idealized geophysi-
cal flow simulations. Currently there are two dynam-
ics solvers that will operate within the WRF frame-
work. The core known as Advanced Research WRF
(ARW) was used for these simulations, and is the
focus of the following discussion.

ARW is a conservative finite-difference model
that solves the non-hydrostatic compressible
Navier-Stokes equations given by the set of
equations labeled 1.

∂t
~V + ~V · ∇~V + α∇p + ~g = ~F (1a)

∂tρ +∇ · (ρ~V ) = 0 (1b)

Here α is the specific volume, and ~F includes Cori-
olis effects and any additional forcing terms such
as turbulent mixing or model physics. Additionally,
WRF uses a terrain-following hydrostatic pressure
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coordinate allowing pressure to replace height as
an independent variable. Laprise [1992] developed
a transformation of the fully-compressible non-
hydrostatic Euler equations into a terrain-following
isobaric coordinate, forming the foundation of the
governing equations found in WRF.

The vertical pressure or mass coordinate η is
given in terms of the dry hydrostatic pressure Phs,
and defined such that it is zero at the top of the
model, and unity at the surface of the terrain. The
mass of the fluid in the column per unit area is then
denoted by µ. This yields the coordinate defini-
tion η = Phs−Phs top

µ , where µ(x, y) = Phs surface −
Phs top. Once the transformation to this coordinate
system is applied, the strong conservation form of
the Navier-Stokes equations takes the form given
in 2. For reference, these equations are also given
in the NCAR technical note on WRF [Skamarock
et al., 2005, Section 2.2], where the notation differs
slightly.

∂tµ +∇ · (µ~V ) + ∂η(µη̇) = 0 (2a)

∂t(µ~V ) +∇ · (µ~V ; ~V ) + ∂η(µη̇~V )

−∇(p∂ηφ) + ∂η(p∇φ) = ~F
(2b)

∂t(µw) +∇ · (µ~V w) + ∂η(µη̇w)
−g (∂ηp− µ) = F

(2c)

In the set of equations above (2) the velocity vec-
tor ~V includes the horizontal velocities, and Del op-
erates in the horizontal dimensions. The variable φ
is the geopotential, and is defined as φ = gz. Ad-
ditionally the dot notation in η̇ denotes differentia-
tion with respect to time, and the semicolon notation
represents the dyadic product.

In addition to the conservation of mass and mo-
mentum, an equation for potential temperature is
solved. Potential temperature θ is a conserved
quantity when the atmosphere is assumed to be
adiabatic, so the governing equation takes the form
used for a conserved scalar (3). The scalar equa-
tion is also applied to variables representing mois-
ture (such as water vapor qv and ice qi) and passive
scalars.

∂t(µϕ) +∇ · (µ~V ϕ) + ∂η(µη̇ϕ) = Fϕ (3)

Pressure is then diagnosed from the equation of
state below, where γdry is the ratio of heat capaci-
ties of dry air Cp/Cv, po is the surface pressure, and

Rdry is the universal gas constant:

p = po

(
Rdryθ

poαdry

)γdry

(4)

WRF is spatially discretized using an Arakawa-
C staggered grid. Uniform grid spacing is used in
the horizontal directions, and the terrain-following
grid may be stretched in the vertical direction. A
time split integration scheme is used to deal with the
full range of frequencies admitted by the compress-
ible Navier-Stokes equations. In this scheme a third
order explicit Runge-Kutta method is used for time
advancement of meterologically significant low fre-
quency physical modes, while a smaller time step is
needed to account for the higher frequency modes
such as acoustic waves. Horizontally propagat-
ing acoustic modes are integrated using an explicit
forward-backward scheme, and vertically propagat-
ing acoustic modes and buoyancy oscillations are
treated implicitly.

Several options for lateral boundary conditions
are available for use in WRF. These are detailed in
Skamarock et al. [2005] and include periodic, open
or radiative, symmetric, and specified. In the ver-
tical direction, the top boundary condition is spec-
ified to be isobaric, and the Cartesian vertical ve-
locity w is set to zero. Additionally, gravity waves
can be absorbed with a diffusive or Rayleigh damp-
ing layer. At the bottom boundary the contravariant
coordinate velocity is set to zero, and a kinematic
boundary condition is used for the Cartesian verti-
cal velocity. The set of equations given by 5a and
5b create a free slip bottom boundary condition.

η̇surf = 0 (5a)

wsurf = ~V · ∇h (5b)

In equation 5b, h is a function specifying the ter-
rain height. The horizontal velocities used in this
equation are extrapolated to the surface using a
quadratic Lagrange polynomial. The shear stress
at the boundary is implicitly set to zero, unless the
effects of friction are taken into account by using
log-law similarity theory. At the bottom boundary
horizontal gradients of scalars are zero. The verti-
cal gradients are zero unless forcing is provided by
a parameterization.

∇ϕ = 0 (6a)
∂ηϕ = f (6b)

A no-slip bottom boundary condition has been
added to WRF as an additional option beyond the
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standard boundary conditions available in the code.
In order to add this option, several modifications
were made to the original WRF boundary condi-
tions. These changes are detailed in Lundquist
et al. [2007]. When the no-slip option is used, the
first velocity boundary condition (5a) is still appro-
priate, as it sets the contravariant velocity of the
bottom coordinate to zero. This ensures that the
bottom coordinate follows the terrain, and does not
change position in time. The kinematic boundary
condition given by 5b is no longer valid, and is re-
placed with the requirement that the Cartesian ver-
tical velocity w = 0 on the boundary. The need to
extrapolate the horizontal velocities to the surface is
eliminated, therefore no approximations are made
in our formulation of the no-slip boundary condition.
With these changes, the no-slip boundary condition
is satisfied for the advective fluxes in the continuity
and momentum equations. If turbulent mixing is in-
cluded in the model, then additional boundary con-
ditions must be imposed on the diffusive flux terms
in the momentum equation in order to achieve a no-
slip condition. WRF employs eddy viscosity type
turbulence models so that the stress tensor is given
by 7.

τij = −µνtDij (7)

The variable µ is the column mass per unit area, νt

is the turbulent eddy viscosity, and Dij is twice the
strain rate or deformation tensor. The calculation
of the deformation tensor is modified to include the
effects of the no slip boundary condition. In the na-
tive WRF boundary condition deformation is zero on
the surface. For the no-slip boundary condition, the
surface values are calculated, and the new values
of the deformation tensor are used for calculating
the turbulent stresses.

2.2 FORCING AND RECONSTRUCTION AT THE
IMMERSED BOUNDARY

Immersed boundary method (IBM) functionality has
been added to the Weather Research and Fore-
casting model through modification to the source
code and the addition of a FORTRAN module. The
implementation of the immersed boundary method
for the no-slip boundary condition was described
in previous work [Lundquist et al., 2007], where
forcing was added to the momentum equation.
The method used for imposing scalar fluxes in the
advection-diffusion equation is described here.

IBM is a technique used to represent the effects
of solid boundaries on a non-conforming structured
grid. The effects of the external forcing of the fluid

by the boundaries are represented by the addition
of a force term FB in the advection-diffusion equa-
tion for scalars (8). The forcing term takes a non-
zero value at computational nodes in the vicinity
of the immersed boundary, but has no effect away
from the boundaries.

∂tϕ + ~V · ∇ϕ = νt∇2ϕ + Fϕ + FB (8)

Treatment of the forcing term has varied among
researchers since IBM was introduced by Peskin
in 1972. The method used in this work falls into a
category commonly referred to as discrete or direct
forcing which first appeared in Mohd-Yusof [1997],
and was subsequently used by Fadlun et al. [2000],
Iaccarino and Verzicco [2003], and others.

In the case that the boundary is coincident with
computational nodes, it is clear that the boundary
condition can be imposed by assigning it at the co-
incident node. However when the boundary passes
through the grid in an arbitrary manner, the discrete
grid points are not generally aligned with the bound-
ary. In particular this is the case on staggered grids,
like the one used in WRF. An interpolation method
must be used to determine the forcing needed at
actual computational nodes; this procedure is often
called boundary reconstruction.

The first step in boundary reconstruction is to
specify the terrain independently of the grid. For
the implementation into the WRF model we have
allowed specification of terrain height at twice the
resolution of the grid. Specifying the terrain eleva-
tion in the x − y plane is consistent with the typical
format of digital elevation data.

The next step is the determination of cells that are
cut by the immersed boundary. With a staggered
grid, cut cells must be determined for each flow vari-
able that will have a boundary condition imposed.
Each node for each variable (u,v,w,θ,qv,etc.) is
marked as interior (solid nodes) or exterior (fluid
nodes) to the terrain to define the cut cells. Flow
variables such as velocity can be reconstructed at
fluid nodes as in Fadlun et al. [2000], or at solid
nodes as in Mohd-Yusof [1997]. In this work the
velocity is reconstructed at solid nodes. This recon-
struction technique is called a ghost cell method,
and has been used for incompressible flows by Ma-
jumdar et al. [2001], Tseng and Ferziger [2003], and
others. Ghost points (depicted in Figure 1) are iden-
tified as the layer of nodes belonging to cut cells that
are within the interior or solid region of the domain.

The value of the variable at the ghost cell which
will enforce the boundary condition (9) must be
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Figure 1: Illustration of the boundary reconstruc-
tion method developed for use in WRF. Black ghost
points and red image points are labeled with a ’G’
and ’I’ respectively. Open magenta circles repre-
sent boundary points, and closed blue circles are
the nearest neighbors of the image point. The inter-
polation region bounded by the neighbors is shaded
in grey.

computed:
∂ϕ

∂~n
= ~n · ∇ϕ (9)

Several different interpolation methods have been
employed by researchers for the purpose of making
this calculation, ranging from linear interpolation to
inverse distance weighting schemes [Iaccarino and
Verzicco, 2003]. For the scalar equations used in
WRF, we have developed a unique bilinear recon-
struction scheme for two-dimensional terrain.

The bilinear interpolation method used in this
work is illustrated in Figure 1, and the equation for
a generic variable ϕ is given by 10.

ϕ = c1 + c2x + c3z + c4xz (10)

When the gradient of the interpolation function is
substituted into the boundary condition, equation 11
results.

∂ϕ

∂~n
= c2nx + c3nz + c4(nzx + nxz) (11)

The location of the ghost point is reflected across
the boundary in the surface normal direction, and
this is labeled an image point. The four nearest
neighbors to the image point are determined, and
can be computational nodes or boundary points.
The weighting coefficients ~c in equations 10 and 11
are determined by solving a system of equations
(12) for each ghost point.

~c = V−1~φ (12)

The Vandermonde matrix V contains the locations
of the nearest neighbors as they are used in equa-
tions 10 and 11. Examples of the choices made
are shown in Figure 1, but this illustration is not
exhaustive. The (x, z) location of the image point
is used in equation (10) to determine ϕI . When
a Neumann boundary condition is used, the ghost
point and image point have the relationship ϕG =
ϕI−GI(∂ϕ/∂~n). As a last step, the value calculated
from this scheme is assigned to the ghost node.

It should be noted that the hydrostatic pressure
coordinate in WRF is not time invariant. There-
fore, this procedure, starting with the determina-
tion of fluid and solid nodes and ending with im-
posing the boundary condition by assigning values
at the ghost point, must be repeated for each it-
eration of the solver. The computational penalty
for repeating these steps has not been prohibitive,
however, the authors are investigating ways to im-
prove efficiency. The simulations presented in sec-
tion 4 are a direct comparison between WRF with
terrain-following coordinates, and WRF with the im-
mersed boundary method. On average, the simula-
tions using IBM required 30% more computational
time when compared to the non-IBM solution. The
advantage of IBM, as demonstrated in section 5, is
that it can handle highly complex terrain. A quanti-
tative comparison of resources could not be made
for the cases where WRF is unable to handle the
terrain with its original terrain-following grid. Addi-
tionally, although the WRF grid is structured, it is
not Cartesian. We found that special care must be
exercised in determining the interpolation neighbors
by accounting for the horizontal gradients in the ver-
tical coordinate.

3 INCLUSION OF ATMOSPHERIC PARAME-
TERIZATIONS

The WRF model (version 2.2) is currently designed
to characterize vertical mixing with a planetary
boundary layer (PBL) scheme. Many of the at-
mospherics physics schemes are designed to work
with specific PBL schemes. For instance, the MM5
surface layer scheme is coupled to the Yonsei Uni-
versity (YSU) PBL scheme, and the Eta surface
layer scheme is coupled to the Mellor-Yamada-
Janjic (MYJ) PBL scheme. More information on
these types of WRF details can be found in the code
documentation (Skamarock et al. [2005] and Wang
et al. [2008]).

WRF also allows for separate closure schemes
to perform large-eddy simulations (LES), which
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are becoming increasingly attractive for simulations
over complex terrain. Currently the LES type clo-
sures are not coupled to the atmospheric physics
routines. As our interest lies in performing LES over
highly complex terrain using the IBM, the WRF code
was modified to include an interface between the
physics parameterizations and the LES closures.
Additionally, code was written to allow idealized
cases to be run with surface physics. Finally, be-
cause the surface physics interact with the lowest
model level, it was necessary to couple these rou-
tines to the immersed boundary when IBM-WRF is
being used. A description of this last modification
follows. The set of schemes that have been coupled
to the immersed boundary are the Rapid Radiative
Transfer Model (RRTM) for longwave radiation, the
MM5 (Dudhia) model for shortwave radiation, the
MM5 surface layer scheme, and the NOAH land-
surface model.

3.1 RADIATION MODELS

The radiation schemes currently used in WRF are
column models, where each column is treated in-
dependently. The terrain is treated as if it is a hor-
izontal plane at each column. This is generally ac-
ceptable when the horizontal grid spacing is much
larger than the vertical grid spacing, but becomes
less desirable at smaller aspect ratios. For this
reason, these radiation models are acceptable for
some complex terrain, but not others. IBM is used
in this work for complex mountainous terrain, with
the horizontal resolution chosen to be twice the ver-
tical resolution. IBM can be used for a variety of
complex terrains, such as urban terrain [Lundquist
et al., 2007], but the radiation models would have
limited applicability at that resolution.

The RRTM model uses tables to represent long-
wave radiation due to gasses in the air and optical
cloud depth. Upward longwave radiation is depen-
dent upon surface emissivity. Therefore, in order
to couple this model with the immersed boundary
method the vertical integration limits must be mod-
ified to exclude any portion of the atmosphere be-
low the terrain. This is achieved by modifying the
portion of the column passed to the integration rou-
tine. Additionally, variables such as temperature,
pressure, and grid spacing must be modified in the
vicinity of the immersed boundary by interpolating
these values onto the surface. Finally, surface val-
ues such as skin temperature are needed to calcu-
late emissivity. These must also be interpolated to
the immersed boundary.

The MM5 (Dudhia) shortwave model works in a

similar fashion to the RRTM model. It computes so-
lar flux with a downward integration, and accounts
for scattering, water vapor absorption, and cloud
albedo and absorption with look-up tables. Cou-
pling to the immersed boundary was again achieved
by modifying the vertical integration limits, and us-
ing interpolation at the terrain surface.

3.2 SURFACE PHYSICS

Much of the surface physics in WRF is based on
similarity theory. These calculations take vertical
gradients into account, with the main goal of pro-
viding surface fluxes to the vertical diffusion terms
as discussed in section 2.1. In cases where the
immersed boundary method is used, the fluxes cal-
culated here are applied in a direction normal to the
boundary. Imposing the gradient in the normal di-
rection is desirable when the immersed boundary
method is used and the terrain slopes are large.
The Neumann condition in the normal direction is
correct when the flux is specified using a prescribed
function, but is less desirable when the flux is calcu-
lated by the surface physics routines because these
routines use the vertical instead of the normal di-
rection. It is assumed that the atmospheric physics
parameterizations included in WRF are not appli-
cable at a scale where this discrepancy would be-
come unacceptable. These parameterizations are
applicable to mountainous terrain, and it is shown in
section 4 that the use of the normal boundary con-
dition does not create a significant difference in the
solution. Thus, while it is possible to impose a ver-
tical gradient with the immersed boundary method,
we have chosen to impose a Neumann condition
in the normal direction retaining the more rigorous
mathematical boundary condition.

The MM5 surface layer is based on Monin-
Obukhov similarity theory, and calculates exchange
coefficients of heat, moisture, and momentum
based on a calculated stability regime. This regime
is determined by the bulk Richardson number, de-
fined by 13, where g is the gravitational constant,
Z is a reference height above the terrain, Zsurf is
the surface level, θv is virtual potential temperature,
and V is the horizontal wind speed which has been
modified by a vertical convection velocity.

Rib =
g(θv(Z)− θv(Zsurf ))(Z − Zsurf )

θv(Z)V (Z)2
(13)

In the WRF model, the reference height Z is the
height of the first grid point above the terrain. When
using this equation with the immersed boundary
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method, Z is now one point above the ghost point.
Therefore, the velocities and temperature, as well
as those quantities needed for the conversion to
virtual temperature must be modified, along with
the reference height. Additionally the surface val-
ues must be replaced with values on the immersed
boundary. The Monin-Obukhov length scale is then
calculated based on the stability class. Next, the
2 m and 10 m reference height data is calculated.
Finally, the exchange coefficients are calculated for
heat and moisture. Again, the values used in these
calculations are modified for the immersed bound-
ary following the example given above for the bulk
Richardson number. It is important to note that sur-
face momentum fluxes are not based on Monin-
Obukhov theory when the no-slip boundary condi-
tion is used, as these conditions are incompatible.
This is true of both native WRF, and IBM-WRF.

The NOAH land-surface model is a four layer soil
model. It uses radiative and atmospheric forcing
from the radiation and surface layer schemes, as
well as land-surface properties to provide heat and
moisture fluxes. These fluxes serve as the bottom
boundary conditions for potential temperature and
water vapor. This model also calculates a water
budget for the four model layers, including physi-
cal effects like evapotranspiration and runoff. Many
of the quantities used by the land-surface model
have already been modified to include the effects
of the immersed boundary by the models discussed
above. The NOAH model also makes use of simi-
larity theory. As before, the reference height is set
to be one grid point above the immersed boundary
or ghost point, and the variables used in the calcu-
lation are modified accordingly.

4 IDEALIZED VALLEY SIMULATIONS

In previous work [Lundquist et al., 2007] it was
shown that our IBM implementation is able to repro-
duce results from numerical simulations using the
native terrain-following coordinate in WRF. In these
simulations, a no-slip boundary condition was im-
posed on the velocity at the terrain surface and a
zero gradient boundary condition was used for po-
tential temperature. These two boundary conditions
are adequate for studying a variety of flows, and are
commonly the only boundary conditions available
in a traditional CFD code. For atmospheric flows
it is necessary to represent non-zero fluxes at the
surface, such as those of heat and moisture. This
section examines the non-zero gradient boundary
condition at the immersed terrain in the context of

thermally induced slope flows in an idealized valley.
The idealized valley terrain and initialization are

identical to that used in the valley winds model
intercomparison study [Schmidli et al., 2008], al-
though the resolution used in the following simu-
lations is finer. This case is chosen because the
terrain slopes are gentle enough that a direct com-
parison can be made between WRF using terrain-
following coordinates and IBM-WRF. Furthermore,
this case is quite challenging for the immersed
boundary method. The flow is induced by the ap-
proximate boundary conditions at the surface, in-
stead of being induced by a large scale pressure
gradient or mean flow.

Both uncoupled and coupled cases are consid-
ered. In the uncoupled cases, presented in sec-
tion 4.1, the surface heating is specified as a func-
tion of time. There are no surface or land attributes
such as vegetation or soil type. This allows verifi-
cation of the surface flux condition at the immersed
boundary without the added complexity of the land-
surface model. In the coupled cases, presented in
section 4.2, the surface fluxes are prescribed by
atmospheric parameterizations, which have been
modified to recognize the immersed boundary as
the terrain surface. When the immersed boundary
method is coupled with the land-surface model, it
not only provides boundary conditions for the at-
mospheric flow, but it also interacts with the land-
surface model.

4.1 SPECIFIED SURFACE FORCING

The test flow case is thermally induced slope flow
in a two-dimensional idealized valley. The valley
terrain is defined by equation 14, where the peak
height is hp = 1.5 km, the valley floor half-width is
Vx = 0.5 km, and the hill half-width is Sx = 9 km.

ht = hphx (14)

hx(x) =



0
if |x | ≤ Vx

0.5− 0.5 cos
(
π |x|−Vx

Sx

)
if Vx < |x | < Vx + Sx

1
if Vx + Sx ≤ |x | ≤ Vx + Sx + Px

0.5 + 0.5 cos
(
π |x|−(Vx+Sx+Px)

Sx

)
if Vx + Sx + P + x < |x | < Vx + 2Sx + Px

0
if |x | ≥ Vx + 2Sx + Px
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The domain is initialized with a quiescent sound-
ing that is moist and stably stratified. The sound-
ing prescribes a constant 40% relative humidity and
the potential temperature is given by equation 15,
where θs = 280 K, Γ = 3200 K m-1, ∆θ = 5 K, and β
= 0.002 m-1.

θ(z) = θs + Γz + ∆θ [1− exp(−βz)] (15)

The total domain size is (X, Y, Z) = (60 km, 0.6
km, 10 km) for the WRF simulation with terrain-
following coordinates. When IBM-WRF is used, the
bottom of the domain is lowered to 200 m below
the zero level, so that the domain size is (X, Y, Z)
= (60 km, 0.6 km, 10.2 km). This allows a min-
imum of two grid points below the immersed ter-
rain. In each simulation the horizontal grid spac-
ing is ∆X = ∆Y = 200 m. For the WRF simula-
tion the number of grid points used in each direc-
tion is (nx, ny, nz) = (301,3,60), and for IBM-WRF it
is (nx, ny, nz) = (301,3,62). The vertical grid is not
stretched in the pressure coordinate η, however, it
is naturally stretched towards the surface in a phys-
ical z coordinate. For the terrain-following coordi-
nate, the minimum vertical grid spacing occurs at
the mountain peaks and is ∆Zmin = 95.6 m. At the
domain top the maximum is ∆Zmax = 307.8 m. For
the IBM-WRF grid with 62 vertical levels, the mini-
mum vertical grid spacing occurs at the bottom level
of the domain, which is below the terrain, and is
∆Zmin = 101.9 m, At the domain top the maximum
is ∆Zmax = 307.4 m.

Periodic boundary conditions are used at the lat-
eral boundaries. The top boundary condition is iso-
baric with no vertical velocity. A diffusive damp-
ing layer 3.8 km thick is used at the top of the do-
main to prevent the reflection of waves. A no-slip
boundary condition is used at the terrain surface,
and is achieved through the no-slip modifications in
the terrain-following WRF or with IBM. Both meth-
ods were previously described in section 2. In the
uncoupled cases a Neumann boundary condition
specified by equation 16 is applied to potential tem-
perature at the terrain.

Q(t) = Qmax sin(ωt) (16)

As shown in figure 2 the maximum sensible heat
flux is Qmax = 200 W m-2. With a period of ω = 2π/24
hrs the function represents a daytime heating cycle.
Total integration time for the simulation is 12 hours,
starting at 6 am and ending at 6 pm (6:00 to 18:00
UTC), with data collected at 15 minute intervals.

A constant eddy viscosity is used in the turbu-
lent diffusion terms. Yasuda [1988] noted that day-

Figure 2: Specified sensible heat flux representing
a daytime diurnal cycle.

time eddy diffusivities typically ranged from 10 to
100 m2/s. Two sets of results are presented here,
the first with an eddy viscosity of 30 m2/s and the
second with 60 m2/s. These values were chosen
to achieve distinct flow properties, as explicitly re-
solved convective vertical mixing occurs with 30
m2/s, but not with 60 m2/s. Figure 3 shows ve-
locity vectors at 15:00 for simulations with the IBM
and WRF coordinates with νt = 30 m2/s. Convec-
tive cells are well developed at 15:00, and were first
visible at 11:45. They have virtually disappeared by
the end of the simulation at 18:00.

Figure 4 shows profiles of potential temperature
at the valley center as it evolves in time. When
comparing the IBM-WRF solution to the WRF so-
lution, IBM under predicts the surface tempera-
ture from 6:30 to 8:15, when the two solutions be-
come equal again. At 9:00 the IBM surface tem-
perature becomes higher than in the WRF solution,
and remains so for the remainder of the simula-
tion. Slightly unstable conditions are evident near
the surface in the profiles at times of 9:00, 12:00,
and 15:00. As these plots are instantaneous, and
the location of convective cells will vary in each
model, exact agreement is not expected. Despite
this fact, very good agreement is achieved in the
development of the mixed layer between the WRF
and IBM-WRF simulations.

When the eddy diffusivity is increased to 60 m2/s
the mixing is strong enough to maintain a neu-
tral stability profile during surface heating, therefore
avoiding the formation of thermal convection cells.
Figure 5 depicts velocity vectors at 15:00. A clear
circulation pattern exists of upslope flow within the
valley; the upslope flows converge at the peaks and
create a circulation pattern with subsidence at the
valley center.

Figure 6 again shows instantaneous potential
temperature at the valley center. The evolution of
the profiles for the IBM and WRF simulations com-
pare well. Similarly to the previous results, temper-
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Figure 3: Quiver plots for thermally induced slope flow using IBM-WRF and native WRF. Flow is shown at
15:00 with a constant eddy viscosity of 30 [m2/s] Every second grid point is shown.

Figure 4: Profiles of potential temperature [K] at the
valley center for times 6:00, 9:00, 12:00, 15:00, and
18:00. With an eddy viscosity of 30 [m2/s] the unsta-
ble stratification near the surface creates convective
cells.

ature at the surface is slightly less in the IBM sim-
ulation than with terrain-following coordinates from
6:30 to 9:30. The surface temperature becomes
slightly larger in the IBM simulation at 11:00, and re-
mains larger for the duration of the integration. The
overall agreement is excellent.

Although the temperature profiles are equivalent,
the velocity profiles and boundary conditions must
also be verified. This interaction is best seen in the
laminar flow produced with the higher eddy viscos-
ity, and the remainder of this section will focus on
analysis of this simulation. Figure 7 includes pro-
files of u and w velocity at 15:00. The profiles match
very well, and show that the no-slip boundary condi-
tion at the terrain is achieved. The largest difference
in the profiles is observed in the magnitude of the u
velocity in the upslope flows. In each of the u pro-
files the IBM-WRF solution predicts slightly higher
velocities in this region. Obvious differences are not
present in the profiles of w velocity.

To further analyze the differences between the
IBM-WRF and WRF solutions, both time and do-
main averaged differences are calculated. For this
calculation the IBM-WRF solution is interpolated
onto the terrain-following WRF grid using a linear
interpolation method. In the mass based coordinate
system new interpolation constants must be calcu-
lated at each time. Once the two solutions are on
a common grid they may be compared directly, al-
though the error introduced by the interpolation is
unknown. Spatial variations in the two solutions are
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Figure 5: Quiver plots for thermally induced slope flow using IBM-WRF and native WRF. Flow is shown at
15:00 with a constant eddy viscosity of 60 [m2/s] Every second grid point is shown.

Figure 6: Profiles of potential temperature [K] at the
valley center for times 6:00, 9:00, 12:00, 15:00 and
18:00. With an eddy viscosity of 60 [m2/s] the sur-
face layer is sufficiently mixed so that convective
cells do not form.

calculated for a given variable φ with equation 17a,
and temporal variations are calculated with equa-
tion 17b. It is assumed that the grid movement dur-
ing the simulation is small, so that it may be ne-
glected in the time averaging of equation 17a. Once
the spatial difference is calculated, it is plotted on
the WRF grid as it is at initialization.

∆φ(x, η) = φIBM (x, η, t)− φWRF (x, η, t)
t

(17a)

∆φ(t) = |φIBM (x, η, t)− φWRF (x, η, t)|
x,η

(17b)

The results of the time averaged spatial differ-
ences are presented in figure 8, which confirms the
differences seen in the instantaneous plots. The
first figure shows time averaged difference in θ.
There is a maximum time averaged difference of
∆θmax = 0.0404 K, and a minimum of ∆θmin = -
0.0333 K between the two simulations. The IBM
simulation predicts a higher temperature at the sur-
face with the maximum difference occurring on the
valley slopes, and a slightly cooler atmosphere aloft
in the valley center. It is unknown what proportion
of this difference is attributed to the difference in
the boundary conditions as described in section 2,
and what is generated by errors in the immersed
boundary approximation. These differences in θ
contribute to the differences in velocity shown in
the next two figures. The velocity differences are
∆Umax = ∆Umin = ±0.1788 m/s in the u velocity
component, and in w they are ∆Wmax = 0.0507
m/s and ∆Wmin = -0.0719 m/s. In u the largest
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Figure 7: Profiles of u and w velocity for IBM-WRF (show as a solid red line) and WRF with terrain-following
coordinates (shown as a black dashed line) at 15:00.
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Figure 8: Time averaged spatial differences be-
tween independent variables. Potential temperature
is plotted first with u and w plotted second and third,
respectively. Differences are absolute with units of
K for θ, and m/s for velocities.

differences are seen on the valley slopes, specifi-
cally inside of the valley. Additionally, differences
are seen at the valley center and peaks in w. These
differences are relatively small considering that the
simulations have different grids and slightly different
boundary conditions.

Differences between the simulations can also be
viewed as a function of time, as in figure 9. It can be
seen here that the potential temperature fields are
different at initialization. This is because at initializa-
tion the boundary condition is enforced in the IBM
simulation, but not in the WRF simulation where the
terrain simply intersects the prescribed sounding.
Excellent agreement is seen in the potential tem-
perature field, and the differences are smaller at
the end of the simulation than they are at initializa-
tion. The velocity fields are initialized as quiescent,
therefore they are identical at initialization. The dif-
ferences in velocity peak during the first thirty min-
utes of the simulation, and then rapidly decrease. A
stair step type appearance is observed in the first
thirty minutes of the IBM simulation, as the flow ad-
justs to the immersed boundary. As flow patterns
develop, the stepped appearance smooths out and
eventually disappears. This peak indicates that dif-

Figure 9: Domain averaged differences as a func-
tion of time. Potential temperature is solid, u is
dashed, and w is dotted.

ferences could be reduced by adding spin-up time
to the simulation. It is important to note that the
differences do not grow in time, and in fact trend
downwards as simulation time increases.

4.2 COUPLED SURFACE FORCING

In this section the simulations are fully coupled,
meaning that the surface fluxes are calculated by
the radiation and land-surface schemes. The do-
main set-up is as described in section 4.1, however,
in this case soil properties are also initialized. The
valley is located at 36◦ North, 0◦ East. The sim-
ulation date is March 21, 2007, and the period is
again from 6:00 to 18:00 UTC. Topographic shad-
ing in not included in the version of WRF used here
(WRFV2.2). The soil is initialized with uniform prop-
erties. The soil type is sandy loam, the vegetation
type is savannah, and the vegetation fraction is 0.1.
The soil temperature is initialized to be in equilib-
rium with the atmospheric temperature at the sur-
face. Soil moisture is set to a constant volumetric
water content of 0.0868 m3 m−3. Four vertical lev-
els are used in the soil model with depths of 0.1,
0.3, 0.6, and 1 m for a total model depth of 2 m.
The Rapid Radiative Transfer Model (RRTM) cal-
culates longwave radiation, and the MM5 (Dudhia)
scheme is used to model shortwave radiation. The
MM5 surface layer model, which is based on Monin-
Obukhov similarity theory, is used along with the
NOAH land-surface model. Documentation of these
schemes can be found in Skamarock et al. [2005]
and the references within. As described in section
3 these schemes have been modified so that they
are coupled to the immersed boundary.
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Figure 10: Domain-averaged downward longwave
and shortwave radiation for the coupled simula-
tions.

As in section 4.1 two sets of simulations were
preformed with different turbulent viscosities. The
same flow patterns emerged, where convective
cells formed at the surface for simulations with νt

= 30 m2/s and did not for those with νt = 60 m2/s.
It was previously shown that the no-slip and flux
boundary conditions are accurate at the immersed
boundary, and that they interact properly to produce
the correct flows. The focus of this section is to
examine the calculation of these fluxes, as well as
the inputs needed for these calculations at the im-
mersed boundary.

Longwave and shortwave radiation are inputs to
the surface physics schemes. The evolution of do-
main averaged radiation is plotted in figure 10. Do-
main averaged longwave radiation varies slightly
between the two simulations with different eddy vis-
cosities. The WRF and IBM-WRF cases match al-
most exactly at the first data point (6:15), but di-
verge slightly during the simulation. At the end of
the simulation (18:00) the difference in longwave ra-
diation is 1.01 W m-2 for the lower eddy viscosity,
and 1.12 W m-2 for the higher eddy viscosity. When
normalized by the WRF solution, these are differ-
ences of 0.391% and 0.428% respectively. The dif-
ferences are even smaller for shortwave radiation,
where nearly perfect results are achieved.

The spatial variations in longwave and shortwave
radiation are documented in figure 11, where they
are shown at noon (12:00). There is a difference of
about 56 W m-2 in longwave radiation from the val-
ley floor to peak. In comparison, at noon there is a
maximum difference of 2.0 W m-2 in the two simu-
lations at the lower viscosity, and 1.2 W m-2 at the
higher viscosity. This shows that any error created
by coupling the radiation scheme to the immersed
boundary is negligible in comparison to variations

Figure 11: Instantaneous spatial variation in down-
ward longwave and shortwave radiation at 12:00.

due to terrain height. Shortwave radiation varies by
about 32 W m-2 from valley peak to trough. The
maximum differences seen here are 0.65 and 0.58
W m-2.

The same types of plots are included for heat and
moisture fluxes at the surface, as calculated by the
land-surface model. Domain averaged heat and
moisture fluxes are plotted in figure 12. It can be
seen that heat flux diverges more in the νt = 30 m2/s
simulations than in the νt = 60 m2/s simulations. In
the simulations with lower eddy viscosity, the peak
domain averaged heat flux occurs at 12:45. In the
IBM-WRF simulation this peak is 227.9 W m-2, and
in the WRF simulation it is 239.3 W m-2. The maxi-
mum difference between the two simulations occurs
earlier in the day at 12:15, and is a difference of
12.25 W m-2. When normalized by the WRF so-
lution, this is a difference of 5.4%. In the simu-
lations with a higher eddy viscosity the maximum
difference between the solutions occurs later in the
day at 15:15. The difference at that time is 2.95 W
m-2 or 2.2%.

Differences in moisture fluxes are much smaller
than those seen in heat fluxes. The maximum mean
difference in the νt = 30 m2/s simulations occurs at
13:30, and is 4.27e-8 kg m-2 s-1 in magnitude, which
is 0.68% of the WRF value. The maximum mean
difference in the νt = 60 m2/s simulations occurs at
9:45, and is 3.18e-8 kg m-2 s-1 in magnitude, which
is 0.74% of the WRF value.

Figure 13 shows the spatial variation in the heat
and moisture fluxes at three different times (9:00,
12:00, 15:00) for the simulation with higher eddy
viscosity. It is obvious that the spatial variation in
the IBM-WRF simulation is much higher than in the
terrain-following WRF simulation, although the val-
ues are similar when averaged. The exact cause of
this variation, along with methods for reducing it are
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Figure 12: Domain averaged upward heat and
moisture flux for the coupled simulations.

Figure 13: Spatial variation in upward heat and
moisture flux at 9:00, 12:00, and 15:00.

under investigation.

Volumetric soil moisture is calculated by the
land-surface model. Land-surface models can be
used independently of atmospheric simulations, but
when coupled the top boundary conditions of the
land-surface model are set with inputs from the at-
mosphere. When IBM is used, it provides boundary
conditions to each model (WRF and NOAH) simul-
taneously. A comparison of soil moisture is shown
in Figure 14 for the IBM-WRF and WRF simula-
tions with a 60 m2/s eddy viscosity. At initialization
the soil moisture has a constant volumetric water
content of 0.0868 m3 m−3. During the simulation
the soil begins to dry as moisture is transfered to
the atmosphere. The depth to which this occurs is
affected by the terrain height, and it can be seen
that the soil remains slightly more moist at the ter-
rain peaks in comparison to the valley floor and
the terrain outside of the valley. Similar results are
achieved in both of the simulations.

Figure 14: Volumetric soil moisture at the end of the
simulation (18:00). This field was initialized with a
constant saturation rate.

5 OWENS VALLEY SIMULATIONS

The IBM allows explicit resolution of steep terrain,
enabling WRF to simulate flows which cannot be
computed using a standard terrain-following coordi-
nate. To demonstrate this capability, we have mod-
eled flow over a two-dimensional slice of the Owens
Valley in California. The terrain slice, seen in figure
16, is perpendicular to the valley axis. The terrain
data is from the National Elevation Dataset (NED)
at a resolution of 1/3 arc-second or approximately
10 m. As the terrain slice is not aligned with latitudi-
nal coordinates, it was necessary to interpolate the
data onto the grid. After the interpolation, the ter-
rain resolution used in the simulation is 20 m. As a
rule of thumb, terrain-following coordinates should
not be used for slopes over 30 degrees. The slope
of the 20 m terrain data is plotted in figure 15, and
it can be seen that there are several slopes of 60
degrees in this valley profile.

The domain size is (X, Y, Z) = (58.32 km, 0.04
km, 10 km) with (nx, ny, nz) = (1459,2,120) grid
points. The grid spacing is ∆X = ∆Y = 40 m in the
horizontal. The minimum grid spacing in the vertical
is ∆Zmin = 49.0 m, and the maximum is ∆Zmax =
130.6 m. The initialization is the same as in the fully
coupled cases in section 4.2, and as in those cases
the soil properties are idealized.

Figures 16 and 17 are examples of flows in the
Owens Valley. Figure 16 shows a typical morn-
ing upslope flow due to diurnal heating. Figure 17
shows westerly flow over the Sierra Nevada moun-
tain range. Mountain waves are seen over the val-
ley.
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Figure 15: Slope of the Owens Valley terrain data
is plotted with the black line. The green background
depicts the typical limits of terrain-following coordi-
nates.

6 CONCLUSIONS

This work has demonstrated that the immersed
boundary method is a viable option for removing the
barriers to modeling complex geometries created
by the use of terrain-following coordinates. A new
IBM suitable for viscous compressible flows has
been developed and implemented in WRF. The IBM
produces correct results for both the no-slip velocity
and scalar flux boundary conditions. Additionally,
the IBM works with atmospheric parameterizations
which provide realistic surface forcing. Excellent
agreement was achieved for two-dimensional valley
flows between the solution calculated on a terrain-
following grid and the solution with the immersed
boundary. Applicability to realistic, highly-complex
mountainous terrain was demonstrated by model-
ing flow over a 2D slice of the Owens Valley in Cali-
fornia. Future work will extend these results to three
dimensions, ultimately allowing for seamless grid
nesting between mesoscale domains with terrain-
following coordinates and highly resolved domains
using the immersed boundary method.
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Figure 16: Upslope flow induced by diurnal heating.

Figure 17: Mountain wave over the Owens Valley from westerly flow over the Sierra Nevada mountain
range.
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